
Elasticity in particle packings near jamming 

• Finite shear modulus and yield stress 
above a critical volume fraction, φJ.

• Linear response of static packings 
anomalous near φJ beyond a lengthscale 
that diverges at φJ.

• Different characteristic lengths control 
longitudinal and transverse components 
of the point response.

• Rigid shear: Modulus dependent on 
scale

• Free shear: Surprisingly invariant with 
respect to jamming.
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Soft glasses

• Particles suspended in liquids 
can behave like glasses or other 
conventional amorphous solids.

• Particles can be: 
• solid like in a paste
• liquid like in an emulsion
• air like in a foam or mousse

• Technological applications:
• Device fabrication/assembly
• Oil / Gas drilling/production
• Food / personal care
• Bio-related

• This work:
• Athermal
• Deformable
• Jammed



Jamming: random close packing

A brief history of jamming:
• Key quantities: volume fraction, φ; contact #, z. 
• Jamming: “Random close packing version 2.0”
• JD Bernal (1960): spheres “pack randomly” at 
φ~0.64, z~6. 
• Donev et. al. (2004): M&M’s do better. φ~0.71 z~10. 
• Maxwell constraint counting (frictionless spheres):  

• dN translational DOFs
• there are zN/2 contacts in the system
• z/2>d is a necessary condition for rigidity

Paul Chaikin
Sal Torquato

J. D. Bernal



Jamming: development of a static shear modulus

• Mason et. al. Phys. Rev. Lett. 1995.
• Monodisperse oil-in-water emulsion
• Viscosity vs. concentration
• various stiffnesses
• hard spheres diverge at φrcp

• Mason et. al. Phys. Rev. Lett. 1995.
• Monodisperse oil-in-water emulsion
• Viscosity vs. concentration
• Shear modulus jumps by 4 orders 
of magnitude at φrcp

• Analagous to rigidity percolation?

Blair lab.
Georgetown



Jamming: development of yield stress

• Mason et. al. Phys. Rev. Lett. 1995.
• Monodisperse oil-in-water emulsion
• Viscosity vs. concentration
• various stiffnesses
• hard spheres diverge at φrcp

• Nordstrom et. al. Phys. Rev. Lett. 
2010.
• μ-gel suspension
• φ>φrcp: yield stress 
• φ<φrcp: viscous fluid UPenn group



Jamming: critical scaling at φc

Heussinger and Barrat
 (PRL 2009)

• φ,σ rheology scaling near “point J”
• Olsson and Teitel (bubbles), Hatano (grains)...

•Olsson and Teitel PRL 2008

•Depinning-like transition (dynamical criticality) at yield 
surface: (CEM and Robbins -- Vandembroucq et. al.)



Bubble model (Durian)

• 50:50 bidisperse
• RSmall = 1.4 RBig

s
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• Repulsion, Frep, linear in overlap, s:
•  Frep=ks
• (could be arbitrary power of s) 

•Drag, Fdrag, w/r/t imposed flow:
• Fdrag=b (vbubble-vflow)

•  For (massless) bubbles, Frep=Fdrag

• vbubble=Frep/b + vflow

• Single timescale: τD=bR4/k
•  Dimensionless shearing rate: 

•  De=(dγ/dt) τD 
(Deborah number)

vflow
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Elasticity near jamming: z, P, K, G

• F=sα; Harmonic: α=1; Hertz: α=3/2  
• Previous results from simple models:

• Excess contacts: Δz=z-zMaxwell~Δφ1/2

• Independent of force law, dimension, and polydispersity!
• Related to Bernal’s “almost-contacts”  

• Pressure, P~Δφα~<s>α  e.g. Harm: P~Δφ~Δz2

• Naive expectation
• Implies compression modulus: K 
• K = δP/δlnV ~ δP/δφ ~ Δφα-1~<s>α-1

• Shear modulus, G ~ Δφα-3/2~<s>α-3/2

• So G/K~Δz~Δφ1/2

• Particle packings are incompressible at 
jamming!
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Naive 
expectation

Non-trivial

Non-trivial Non-trivial



Diverging lengthscales and criticality at ΦJ

• φJ critical point?  Analogy to rigidity 
percolation?  Diverging lengthscale?

• Goodrich et. al. (Soft Matter 2014): rigidity 
length l*~1/Δz~δφ-1/2 .

• O(LdΔz) excess geometrical constraints
• Free surface: release O(Ld-1) of them
• For some l*~Δz-1, L<l* underconstrained

• Silbert et. al. (PRL 2005): dynamical 
structure factor at ω*. ξT~δφ-1/4

• Ellenbroek et. al. (PRE 2009): longitudinal 
force fluctuations in response to local dilation. 
l*~δφ-1/2 

• Lerner et. al. (Soft Matter 2014): single 
bond extension ξT~δφ-1/4

 Ellenbroek

 Silbert

 Lerner

• Our goal: measure both lengths in a single, 
simple, experimentally realizable procedure 

 Goodrich



Periodic Boundaries 
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(λ +G)∇(∇.u) +G∇ 2u = 0Measurement 1: Point response

• Standard model and prep. protocol
• harmonic, 50:50, Rbig=1.4Rsmall 
• Infinitesimal point load on single 
particle
• (Slight difference with both 
Ellenbroek et. al. and Lerner et. al.)

• Motivation: Leonforte et. al. PRB 2004
  (Lennard-Jones)
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Measurement 1: Point response

• Elasticity: Lame’-Navier 
equation.
• Singular solution: Kelvin 
• Lame’ coefficients, G (shear 
modulus) and λ determined by 
homogeneous loading of large 
system with PBCs. 
• “Continuum” solution 
computed at particles using 
Debye-like cutoff and linear 
dispersion (ω2~k2)
• Slight dependence on 
Poisson ratio.
• Point response becomes 
less and less Kelvin-like 
near φJ

•φ=0.85

•φ=0.90

•Actual •Kelvin
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(λ +G)∇(∇.u) +G∇ 2u = 0Measurement 1: Point response

• Averaged power spectrum at 
φ=0.85
• Look at Longitudinal and 
Transverse contribution 
separately.
• Kelvin: 

•Actual •Kelvin
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uL (q) =
sin(θ )

(K +G)q2

uT (q) =
cos(θ )
Gq2

• Note: uL should be zero 
along θ=0 and uT should be 
zero along θ=π/2.
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Measurement 1: Point response

• Averaged power spectrum at 
φ=0.85
• Look at Longitudinal and 
Transverse contribution 
separately.
• Kelvin: 

•Long.
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uL (q) =
sin(θ )

(K +G)q2

uT (q) =
cos(θ )
Gq2

• Note: uL should be zero 
along θ=0 and uT should be 
zero along θ=π/2.
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Low-q Behavior 

High-q Behavior 

q*? 

Measurement 1: Point response

• Take isotropic average of 
Log(S) for better statistics.
• S=1 means Kelvin. 
• Note: long wavelength 
behavior determined by 
“macroscopically” measured G 
and K.
• Νο free parms. in fit to low-q. qx 

qy 
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Jamming 

As We Approach Jamming, 
Departure Occurs At Smaller q. 

Point response: scaling with pressure
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Dependent On Jamming 
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Point response: scaling with pressure

• ξT~p-0.25• ξL~p-0.4

• Long. • Trans. •Note: longitudinal 
scaling function 
more severe than 
transverse.
• SL~q2, ST~q1



Detour: non-affine elastic formalism

Measurement 2: Constrained shear modulus



• Single particle toy 
problem:

• Start at F=0

Ordered Case

Aside: non-affine elastic formalism

• Lutsko (J. App. Phys. 1988)
CEM+Lemaître (PRL 2004)



• Single particle toy 
problem:

• Start at F=0

• Apply affine shear

• Forces remain zero

• No correction 
necessary

Ordered Case

Aside: non-affine elastic formalism



• Single particle toy 
problem:

• Start at F=0

Disordered Case

Aside: non-affine elastic formalism



• Single particle toy 
problem:

• Start at F=0

• Apply strain

Disordered Case

Aside: non-affine elastic formalism



• Single particle toy problem:
• Start at F=0
• Apply strain

Disordered Case

Use Hessian to compute 
“Affine force”

!Ξi = γ
∑

j

Hijx̂δyj

Aside: non-affine elastic formalism



Disordered Case

Use Hessian to find 
position correction

!Ξi = Hii
!dri

!dri = H
−1

ii
!Ξi

• Single particle toy problem:
• Start at F=0
• Apply strain

Aside: non-affine elastic formalism



•Back to full assembly:

•Measure of local 
disorder.

•Only short range 
correlations in our 
samples.

!Ξi = γ
∑

j

Hijx̂δyij

Aside: non-affine elastic formalism



Force balance: 
Affine forces, Ξ , must be 
balanced by correction 
forces, H-1ijdxj

!dri = γ
∑

j

H
−1
ij

!Ξj

•Back to full assembly:

Aside: non-affine elastic formalism



Crucial for this talk:
Non-affine motion gives negative definite correction to any physical modulus.
e.g. μnet<μaffine and Knet<Kaffine (but not necessarily λ)

Parenthetical:
Tangent modulus goes to negative infinity at bifurcation points

• Tangent modulus

Aside: non-affine elastic formalism



Detour finished... back to results

Measurement 2: Constrained shear modulus



Measurement 2: Constrained shear modulus

• As usual: modulus, μ=Δstress/strain
• Apply homogeneous shear at boundaries, but material responds 
inhomogeneously in interior
• inhomogeneous motion always lowers μ relative to “naive” value  
•Q) how big a chunk of material do I need before I converge to a well defined 
elastic modulus?



Measurement 2: Constrained shear modulus

• Small R, inhomogeneous corrections are suppressed (Cauchy-rule enforced).
• μ decays to μ∞ as R -> ∞
• known: near φrcp μ(R=0) -> constant and μ(R= ∞) goes to zero.
• so what?:  at φ=0.88 R=100 gives μ to 10%, at φ=0.85, need R=500!

• Simple scaling form: bulk vs. boundary says μ(R)/μ-1 ~ 1/R
• Collapse to 1/R form when R scaled by p-0.5.
• Reminiscent of Goodrich rigidity percolation procedure and l* ~ 1/Δz ~ 1/p1/2



Measurement 3: Unconstrained (wave)

• Wave forcing:  Impose external field
• Measure projected response to infer modulus: μ(λ)

• Inferred μ(λ) rapidly approaches bulk value.
• Small λ error can be understood as pseudo-Brillouin-boundary effects  
• Move it along... nothing to see here...
• Recent update.  Private conversation w/S Teitel... interesting scaling for 
K(λ)



Measurement 3: Unconstrained deformation

• Unconstrained homogeneous 
deformation with periodic 
boundary conditions.

• Moduli (both K and G) rapidly 
converge with system size to bulk 
values.  
(as in seminal work by O’Hern et. 
al. PRE 2003)

• Consistent with 2D Lennard-
Jones (Tanguy et. al. PRB 2002)

•Compression •Shear

•φ
=0

.9
2

•φ
=0

.8
5



Measurement 3: Unconstrained deformation (φ=92%)

• Measure local dilatancy (longitudinal), Φ, and local vorticity (transverse), ω in 
response to both compression (Φc,ωc) and shear (Φs,ωs).

•Compression •Shear

•V
or

tic
ity

 (ω
)

•D
ila

ta
nc

y 
(Φ

)

• One or two dominant displacement 
quadrupoles (“STZ”s?) in a typical 
320x320 box.

• shear: disp. quadrupoles align (vertical 
compression, horizontal extension)

• compression: quadrupoles random 
orient.

• Φ=92% just like Lennard-Jones

•Effective-medium-like calculations 
(Didonna & Lubensky PRE 2005, 
Maloney PRL 2006) imply Gaussian 
random whitenoise for both Φ and ω 
fields.  (Obvious: not strictly true)



Measurement 3: Unconstrained deformation (φ=85%)

•Compression •Shear
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•At φ=85%, dilatancy is less “coherent” 
in both compression and shear.  

• Shear induced vorticity very similar to 
φ=92%.  VERY SURPRISING!  
(Related to Ellenbroek, et. al. “sliding 
only” result?)

• Shear induced quadrupoles are no 
longer visible in long-range dilatancy 
field.

• Very small hint of compression 
induced quadrupoles in the vorticity (but 
not dilatancy)

• Idea: dilatancy must vanish outside 
STZ cores, but may be non-zero inside.



Measurement 3: Unconstrained deformation (φ=92%)

•Compression •Shear
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• Power spectra for dilatancy 
(longitudinal) and vorticity (transverse) 

•EMT says q2S(q) should be flat and 
isotropic for both dilatancy and vorticity

• Clear deviations from both S~q-2 and 
isotropy (compression response is 
isotropic by construction for 
qLcell>>1)... that is: quadrupoles align 
with the shear.

• Anisotropy much more pronounced in 
dilatancy than vorticity (agreement with 
impression from real-space images).
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Measurement 3: Unconstrained deformation

•Compression •Shear • Take isotropic average of 
log(q2S(q))

•EMT says q2S(q) should be flat 
and isotropic for both dilatancy and 
vorticity

• Clear deviations from both S~q-2 
and isotropy (compression 
response is isotropic by 
construction for qLcell>>1)... that 
is: quadrupoles align with the 
shear.

• Anisotropy much more 
pronounced in dilatancy than 
vorticity (agreement with 
impression from real-space 
images).
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Conclusions (Elasticity)

• Method 1) Point response:
• ξL~p-0.4, ξT~p-0.25

• hard to see ξL since G/K -> 0 so SL/ST~0
• shape of scaling function S(ξq)?

• Method 2) Constrained deformation:
• μ(R)/μ-1 ~ 1/(Rp-0.5)
• analogous to rigidity-based approaches and l*

• Method 3) Unconstrained deformation:
• “Wave method” G(λ) 

• quick convergence G∞ beyond λ~5 
• insensitive to φJ

• (Should also check K)!
•  ST 

• effective medium (uncorrelated strains) good approx
• puzzle: insensitive to φ!

• SL

• effective medium only OK approx
• details depend on φ  
• “incoherent” beyond “shear zone size”.  
• peak position independent of φ
• shear transformation zones / soft spots???
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