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Questions about Neutrinos 

Standard properties of active neutrinos 
 

• Absolute mass 
 
• Mass ordering (hierarchy) 
• Leptonic CP violation 
• Dirac vs Majorana 

Non-standard properties of active neutrinos 
 

• Electromagnetic properties 
• Gravitational interaction 
• Non-standard/secret interactions 

Sterile neutrinos 
 

• Evidence for existence 
• Masses & mixing parameters 

 
 

 Structure in cosmology,  leptogenesis, 
      supernova time of flight 
 Supernova neutrino oscillations 
 Leptogenesis 
 Leptogenesis 

 
 
 

 Energy loss of ordinary stars & SNe 
 SN time of flight 
 Cosmology, SNe, cosmic propagation 

 
 

 3.5 keV x-ray signal, warm dark matter 
 Structure in cosmology (eV-scale masses) 
 SN neutrinos: energy loss & transfer 
 flavor oscillations, nucleosynthesis 
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Neutrino Electromagnetic 
Properties 
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Neutrino Electromagnetic Form Factors 

Effective 
coupling of 
electromagnetic 
field to a 
neutral fermion 
 
 
 

Charge en = F1(0) = 0 

Anapole moment G1(0) 

Magnetic dipole moment m = F2(0)  

Electric dipole moment e = G2(0)  

ℒeff = −𝐹1Ψ𝛾𝜇Ψ 𝐴𝜇 
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• Charge form factor F1(q2) and anapole G1(q2) are short-range interactions 
   if charge F1(0) = 0  
• Connect states of equal helicity 
• In the standard model they represent radiative corrections to weak interaction  

• Dipole moments connect states of opposite helicity  
• Violation of individual flavor lepton numbers (neutrino mixing) 
     Magnetic or electric dipole moments can connect different flavors 
          or different mass eigenstates (“Transition moments”)  
• Usually measured in “Bohr magnetons”  mB = e/2me   
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Standard Dipole Moments for Massive Neutrinos 

Standard electroweak model: 
Neutrino dipole and 
transition moments  
are induced at higher order 

Massive neutrinos 𝜈𝑖 (𝑖 = 1, 2, 3) 
mixed to form weak eigenstates 

𝜈ℓ =  𝑈ℓ𝑖𝜈𝑖

3

𝑖=1

 

Explicitly for Dirac neutrinos 
   Magnetic moments 𝜇𝑖𝑗 

   Electric moments 𝜖𝑖𝑗 
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𝑒 2𝐺F

4𝜋 2
𝑚𝑖 +𝑚𝑗  𝑈ℓ𝑗𝑈ℓ𝑖

∗

ℓ=𝑒,𝜇,𝜏

𝑓
𝑚ℓ

𝑚𝑊
 

 

 𝜖𝑖𝑗  =  … 𝑚𝑖 −𝑚𝑗  … 
 

 𝑓
𝑚ℓ

𝑚𝑊
= −

3

2
+
3

4
 

𝑚ℓ

𝑚𝑊

2

+ 𝒪
𝑚ℓ

𝑚𝑊

4

 



Georg Raffelt, MPI Physics, Munich Neutrinos, KITP, Santa Barbara, 3–7 Nov 2014 

Standard Dipole Moments for Massive Neutrinos 

Diagonal case: 
Magnetic moments 
of Dirac neutrinos 

𝜇𝑖𝑖 =
3𝑒 2𝐺F

4𝜋 2
𝑚𝑖 = 3.20 × 10−19𝜇B

𝑚𝑖

eV
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𝜇B =
𝑒

2𝑚𝑒
 

Off-diagonal case 
(Transition moments) 
 

First term in 𝑓(𝑚ℓ 𝑚𝑊 ) 
does not contribute: 
“GIM cancellation” 

𝜇𝑖𝑗 =
3𝑒 2𝐺F
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Largest neutrino mass eigenstate   0.05 eV <  𝑚 <  0.2 eV 
For Dirac neutrino expect 

1.6 × 10−20𝜇𝐵 < 𝜇𝜈 < 6.4 × 10−20𝜇𝐵 
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Astrophysical Magnetic Fields 

10-12
 

10-20 mB 

“Hillas Plot” 
ARAA 22, 425 (1984) 

Field strength and 
length scale where 
neutrinos with  
specified dipole 
moment would 
completely depolarize 
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Neutrino Spin-Flavor Oscillations in a Medium 

Two-flavor oscillations of Majorana neutrinos with a transition magnetic moment m  
and ordinary flavor mixing in a medium 
 

    𝑖𝜕𝑟

𝜈𝑒
𝜈𝜇
𝜈𝑒
𝜈𝜇

=

𝑐Δ + 𝑎𝑒 𝑠Δ 0 𝜇𝐵
𝑠Δ −𝑐Δ + 𝑎𝜇 𝜇𝐵 0

0 𝜇𝐵 𝑐Δ − 𝑎𝑒 𝑠Δ
𝜇𝐵 0 𝑠Δ −𝑐Δ − 𝑎𝜇

𝜈𝑒
𝜈𝜇
𝜈𝑒
𝜈𝜇

 

 

with 𝑐 = cos(2Θ), 𝑠 = sin(2Θ),  

         Δ = (𝑚2
2−𝑚1

2) 4𝐸 ,  𝑎𝑒 = 2𝐺𝐹 𝑛𝑒 −
1

2
𝑛𝑛   and  𝑎𝜇 = 2𝐺𝐹 −

1

2
𝑛𝑛  

 

• Resonant spin-flavor precession (RSFP) can be a subdominant effect for solar 
   neutrino conversion and can produce a small solar anti-neutrino flux 
 

• Can be important for supernova neutrinos 
 

Limits on solar 𝜈𝑒 flux (Borexino arXiv:1010.0029, KamLAND arXiv:1105.3516) 
 

   𝑝 𝜈𝑒 → 𝜈𝑒 < 5.3 × 10−5 (90% CL) 
 

Not yet sensitive to 𝜇𝜈 even for largest assumed solar B-fields 
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Neutrinos from Thermal Processes 

These processes were first 
discussed in 1961-63 
after V-A theory 

Photo (Compton) Plasmon decay Pair annihilation 

Bremsstrahlung 
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Electromagnetic Properties of  Neutrinos 
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Galactic Globular Cluster M55 
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Color-Magnitude Diagram of Globular Cluster M5 

Viaux, Catelan, Stetson, Raffelt, Redondo, Valcarce & Weiss, arXiv:1308.4627 

CMD (a) before and (b) after cleaning CMD of brightest 2.5 mag of RGB 

Brightest red giant 
measures nonstandard energy loss 
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Neutrino Dipole Limits from Globular Cluster M5 

I-band brightness 
of tip of red-giant brach 
[magnitudes] 

Neutrino magnetic dipole moment [10−12𝜇𝐵] 

𝜇𝜈 <  
2.6 × 10−12𝜇𝐵 (68% CL)

4.5 × 10−12𝜇𝐵 (95% CL)
 

Most restrictive limit on 
neutrino electromagnetic 
properties 

Detailed account of theoretical and 
observational uncertainties 
(Bolometric correction 
 dominates uncertainty) 

Viaux, Catelan, Stetson, Raffelt, Redondo, Valcarce & Weiss, arXiv:1308.4627 

• Uncertainty dominated 
   by distance 
• Can be improved in  
   future (GAIA mission)  
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White Dwarf Luminosity Function 

Miller Bertolami, Melendez, Althaus & Isern, arXiv:1406.7712, 1410.1677 

Stars formed in 
the past Gyr 

bright & young dim & old 



Georg Raffelt, MPI Physics, Munich Neutrinos, KITP, Santa Barbara, 3–7 Nov 2014 

Period Change of Variable White Dwarfs 

Period change Π  of pulsating white darfs depends on cooling speed 

White dwarf  PG 1351+489,  Córsico et al., arXiv:1406.6034 

Excluded 
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Neutrino Radiative Lifetime Limits 

For low-mass neutrinos, plasmon decay in globular cluster stars 
yields the most restrictive limits 

Plasmon 
decay 
𝜸𝐩𝐥 → 𝝂 + 𝝂 

Radiative 
decay 
𝜈 → 𝜈′ + 𝛾 
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Neutrino Properties 
from Supernova Neutrinos 
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Core-Collapse Supernova Explosion 

Neutrino 

cooling by 

diffusion 

   End state of a 
   massive star 

   M ≳ 6–8 M⊙ 

Collapse of 
degenerate core 

 Bounce at ρnuc 
 Shock wave forms 
 explodes the star  

  Grav. binding E  
  ~ 3 × 1053 erg 
  emitted as nus 
  of all flavors 

• Huge rate of low-E neutrinos 
   (tens of MeV) over few seconds 
   in large-volume detectors 
• A few core-collapse SNe in our 
   galaxy per century 
• Once-in-a-lifetime opportunity 
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Shock Revival by Neutrinos 

Georg Raffelt, MPI Physics, Munich 

S 

Si 

Si 

O 

Shock 
wave 

PNS 

Stalled shock wave must 
receive energy to start 
re-expansion against 
ram pressure of 
infalling stellar core 
 

Shock can receive 
fresh energy from 
neutrinos! 

n 
n 

n 

NOW 2014, 7–14 Sept 2014, Otranto, Italy 

Flavor oscilllations 
(active-active) 
suppressed by matter 
out to stalled shock. 
Self-induced conversion 
also suppressed 
(with caveats). 
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Degenerate Fermi Seas in a Supernova Core 

n p e- ne nm nt 

Equilibration by flavor  
lepton number violation, 
but flavor oscillations  
ineffective (matter effect) 
 

Non-standard interactions 
could be effective, most 
sensitive environment 

Equilibration by lepton 
number violation, but  
Majorana masses too small 

R-parity violating SUSY  
interactions? 
TeV-scale bi-leptons? 
 

Consequences in core 
collapse should be 
studied numerically 
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Sterile Neutrino Enhanced Supernova Explosions? 
Non-local energy transfer from deep inside to 
neutrino sphere 
Hidaka & Fuller, astro-ph/0609425, arXiv:0706.3886 

Numerical study: 
Warren, Meixner, Mathews,  
Hidaka & Kajino,  
arXiv:1405.6101 

10 x explosion energy 

1.5 x explosion 
energy 

Dark 
Matter 
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Three Phases of Neutrino Emission 

• Shock breakout 
• De-leptonization of 
   outer core layers 

• Shock stalls  ~ 150 km 
• Neutrinos powered by 
   infalling matter 

Cooling on neutrino 
diffusion time scale 

Spherically symmetric Garching model (25 M⊙) with Boltzmann neutrino transport 

Explosion 
triggered 
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Early-Phase Signal in Anti-Neutrino Sector 

Garching Models with M = 12–40 M⊙ 

Average Energy Luminosity IceCube Signature 

• In principle very sensitive to hierarchy, notably IceCube 
• “Standard candle” to be confirmed by other than Garching models 

Abbasi et al. (IceCube Collaboration) A&A 535 (2011) A109  
Serpico, Chakraborty, Fischer, Hüdepohl, Janka & Mirizzi, arXiv:1111.4483 

 

𝜈𝑒 

𝜈𝑥 

𝜈𝑒 

𝜈𝑥 
𝜈𝑒 

𝜈𝑥 
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Variability seen in Neutrinos (3D Model) 

Tamborra, Hanke, Müller, Janka & Raffelt, arXiv:1307.7936 
See also Lund, Marek, Lunardini, Janka & Raffelt, arXiv:1006.1889 

SASI modulation 
80 Hz 

For sub-eV neutrino masses, 
no washing-out by time-of-flight effects! 
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Sky Map of Lepton-Number Flux (11.2 MSUN Model) 

Tamborra, Hanke, Janka, Müller, Raffelt & Marek, arXiv:1402.5418 

Lepton-number flux (𝝂𝒆 − 𝝂𝒆) relative to 4p average 
Deleptonization flux into one hemisphere, roughly dipole distribution 

(LESA — Lepton Emission Self-Sustained Asymmetry)  
 

Positive dipole 
direction and 
track on sky 
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Spectra in the two Hemispheres 

Direction of 
maximum lepton-number flux 

Direction of 
minimum lepton-number flux 

𝜈𝑒 

𝜈𝑒 

𝜈𝑒 

𝜈𝑥 

𝜈𝑒 

𝜈𝑥 

Neutrino flux spectra (11.2 MSUN model at 210 ms) in opposite LESA directions 

During accretion phase, flavor-dependent fluxes 
vary strongly with observer direction! 
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Growth of Lepton-Number Flux Dipole 

• Overall lepton-number flux (monopole) depends on accretion rate, 
    varies between models 
 

• Maximum dipole similar for different models 
 

• Dipole persists (and even grows) during SASI activity 
 

• SASI and LESA dipoles uncorrelated 

Tamborra et al., arXiv:1402.5418 

Monopole 

Dipole 
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Schematic Theory of LESA 
Accretion 
flow 

Convective 
overturn 

Tamborra et al. 
arXiv:1402.5418 

Electron 
distribution 

Feedback loop consists 
of asymmetries in 
• accretion rate 
• lepton-number flux 
• neutrino heating rate 
• dipole deformation 
   of shock front 
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LESA Dipole and PNS Convection 

Color-coded 
lepton-number flux 
along radial rays 
(11.2 MSUN model 
 at 210 ms) 

Neutrino 
sphere 

Neutrino 
sphere 

PNS 
Convection 

Lepton flux dipole builds up mostly 
below the neutrino sphere  
in a region of strong convection  
in the proto-neutron star (PNS) 
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Three Phases – Three Opportunities 

Standard Candle (?)  
•  SN theory 
•  Distance 
•  Flavor conversions 
•  Multi-messenger 
    time of flight 

Strong variations  
(progenitor, 3D effects, 
 black hole formation, …) 
• Testing astrophysics of 
   core collapse 
• Flavor conversion has 
   strong impact on signal 
 

EoS & mass dependence 
• Testing nuclear physics 
• Nucleosynthesis in  
   neutrino-driven wind 
• Particle bounds from 
   cooling speed (axions …) 
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Weighing Neutrinos with the Universe 
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Transfer Function with Massive Neutrinos 

Transfer function 
 

  P(k) = T(k) P0(k) 
 

Effect of neutrino free 

streaming on small scales 
 

  T(k) = 1 - 8 Wn/WM  
 

valid for 8Wn/WM ≪ 1 

 

 

 

Power suppression much 

larger (factor 8) than 

corresponds to neutrino 

mass fraction! 

Power suppression for lFS ≳ 100 Mpc/h 
(kFS = 2p/lFS) 

arXiv:1309.5383 
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Neutrino Mass Limits Post Planck (2013) 

Ade et al. (Planck Collaboration), arXiv:1303.5076 

Planck alone:          Smn < 1.08 eV  (95% CL) 
CMB + BAO  limit:  Smn < 0.23 eV  (95% CL) 

Depends on used data sets 
Many different analyses in the literature 
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Constraints on Light Sterile Neutrinos 

Archidiacono, Fornengo, Gariazzo, Giunti, Hannestad, Laveder, arXiv:1404.1794 

𝑚𝑠 [eV] 

Δ𝑁eff
𝑠  

Fully thermalised 

Includes 
SBL data 

Sterile neutrinos with 
parameters favored by 
short-baseline (SBL) 
experiments are in conflict 
with cosmology 
(complete thermalization) 
 
But thermalization could be 
suppressed (matter effect from 
strong interactions among 
sterile nus or asymmetries 
among active nus) 
[arXiv:1303.5368, 1310.5926,  
1310.6337, 1404.5915, 
1410.1385] 
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Larger model 
space 

More data 

CMB only 

+ SDSS 

+ SNI-a 
+WL 

+Ly-alpha 

Minimal 
LCDM 

+Nn +w+…… 

1.1 eV 

0.4 eV 

~ 0.5 eV 

~ 0.2 eV 

~ 2 eV 2.? eV ??? eV 

~ 1 eV 1–2 eV 

0.5–0.6 eV 0.5–0.6 eV 

0.2–0.3 eV 0.2–0.3 eV 

Neutrino Mass from Cosmology Plot (Hannestad) 
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Larger model 
space 

More data 

CMB only 
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Larger model 
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CMB only 
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Neutrino-Mass Sensitivity Forecast 

Community Planning Study: Snowmass 2013, arXiv:1309.5383 
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Nu-Mass and N-eff Sensitivity Forecast 

Community Planning Study: Snowmass 2013, arXiv:1309.5383 
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Astro/Cosmo Neutrino Limits 
• Neutrino electromagnetic properties (dipole moments) 
   most severely constrained from plasmon decay in stars 
   (low-mass stars He ignition, white dwarf luminosity function) 
   𝜇𝜈  ≲ 3 × 10−12 𝜇B 
• Applies to active and sterile nus with 𝑚𝜈  ≲ 10 keV 
• Can be improved later by GAIA distance determination 

• Many limits on nonstandard nu properties from SN 1987A 
   (gravitational interaction, r.h. interactions, steriles) 
• Time of flight 𝑚𝜈 effects small: 
   fast time variations caused by hydro instabilities observable 
• Flavor oscillations (active-active or active-sterile) impacts 
   explosion physics, kicks, nucleosynthesis, detected signal 

• Most restrictive 𝑚𝜈 limits, measurement expected in future 
• Dark radiation (𝑁eff > 3.046)  to be ruled in or out in future 
• Probably has nothing to do with active neutrinos 
   (enhanced density by asymmetries excluded by BBN) 
• Thermalized eV-scale sterile nus excluded by HDM bounds, 
   (but full thermalization can be suppressed by novel effects) 


