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relationship of the form M*/M =/. r, with y =1 for large
a, and the value b'= —1 for the distribution of large
events [12]. (We have not explored a large enough range
of values of I to have verified the power-law behavior of
M*/M, and we certainly do not have an accurate esti-
mate of the exponent y. We report the results in this way
simply to indicate the nature of the observed I depen-
dence. ) From these numerical input parameters and Eq.
(4.6), it follows that A -(g/ ) ' and, from Eq. (4.5), that
A' —(g/) '. Therefore, in accord with Eq. (4.4), we show
in Fig. 4 that the distributions of localized events fall ac-
curately on top of one another if we plot ln(g/ X)) as a
function of 1n(M/g), and in Fig. 5 that the delocalized
events scale properly if we plot ln(g/2)) as a function of
ln(M/g/). The fact that Eq. (4.4) has explicit / depen-
dence means that the ultraviolet cutoff a =g// plays an
important role.
Our results for the variations in the magnitude-versus-

frequency distribution as the parameter / is increased al-
low us to extrapolate to relevant seismological ranges
where I—100. From this we can estimate the corre-
sponding range in moment spanned by the localized and
delocalized events on the seismological scale. In the
model the localized events range from the lower cutoff
M, up to M. Using Eqs. (3.3) and (3.7), and assuming
that the I dependence dominates the scaling, we see that
this corresponds to a magnitude range of about six de-
cades (in seismology magnitude is measured with respect
to a base-ten logarithm [13]):
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M*, our numerical results indicate that the appropriate
scaling is M*/M-/, yielding a range of about two de-
cades for realistic parameters:

FIG. 5. Magnitude-vs-frequency distributions 2)(p), as
shown in Fig. 3, scaled here so that the distributions of delocal-
ized events coincide. Note that the scaling here is substantially
different from that used in Fig. 4. The difference follows from
the fact that delocalization crossover M and upper cutoff M*
scale differently with l.
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On the other hand, for the large events, ranging for M to
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Therefore, if the smallest seismic event [8] is approxi-
mately of magnitude zero, then the model would suggest
that the crossover between localized and delocalized
events would roughly coincide with magnitude six, and
the largest event would be roughly magnitude eight,
which are of the right order seismologically.
As in Ref. [2], we observe significantly different behav-

ior for sufficiently small values of cx. Of course, the cri-
terion for smallness of o.' is o. dependent. For o.=0.01
and a=1, the sharp distinction between localized and
delocalized events disappears, and we find that the distri-
bution 2)(p) becomes well approximated by a single
power law of the form

b
1—b M2)(p) = (M (M*) .
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FIG. 4. Magnitude-vs-frequency distributions 2)(p), as
shown in Fig. 3, scaled here so that the distributions of localized
events coincide. The appropriate scalings presented here and in
Fig. 5 are deduced from the conservation law (4.1), the scaling
form suggested in (4.4) and continuity of this distribution at M,
the dominance of the large events in displacing the system, and
the numerical observations that the statistics of large events is
described by b'= —1 and the scaling M*/M- l.

Here for the entire range of magnitudes there is a single
scaling given by M"-M/r-g/r, and b is strongly a
dependent. In Fig. 6 we plot in(g/~D) as a function of
ln(M/g/~) for a= 1, cr =0.01, and /=6, 10, and 14. The
distributions lie on top of one another for the choice
y =0.65. (Once again, the power-law dependence on / is
meant simply as a rough description of our limited obser-
vations. )
We have also used the frequency distributions to make

a direct check of the formula (3.6) for the localization
length g. To do this, we plot the distribution K(b, ),
which is the number of events per unit length of the fault

Carlson, Langer, Shaw, 
Tang - PRL 1991

fixed strain threshold of 2.7773-09. We find by visual inspec-
tion that all recorded events are captured, with the exception
of misidentification of multiple events as a single event. This
is rare, however. The shear microfailures termed microslips
are obtained from the shear stress signal by extracting events
that exceed a 0.002MPa threshold.

3. Observations

[8] In the following, we describe the observations associ-
ated with precursor phenomena observed in the shear stress
and in the acoustic emission. Figure 1b shows the shear stress
as a function of time delivered by the drive block, in the form
of a coefficient of friction μ (shear stress divided by the normal
stress μ ¼ τ

σ), for an experiment conducted at 5MPa normal
stress. The inset shows an expanded view of the frictional
behavior. In Figure 2a, the strain of each AE event is plotted
versus the time of its occurrence. The large amplitude AE
events (open circles in Figure 2a) are associated with the
stick-slip events in Figure 1b. The small amplitude AE events
(closed circles) are precursors to the stick-slip events. This is
made clear in the expanded view in Figure 2b, where the rela-
tion between acoustic emission and stick slip can be seen. The
small amplitude AE events (closed circles in Figure 2a) are on
average 2 orders of magnitude smaller in strain amplitude than
the AE events associated with stick-slip events (open circles in
Figure 2a). The small amplitude AE events occur before the
stick-slip event in a time domain in which small stick-slip
events (microslips) are seen (Figure 2b). Following each
stick-slip event, there is a quiescent period (no microslips
and no AE, see also Figure S1 of the supporting information).
[9] The probability distribution of all of the AE events, as a

function of event magnitude (as defined in the supporting
information), is shown in Figure 3 on a log-log scale. Such
a plot is the laboratory equivalent of a Gutenberg-Richter
(GR) plot [Gutenberg and Richter, 1954]. The AE events
associated with stick slips, the characteristic stick-slip
events, form the peak to the right and have mean magnitudes
of about "17.3. The cumulative probability of precursor AE
events is described approximately by Log10N= a" bM,
b ≈ 1.7. (For comparison, b for the global GR plot is 1.0).

The fact that the laboratory GR plot and the global GR plot
are within a factor of two provides reassurance that the labo-
ratory system captures some of the relevant physics of faults
within the earth. The relative ease of separating precursor AE
events from stick-slip AE events in this laboratory ex-
periment does not, however, carry over to the earth, where
characteristic stick-slip behavior is rare.
[10] The repeatability of the stick-slip events in the labora-

tory experiments allows us to regard the interval between
each such event as a realization of a basic mechanical evolu-
tion of the system. Thus, we construct the probability density
of precursor events as a function of time measured from the
moment of stick slip. We do this for the AE events in
Figure 4a and for the microslips in Figure 4b. In Figure 4,
at times far from the stick-slip event, we see a low, approxi-
mately uniform, background probability density for AE and
microslip events. As the stick slip is approached, the AE
and microslip probability density rises above the background
approximately exponentially. Immediately preceding the slip
there is a rapid acceleration of AE and microslips. The inset
of Figure 4b shows an overlay of the two probability density
functions (PDFs), normalized to their respective total
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Figure 3. Relative probability of acoustic emission occur-
rence versus magnitude (as defined in the supporting infor-
mation), plotted on a log-log scale. The emission from
characteristic events, the stick slips, are noted by the double
arrow. The slope of the precursor emission is denoted by
the thin, solid line.
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Figure 4. PDFs of the AE and microslip data. (a) Occurrence
versus time plot (log-log scale) of all precursor data in ex-
periment p2393 (excluding data from the initial shearing
rate of 10 μm /s). The plot is constructed by summing as a
function of time, the number of precursors preceding each
stick slip. All stick slips are then set to zero time, and all data
are plotted together. See supporting information for details.
The slope of the exponential increase in AE activity (linear
in log-log space) is noted. (b) Occurrence versus time plot
(log-log scale) for microslip shear failures. The slope of
the exponential increase in microslip activity (linear in
log-log space) is noted. The inset shows normed AE and
microslip shear failure data plotted together. The data are
renormalized by their total number for the inset.
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distinctly nonl inear  recurrence relationships predicted by this model (Figure 9). 
Examples  include subduction zones in Alaska (Utsu 1971; Purcaru,  1975; Lahr  and 
Stephens,  1982; Davison and Scholz, 1984) and Mexico (Singh e t a / . ,  1981, 1983), 
and crustal faults in Turkey,  Sweden and Greece (B~th, 1981, 1982, 1983), J apan  
(Wesnousky et  al., 1983), and the  New Madrid  region of  the Central  Uni ted States  
(Main and Burton,  1984). Note  tha t  the recurrence data shown in Figure 9 are 
reproduced directly f rom the original publications. These  observational  data  suggest 

1000 

E 
Z 
o~ 100 .> 

E 
~ 10 

% * *  

° e e o •  
o •  

i L ] 

5 6 

i I i 

Turkey 
(1913--1970) 

° ° ° O e e o o  ° 

I I i 
7 

M s 

E 
Z >= 

E 

i 

1000! 

100 

10 

i J I a I o 

Greece 
(1918-1977) 

• o 

° • g o  
° • o  • 

I o  
g o •  

• o 

o 

I I ~ t I t 

5 6 7 
M s 

1000 

. Q  

E 100 
Z 

E " 10 

i I t I _ 

Alaska Subduction 
Zone 

(1918-1963) 

o •  oo  • o o  
o o o •  

, I I I • t 

8 9 
M s 

I 1 I I [ ] I j } 

Mexico Subduction 
' Ooo******* Zone 

1000 (1906-1981) 

.~ •o 
E • •  

z 100 *°% 

~ o •  • • 

• • A &  
- - A  10 

1 t 
4 

A 

I I I q I P I J - -  

5 6 7 8 
M s 

FIG. 9. Frequency magnitude plots based on historical and instrumental seismicity in the Alaska 
subduction zone (Utsu, 1971), the Mexican subduction zone (Singh et al., 1983), Greece (B~th, 1983), 
and Turkey (B~th, 1981). On the plot for the Mexican subduction zone, the triangles represent data for 
the period 1906 to 1981 (75.5 yr); the circles are data from 1963 to 1981 normalized to 75.5 yr. The plots 
are reproduced directly from the original publications. Note the significant departure from a log-linear 
relationship. 

tha t  the magnitude range or increment  of the characterist ic ear thquake is about  
one-half  magnitude unit,  and tha t  the increment  between the min imum character-  
istic magnitude and the port ion of the recurrence curve showing exponential  
behavior at  recurrence rates greater  than  the rate for characterist ic events is about  
one magnitude uni t  (Figure 9). In other  words, the magnitude range showing 
nonexponent ia l  behavior in a cumulative plot is about  1.5 magnitude units. This  is 
in general agreement  with the model proposed by Singh et  al. (1983) whereby they  
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FIG. 4: (Color online)P (M) vs M for di�erent FN : (a) all
events; (b) NB events; (c) B events. Solid, short-dashed and
long-dashed curves show variations with FN in (b) and (c).
M�3/2 scaling labeled in (a) and (b).

creases, consistent with trends in models [18] that in-
clude the e�ects of packing fraction ⇤ (⇤ increases with
increasing FN ). The large B events become more prob-
able, growing at the expense of the non-brittle events,
and have higher mean M for larger FN . Using our de-
composition in B and NB events, we can represent their
individual contributions to the overall probability distri-
bution P (M). In Fig. 4 (b), we show the NB distribution
(normalized to the number of NB events) and in the inset
Fig. 4 (b) we show the B distribution and its variation
with FN . This decomposition demonstrates cleanly that
NB events are distributed as a power law over about 2
decades in M consistent with M�3/2 (the remaining de-
pletion/enhancement of M may be a finite size e�ect).
On the other hand, the B events are concentrated at large
M with broader distribution and higher mean M as FN

increases. (The weakening parameter for our system [18]
is of order 0.07 as indicated by the average fractional
shear stress drop for the largest B events.)

In addition to the emergence of excess large-event
probability at higher FN , the B events develop a dom-
inant mean repetition time ⇥ for large FN , see Fig.
2(b),(c). The distributions for low FN < 50 are consis-
tent with an exponential distribution in ⇥ which is repre-
sentative of a random Poisson process. For FN > 50, the
mean repetition time is 0.02 < ⇥/⇥H < 0.04 with small

overall variation with FN (values labeled for data points
in Fig. 3(b)). Many laboratory based experiments and
model simulations show the emergence of a mean repeti-
tion time associated with large brittle events [1, 17, 18].

The moment distribution scaling for NB events with
the emergence of B events combined with the concurrent
development of a mean recurrence time ⇥/⇥H ⇥ 0.025
and the demonstrated spatial coherence of B events with
increasing FN gives a cohesive picture of system behav-
ior. At small normal force, spatial and temporal correla-
tions are weak giving rise to random spatially extended
events and power law M�3/2 scaling corresponding to
the “fluid” like phase in mean field theory [18]. As FN

increases, the granular media compacts owing to com-
pressive stresses and more e�ectively couples motion on
either side of the gap. This coupling leads to a larger
fractional moment slipped, a mean recurrence time be-
tween events, and many more spatially compact events
with Rj � L. Our results are consistent with a sys-
tem with frictional weakening with weakening parameter
� ⇥ 0.07. The full physical picture of the phenomena we
report is complex involving the jamming properties, i.e.,
rheology, of the sheared granular medium. Many other
features of the experimental data are possible including
a “microscopic” elucidation of the individual motions of
the grains and their individual or collective motion in
events [11].
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