Supernova Neutrino Detection

KITP, Santa Barbara, November 2014

OUTLINE

- Supernova neutrinos: what we're after
- Detection interactions
- Detector types, and current & future detectors
- Aside: measuring supernova-relevant cross sections
- The early alert

The supernova neutrino signal

Enormous, transient flux of tens-of-MeV neutrinos of all flavors

The supernova neutrino signal

time (s)

Halo No Halo

Information is in the *energy, flavor, time* structure of the burst

What do you want in a detector?

	-
Size	~kton detector mass per 100 events
Low energy threshold	~Few MeV if possible
Energy resolution	Resolve features in spectrum
Angular resolution	Point to the supernova! (for directional interactions)
Timing resolution	Follow the time evolution
Low background	BG rate << rate in burst; underground location usually excellent; surface detectors conceivably sensitive
Flavor sensitivity	Ability to tag flavor components
High up-time and longevity	Can't miss a ~1/30 year spectacle!

Note that many detectors have a "day job"...

Relevant interaction cross sections in the 5-100 MeV range

	Electrons	
	Elastic scattering	
Charged	$\nu + e^- \to \nu + e^-$	
current	^[−] _{ve} ·····► v e [−]	
Neutral current	v e	
	Useful for pointing	

	Electrons	Protons	
	Elastic scattering	Inverse beta decay	
	$\nu + e^- \to \nu + e^-$	$\bar{\nu}_e + p \to e^+ + n$	
Charged current	^[¬] _{ve} ·····► ▼ e [−]	$\overline{v}_{e}^{+} \gamma$	
Neutral current	ve ∪seful for pointing		

	Electrons	Protons	
	Elastic scattering	Inverse beta decay	
	$\nu + e^- \to \nu + e^-$	$\bar{\nu}_e + p \to e^+ + n$	
current	^[−] _{ve} ····· v e [−]	γ e^+ γ \overline{v}_e n γ	
Neutral current	ν e	Elastic scattering	
	Useful for pointing	very low energy recoils	

	Electrons	Protons	Nuclei	
	Elastic scattering $\nu + e^- \rightarrow \nu + e^-$	Inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$	$ \nu_e + (N, Z) \to e^- + (N - 1, Z + 1) $ $ \bar{\nu}_e + (N, Z) \to e^+ + (N + 1, Z - 1) $	
Charged current	e [−]	$\overline{v_{e}}^{\gamma} = \frac{\gamma}{v_{e}}$	<pre> Various possible ejecta and deexcitation products </pre>	
Neutral current	ν e	Elastic scattering		
	Useful for pointing	very low energy recoils		

	Electrons	Protons	Nuclei	
	Elastic scattering $\nu + e^- \rightarrow \nu + e^-$	Inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$	$ \nu_e + (N, Z) \to e^- + (N - 1, Z + 1) $ $ \bar{\nu}_e + (N, Z) \to e^+ + (N + 1, Z - 1) $	
Charged current	^[−] _{v_e} ·····• √ e [−]	\overline{v}_{e}^{+}	r_{v_e} $r_{e^{+/-}}$ r_{v_e}	
Neutral current	ν e	Elastic scattering vp	$ \nu + A \rightarrow \nu + A^* $ deexcitation products $ \sqrt{1 + A^*} $	
	Useful for pointing	very low energy recoils		

	Electrons	Protons	Nuclei	
	Elastic scattering $\nu + e^- \rightarrow \nu + e^-$	Inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$	$ \nu_e + (N, Z) \to e^- + (N - 1, Z + 1) $ $ \bar{\nu}_e + (N, Z) \to e^+ + (N + 1, Z - 1) $	
Charged current	^[¬] _{ve} ·····► v e [−]	$\overline{v}_{e}^{+} \gamma$	v_e $v_e^{+/-}$ Various possible ejecta and	
Neutral current	ν e	Elastic scattering	$ \nu + A \rightarrow \nu + A^* $ deexcitation products $ \sqrt[n]{} \sqrt[n]{} $	
	Useful for pointing	very low energy recoils	$ \nu + A \rightarrow \nu + A \qquad \begin{array}{c} \nu & \cdots & \bullet \\ Coherent \\ elastic (CENNS) \end{array} $	

	Electrons	Protons	Nuclei
	Elastic scattering $\nu + e^- \rightarrow \nu + e^-$	Inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$	$ \nu_e + (N, Z) \to e^- + (N - 1, Z + 1) $ $ \bar{\nu}_e + (N, Z) \to e^+ + (N + 1, Z - 1) $
Charged current	[[] √ _e ·····► • e [−]	\overline{v}_{e}^{+} γ \overline{v}_{e}^{-} γ	r_{v_e} $r_{e^{+/-}}$ r_{v_e}
Neutral current	ν e	Elastic scattering	$\nu + A \rightarrow \nu + A^*$ products
	Useful for pointing	very low energy recoils	$ \nu + A \rightarrow \nu + A $ Coherent elastic (CENNS)

IBD (electron antineutrinos) dominates for current detectors

Neutrino interaction thresholds

Current main supernova neutrino detector types

+ some others (e.g. DM detectors)

Water Cherenkov detectors

Super-Kamiokande

Mozumi, Japan 22.5 kton fid. volume (32 kton total) ~5-10K events @ 10 kpc (mostly anti-nue) New: "SN recorder" will lower threshold during burst for improved sensitivity

SUPERKAMIOKANDE INSTITUTE FOR COSMIC RAY RESEARCH UNIVERSITY OF TOKYC

Hyper-Kamiokande

- 560 kton fiducial volume **Design & site-selection** underway
- ~half photocoverage, but still good efficiency for SN

Supernova signal in a water Cherenkov detector

http://snews.bnl.gov/snmovie.html

Neutron tagging in water Cherenkov detectors

$$\bar{\nu}_e + p \to e^+ + n \quad \blacksquare$$

detection of neutron tags event as *electron antineutrino*

- especially useful for DSNB (which has low signal/bg)
- also useful for disentangling flavor content of a burst

(improves pointing, and physics extraction)

R. Tomas et al., PRD68 (2003) 093013 KS, J.Phys.Conf.Ser. 309 (2011) 012028; LBNE collab arXiv:1110.6249 R. Laha & J. Beacom, PRD89 (2014) 063007

"Drug-free" neutron tagging

$$n + p \rightarrow d + \gamma (2.2 \text{ MeV})$$

~200 μs thermalization & capture, observe Cherenkov radiation from γ Compton scatters

→ with SK-IV electronics,
 ~20% n tagging efficiency

SK collaboration, arXiv:1311.3738; see also R. Wendell talk

Enhanced performance by doping!

use gadolinium to capture neutrons

(like for scintillator)

J. Beacom & M. Vagins, PRL 93 (2004) 171101

Gd has a huge n capture cross-section: 49,000 barns, vs 0.3 b for free protons

H. Watanabe et al., Astropart. Phys. 31, 320-328 (2009)

EGADS: test tank in the Kamioka mine for R&D

Long string water Cherenkov detectors

IceCube collaboration, A&A 535, A109 (2011)

~kilometer long strings of PMTs in very clear water or ice (IceCube/PINGU, ANTARES)

Nominally multi-GeV energy threshold... but, may see burst of low energy \overline{v}_e 's as *coincident increase in single PMT count rates* (M_{eff}~ 0.7 kton/PMT)

Cannot tag flavor, or other event-by-event info, but map overall burst time structure

Some spectral info using multiplevs-single hits, especially w/ PINGU infill

PINGU LOI, arXiv:1401.2046

Scintillation detectors

- few 100 events/kton (IBD)
- low threshold, good neutron tagging possible
- little pointing capability (light is ~isotropic)
- coherent elastic NC scattering on protons for ν spectral info

NC tag from 15 MeV deexcitation γ (no v spectral info)

Liquid scintillator C_nH_{2n} volume surrounded by photomultipliers

Current and near-future scintillator detectors

KamLAND (Japan) 1 kton

LVD (Italy) 1 kton

NOvA (USA) 14 kton

(on surface, but may be possible to extract counts for known burst)

Borexino (Italy) 0.33 kton

SNO+ (Canada) 1 kton

Also on the surface: reactor experiments w/ Gd-doped (and undoped) scintillator

Detector	Туре	Location	Mass (ton)	Events @ 10 kpc
Double Chooz	Scintillator	France	20	7
RENO	Scintillator	South Korea	30	11
Daya Bay	Scintillator	China	330	100

Although signal numbers are small, for low bg rates and good tagging, there will be good S/B

Also: coincidence between multiple detectors makes a SN trigger possible Daya Bay, arXiv:1310.5783

Future detector proposals

JUNO (China) 20 kton RENO-50 (S. Korea) 18 kton

LENA (Finland) 50 kton

Liquid argon time projection chambers

- fine-grained trackers
- no Cherenkov threshold
- high v_e cross section

Supernova signal in a liquid argon detector

Example of supernova burst signal in 34 kton of LAr

arXiv:1307.7335

Can we tag v_e CC interactions in argon using nuclear deexcitation γ 's? $\nu_e + {}^{40}\text{Ar} \rightarrow e^- + {}^{40}\text{K}^*$

20 MeV v_e , 14.1 MeV e^- , simple model based on R. Raghavan, PRD 34 (1986) 2088 Improved modeling based on ⁴⁰Ti (⁴⁰K mirror) β decay measurements in progress **Direct measurements (and theory) needed!**

Lead-based supernova detectors

SNO ³He counters + 79 tons of Pb: ~1-40 events @ 10 kpc

Coherent Elastic Neutrino Nucleus Scattering

$$v_{x} + A \rightarrow v_{x} + A$$

C. Horowitz et al., PRD68 (2003) 023005

High x-scn but *very* low recoil energy (10's of keV) \Rightarrow observable in DM detectors

 few events per ton for Galactic SN

v_x energy information from recoil spectrum

e.g. Ar, Ne, Xe, Ge, ...

Summary of supernova neutrino detectors

Detector	Туре	Location	Mass (kton)	Events @ 10 kpc	Status
Super-K	Water	Japan	32	8000	Running (SK IV)
LVD	Scintillator	Italy	1	300	Running
KamLAND	Scintillator	Japan	1	300	Running
Borexino	Scintillator	Italy	0.3	100	Running
IceCube	Long string	South Pole	(600)	(10 ⁶)	Running
Baksan	Scintillator	Russia	0.33	50	Running
Mini- BooNE	Scintillator	USA	0.7	200	(Running)
HALO	Lead	Canada	0.079	20	Running
Daya Bay	Scintillator	China	0.33	100	Running
NOvA	Scintillator	USA	15	3000	Turning on
SNO+	Scintillator	Canada	1	300	Under construction
MicroBooNE	Liquid argon	USA	0.17	17	Under construction
LBNE	Liquid argon	USA	34	3000	Proposed
Hyper-K	Water	Japan	540	110,000	Proposed
JUNO	Scintillator	China	20	6000	Proposed
RENO-50	Scintillator	South Korea	18	5400	Proposed
PINGU	Long string	South pole	(600)	(10 ⁶)	Proposed

plus reactor experiments, DM experiments...

World SN flavor sensitivity

\begin{aside}

The neutrino interaction cross sections *and* the distribution of observable products matter experimentally...

...theory not well understood and almost no measurements exist!

Stopped-Pion (DAR) Neutrinos

Supernova neutrino spectrum overlaps very nicely with stopped π neutrino spectrum

Stopped-Pion Sources Worldwide

Spallation Neutron Source at ORNL

Proton beam energy – 0.9 - 1.3 GeV Intensity - 9.6 · 10¹⁵ protons/sec Pulse duration - 380ns(FWHM) Repetition rate - 60Hz Total power – 0.9 – 1.3 MW Liquid Mercury target

SNS-Spallation Neutrino Source

Oak Ridge, TN

Y. Efremenko

Fluence at ~50 m from the stopped pion source amounts to ~ a supernova a day!

Another possibility: very far off axis at the FNAL BNB

Neutrino Energy Spectrum and Flux

J. Yoo

CAPTAIN

RYOGENIC APPARATUS FOR PRECISION TESTS OF ARGON INTERACTIONS WITH NEUTRINOS

Small, portable LAr TPC (LBNE R&D)

- neutrons
- high-energy neutrinos (NuMI)
- low-energy neutrinos (BNB, possibly SNS)

COHERENT collaboration @ SNS

Three possible technologies under consideration

Two-phase LXe

arXiv:1310.0125

Csl

HPGe PPC

COHERENT is currently working on next step: focus on measuring *neutrino-induced neutrons* in lead, (iron, copper), ...

- likely a non-negligible background that we must understand, especially in lead shield
- valuable in itself, e.g. HALO supernova detector at SNOLAB
- short-term physics output

Neutrino-induced neutrons (NINs) are neutron source!

Estimate for a specific configuration (CsI[Na] in lead shield):

COHERENT collaboration NIN measurement in basement

- Scintillator inside CsI detector lead shield
- Liquid scintillator surrounded by lead (swappable)

The neutrinos are coming!

Far side of the Milky Way is ~650 light-centuries away... ... ~2000 core collapses have happened already....

(Figure from Sky&Telescope magazine)

SNEWS: SuperNova Early Warning System

- Neutrinos (and GW) precede em radiation by hours or even days
- For promptness, require *coincidence* to suppress false alerts

Running smoothly for more than 10 years, automated since 2005
 Amateur astronomer connection

SNEWS: SuperNova Early Warning System

Sociological comments...

Final note: gravitational wave signals from core collapse

C. Ott, et al. (GWPAW 2012): correlated oscillations

Correlations between GW & v's potentially extremely interesting

- ➔ physics potential from nearby collapse
- improvement in sensitivity from correlation analysis with existing data

See poster #94 by T. Yokozawa

Summary

Vast information to be had from a core-collapse burst!

- Need energy, flavor, time structure

Current & near future detectors:

- ~Galactic sensitivity
 - (SK reaches barely to Andromeda)
- sensitive mainly to the $\overline{\nu_e}$ component of the SN flux
- excellent timing from IceCube
- early alert network is waiting

Need cross-section measurements!

Farther future megadetectors

- huge statistics: extragalactic reach
- richer flavor sensitivity (e.g. LAr)
- multimessenger prospects

