Atmospheric Neutrino Results mostly from Super-Kamiokande

John Learned University of Hawaii

and

Roger Wendell of ICRR, U. Tokyo mostly based on his Nu2014 Boston talk

And with thanks to the SuperK Collaboration

KITP Neutrino Workshop, 3 November 2014

Introduction

- ■Some Introductory Material
- Atmospheric neutrinos as signal
 - Search for v_{τ} Appearance
 - Standard MNS Oscillation Analysis
 - Search for $\Delta m_s \sim eV^2$ scale sterile neutrinos
 - Search for Lorentz invariance violation
- Atmospheric neutrinos as background
 - Search for WIMP-induced neutrinos from the galactic center
 - Search for WIMP-induced neutrinos from the sun
- Summary

Atmospheric Neutrinos As Signal

Atmospheric Neutrino Generation

■Cosmic rays strike air nuclei and the decay of the outgoing hadrons gives neutrinos

P + A
$$\rightarrow$$
 N + π+ + x
 μ + + $\nu\mu$ \rightarrow e+ + ν e + ν μ

Primary cosmic rays Isotropic about Earth vs travel 10 – 10,000 km before detection Both neutrinos and antineutrinos in the flux ~ 30% of final analysis samples are antineutrinos

Flux spans many decades in energy ~100 MeV – 100TeV+

Excellent tool for broad studies of neutrino oscillations

Access to sub-leading effects with high statistics

R.Wendell (ICRR)

Atmospheric Neutrino Generation

■Cosmic rays strike air nuclei and the decay of the outgoing hadrons gives neutrinos

$$P + A \rightarrow N + \pi + + x$$

$$\mu + \nu \mu \rightarrow e + \nu e + \overline{\nu} \mu$$

Primary cosmic rays Isotropic about Earth vs travel 10 – 10,000 km before detection Both neutrinos and antineutrinos in the flux ~ 30% of final analysis samples are antineutrinos

Flux spans many decades in energy ~100 MeV – 100TeV+

Excellent tool for broad studies of neutrino oscillations

Access to sub-leading effects with high statistics

Super-Kamiokande: Introduction

Four Run Periods:

SK-I (1996-2001)

SK-II (2003-2005)

SK-III (2005-2008)

SK-IV (2008-Present)

- 22.5 kton fiducial volume
- Optically separated into
 - Inner Detector 11,146 20" PMTs
 - Outer Detector 1885 8" PMTs
- No net electric or magnetic fields
- Excellent PID between showering (e-like) and non-showering (μ-like)
 - ■< 1% MIS ID at 1 GeV
- ■Today: 4581 days of atmospheric neutrino data
 - 40,000 Events
 - Statistics limited
- Multipurpose machine
 - Solar and Supernova Neutrinos
 - Atmospheric Neutrinos (this talk)
 - Nucleon Decay
 - Far detector for T2K
 - And More (CR Anisotropy, Monopole search...)

SuperK Particle ID

FIGURE 1. The distribution of the likelihood parameter used to separate electron-like and muon-like rings with an example electron-like ring to the left and an example muon-like ring to the right.

Neutron Tagging

- ■Upgraded detector electronics in SK-IV store all PMT hits in a 500 µsec window after a physics trigger
 - Search for the 2.2 MeV gamma from $p(n,\gamma)d$
- ■Search is performed using a neural network built from 16 variables
 - Data and MC show good agreement on atmospheric neutrino sample
- **Future**: Implement neutron tagging to help distinguish v/v-bar interactions and to reduce proton decay backgrounds

2.2 MeV γ Selection				
Efficiency	20.5%			
Background / Event	0.018			

Super-K Atmospheric v Event Topologies

10⁴

10⁵

Super-K Atmospheric v Analysis Samples

Changes and Updates to Oscillation Analyses

- Addition of a new analysis sample
- ■Multi-Ring e-like Inclusive (Fully Contained)
 - ■Events that fail multi-ring e-like selection
- ■Improved systematic error treatments
 - ■Updates to cross-section, FSI, detector systematics, 2p-2h (MEC) uncertainties
- ■1775 days of SK-IV data: 4581.4 days total (282.2 kton yrs)

Multi-Ring e-like Sample Purities

Purity	$\text{CC }\nu_{\text{e}}$	$\text{CC}\nu_{\mu}$	CCv_{τ}	NC
ν-like	72.2%	8.3%	3.2%	16.1%
⊽-like	75.0%	6.5%	2.8%	15.6%
other	30.9%	33.4%	5.1%	30.5%

Evidence for v_{τ} CC interaction at Super-K

- Search for events consistent with hadronic decay of τ lepton
 - Multi-ring e-like events, mostly DIS interactions
- Negligible primary v_{τ} flux so v_{τ} must be oscillation-induced: **upward-going**
- Event selection performed by neural network

■ Total efficiency ~60%

$$\beta = 0$$
 : no v_{τ}

$$Data = \alpha(\gamma) \times bkg + \beta(\gamma) \times signal$$

Result	Background	DIS (γ)	Signal
SK-I+II+III	0.94 ± 0.02	1.10 ± 0.05	1.42 ± 0.35

This corresponds to

180.1 ±44.3 (stat) +17.8-15.2 (sys) events, a

3.8 σ excess (Expected 2.7 σ significance)

Searching for Three-Flavor Effects: Oscillation probabilities

- No $\nu_{\mu} \rightarrow \nu_{e}$ Appearance above ~20 GeV,
- Resonant oscillations between 2-10 GeV (for v or \overline{v} depending upon MH)
- No oscillations above 200 GeV
- No oscillations from downward-going neutrinos above ~5 GeV
- Expect effects in most analysis samples, largest in upward-going ν_e

Oscillation Effects on Analysis Subsamples

Expected Hierarchy Sensitivity

■ As a result, the sensitivity to the mass hierarchy is a rather strong function of the other oscillation parameters

■ As a function of the true value of $\sin^2\theta_{23}$ this plot shows the ability to reject the inverted mass hierarchy hypothesis assuming the normal hierarchy

Hierarchy Sensitivity NH True

 δ_{cp} Uncertainty

θ_{13} Fixed Analysis (NH+IH) SK Only **Preliminary** SK Inverted Hierarchy SK Normal Hierarchy 15 15 15 $\Delta\,\chi^2$ 10 10 0.001 0.2 0.002 0.003 0.004 0.005 0.4 0.6 0.8 $\sin^2 \theta_{23}$ $|\Delta \, m_{32}^2|, |\Delta \, m_{13}^2| \, \text{MeV}^2$ δ_{cp} Fit (517 dof) θ_{13} δ_{cp} $\Delta m_{23} (x10^{-3})$ χ2 θ_{23} SK (NH) 559.8 0.025 3.84 0.57 2.6 SK (IH) 560.7 0.025 3.84 0.57 2.5

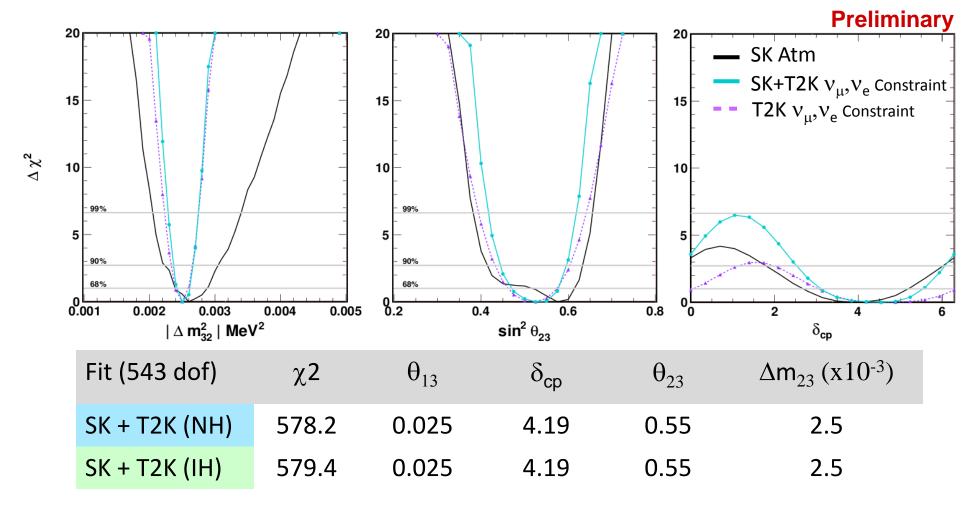
- $\blacksquare \theta_{13}$ fixed to PDG average, but its uncertainty is included as a systematic error
- ■Offset in these curves shows the difference in the hierarchies

About These Results

- Normal hierarchy favored at:

 - Not a significant preference
 - Previous results (2013 Summer) favored inverted hierarchy by $\Delta \chi^2 \sim 1.5$
- Driven by excess of upward-going e-like events consistent with the effects of θ_{13}
 - Primarily in SK-IV data
 - New multi-ring e-like sample also pulls the fit towards the NH
 - Fit for θ_{13} now weakly favors $\theta_{13} > 0$
- Rejection of $\delta_{cp} \sim 60^{\circ}$ driven by excess in Sub-GeV electron events
 - Constraint is consistent with sensitivity

Comparison with Official Results from T2K and MINOS


- ■Though consistent with long-baseline measurements, atmospheric neutrinos allow more of the mixing parameter space
- ■SK's sensitivity can be improved by incorporating constraints from these measurements

- Restricting the allowed values of Δm^2 and $\sin^2\theta_{23}$ available to the atmospheric neutrino fit can help improve sensitivity to the mass hierarchy
 - Include these constraints as external data sets in the SK fit
- Fit the T2K v_{μ} and v_{e} data sets with SK
 - Same detector, generator and reconstruction: systematic error correlations incorporated easily
 - Fit is based on **publicly available** T2K information and results
 - Simulate T2K using SK tools
 - (not a joint result of the T2K and SK collaborations)
- MINOS constraint is similarly important but harder to model accurately (so far...)

θ_{13} Fixed SK + T2K ν_{μ} , ν_{e} (External Constraint) Normal Hierarchy

- $\chi^2_{IH} \chi^2_{NH} = -1.2$ (-0.9 SK only)
- CP Conservation ($\sin \delta_{cp} = 0$) allowed at (at least) 90% C.L. for both hierarchies

θ 13 Fixed SK + T2K ν_{μ} , ν_{e} (External Constraint) Inverted Hierarchy

 $[\]chi^2_{IH} - \chi^2_{NH} = -1.2$ (-0.9 SK only)

■CP Conservation ($\sin \delta_{cp} = 0$) allowed at (at least) 90% C.L. for both hierarchies

θ_{13} Free Analysis (NH+IH) SK Only

Preliminary

■Offset in these curves shows the difference in the hierarchies

θ_{13} Free Analysis (NH+IH) SK Only

Preliminary

0.01

SK Inverted HierarchySK Normal Hierarchy

Fit (517 dof)	χ2	θ_{13}	$\delta_{\sf cp}$	θ_{23}	$\Delta m_{23} (x10^{-3})$
SK (NH)	559.2	0.010	3.84	0.57	2.6
SK (IH)	560.4	0.015	3.84	0.57	2.5

0.02

 $\sin^2\theta_{13}$

0.03

0.04

■Offset in these curves shows the difference in the hierarchies

Sterile Neutrino Oscillations in Atmospheric Neutrinos

- Sterile Neutrino searches at SK are independent of the sterile Δm^2 and the number sterile neutrinos
 - \blacksquare 3+1 and 3+N models have the same U= signatures in atmospheric neutrinos
 - For $\Delta m_s^2 \sim 1 \text{ eV}^2$ oscillations appear fast: $< \sin^2 \Delta m^2 \text{ L/E} > \sim 0.5$
 - | U_{u4} |2
 - Induces a decrease in event rate of μ -like data of all energies and zenith angles
 - $\blacksquare \mid U_{\tau 4} \mid^2$
 - Shape distortion of angular distribution of higher energy μ-like data

See Maltoni & Schwetz, Phys.Rev. D76, 093005, (2007)

"Hydrogen Earth" Approximation

■ Turning off sterile matter effects while preserving standard three-flavor oscillations provides a pure measurement of | U_{u4} |²

Using SK-I+II+III+IV data (4438 days)

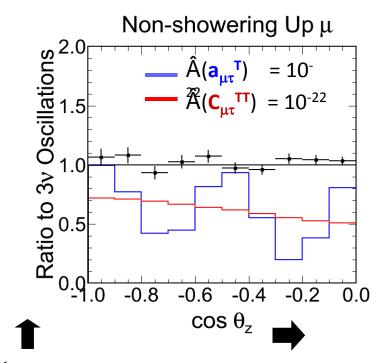
 \blacksquare | U_{u4} | 2 < 0.022 at 90% C.L.

- Limit is valid for $\Delta m_{41}^2 > 0.01 \text{ eV2}$
- For smaller values, the assumption of fast oscillations is invalid

FIG. 8. The $\Delta \chi^2$ from the fit to the atmospheric neutrino data in the no- ν_e approximation, plotted versus the two effective parameters, A_s and $\sin(2\theta_s)$, with the third free parameter, d_{μ} , profiled out.

Tests for Lorentz Violation

Tests of Lorentz Invariance


$$H = UMU^{\dagger} + V_e + H_{LV}$$

$$\pm \begin{pmatrix} 0 & a_{e\mu}^{T} & a_{e\tau}^{T} \\ \left(a_{e\mu}^{T}\right)^{*} & 0 & a_{\mu\tau}^{T} \\ \left(a_{e\tau}^{T}\right)^{*} & \left(a_{\mu\tau}^{T}\right)^{*} & 0 \end{pmatrix} - E \begin{pmatrix} 0 & c_{e\mu}^{TT} & c_{e\tau}^{TT} \\ \left(c_{e\mu}^{TT}\right)^{*} & 0 & c_{\mu\tau}^{TT} \\ \left(c_{e\tau}^{TT}\right)^{*} & \left(c_{\mu\tau}^{TT}\right)^{*} & 0 \end{pmatrix}$$

- Lorentz invariance violating effects can be probed using atmospheric neutrinos
 - Focus here on **isotropic** effects
 - (sensitive to sidereal effects as well...)
- Analysis using the Standard Model Extension (SME)
 - **Not a perturbative** calculation
 - Effects computed using full solutions of the Hamiltonian
- Effects of LIV controlled by two sets of complex parameters
 - $\mathbf{a}_{\alpha\beta}^{\mathsf{T}}$ dim = 3 induces oscillation effects $\sim \mathbf{L}$
 - $\mathbf{c}^{\mathsf{TT}}_{\alpha\beta}$ dim = 4 induces oscillation effects $^{\sim}$ L \times E

See: arXiv:1410.4267v1 [hep-ex] 16 Oct 2014,
Formulation from D. Colladay and V. A. Kostelecky,
Phys.Rev. D55, 6760 (1997), arXiv:hep-ph/9703464 [hep-ph], et seq.

Constraints on Lorentz Invariance Violating Oscillations: 90% C.L.

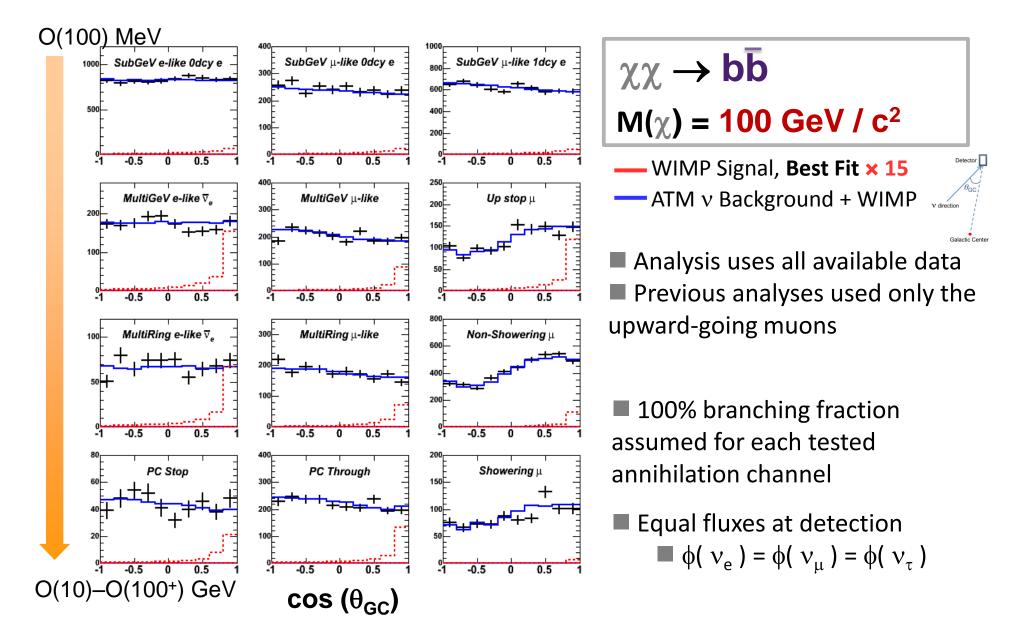
- SK-I+II+III+IV: 4438 days of data
- Perform separate fits on both hierarchy assumptions for each coefficient and each sector : $e\mu$, $e\tau$, $\mu\tau$
- No indication of Lorentz invariance violation
 - Limits placed on the real and imaginary parts of 6 parameters $\leq O(10^{-23})$

Lorentz Invariance Violating Oscillation Limits: 90% C.L.

- Established new limits in the $\mu\tau$ sector for both $\mathbf{a}^{\mathsf{T}}_{\alpha\beta}$ and $\mathbf{c}^{\mathsf{TT}}_{\alpha\beta}$ coefficents
- Improvements on existing limits between 3 and 7 orders of magnitude!

Atmospheric Neutrinos As Background

Search for WIMP Annihilations in the Galactic Center and Sun


- Search for a signal of WIMP annihilation from the Galactic Halo or solar interior assuming several branching modes
 - $\blacksquare v\overline{v}$, $b\overline{b}$, $\tau^+\tau^-$, W^+W^-
- Signal would appear atop the ATM v background, peaked towards either the galactic center or towards the sun
- Simulate signal and detector response for all v flavors
- Same analysis samples as oscillation analyses but binned in angle toward the galactic center (or sun)
 - Use all samples
 - Previous analyses used only Up μ samples
 - Allows probe of both low O(GeV) and high O(TeV) WIMP masses

Search for WIMP Annihilations: Signal Demonstration

Search for WIMP Annihilations: Signal Demonstration

Search for WIMP Annihilations in the Galactic Center: Results

- No evidence for event excess on top of the atmospheric neutrino background
 - N.B. ~300 events allowed at 5 GeV test point are distributed over several analysis bins
- Stringent limits placed on the velocity-averaged annihilation cross section down to WIMP masses of 1 GeV / χ^2 ($\chi\chi \to \nu\nu$)

Search for WIMP Annihilations in the Sun

- Similar analysis can be performed when looking towards the center of the Sun
- No indication of an event excess in the data
- Spin-dependent cross section limits well below the allowed regions for DAMA/LIBRA
- Spin-independent limits in tension with some allowed regions, but not as constraining as LUX or XENON100

Summary

- \mathbf{v}_{τ} appearance seen at 3.8 σ significance
- Three-Flavor Analysis
 - Using 4538 days of data, there is a \sim 1 σ preference for the NH, and second octant
- No indication of oscillations into sterile states
 - For 3+N models $|U_{\mu 4}|^2 < 0.022$ at 90% C.L.
- No indication of Lorentz invariance violation
 - Limits set or improved by 3 to 7 orders of magnitude
- So far no indication of indirect dark matter annihilation into neutrinos from either the sun or galactic center

Thank you, and I thank Roger and all of SK Collaboration

End