
Avalanches, diffusion, and rheology in soft particle packings

• Robust connection between 
diffusion and rheology given by 
organization of plastic strain into 
“transient slip lines”.

• Qualitative dependence on drag 
model: “local drag” less rate sensitive 
than “pair drag”. 

• Low rates: Bursty dynamics and 
transient slip lines span system.

• Intermediate rates: No bursts, but 
slip lines still span system.

• Higher rates: Slip lines have length 
ξ which determines diffusion and 
rheology.

• Highest rates: ξ saturates at 
particle scale.
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Outline

• Background and overview
• Soft particle suspensions
• Jamming and random close packing
• Elasticity: Development of shear modulus 
• Plasticity: Development of yield stress
• Simple models

• Elasticity 
• Scaling laws, (criticality?) and emergent 
lengthscales
• Point response
• Constrained homogeneous deformation
• Unconstrained homogeneous deformation

• Plasticity:
• Shear transformations, slip avalanches, and 
diffusion
• Short-time intermittency
• Long time diffusion
• Plastic strain correlations



Soft glasses

• Particles suspended in liquids 
can behave like glasses or other 
conventional amorphous solids.

• Particles can be: 
• solid like in a paste
• liquid like in an emulsion
• air like in a foam or mousse

• Technological applications:
• Device fabrication/assembly
• Oil / Gas drilling/production
• Food
• Personal care
• Bio/Biomedical

• This work:
• Athermal
• Deformable
• Jammed



Soft sphere rheology



Bubble model (Durian)

• 50:50 bidisperse
• RSmall = 1.4 RBig

s

r

• Repulsion, Frep, linear in overlap, s:
•  Frep=ks
• (could be arbitrary power of s) 

•Drag, Fdrag, w/r/t imposed flow:
• Fdrag=b (vbubble-vflow)

•  For (massless) bubbles, Frep=Fdrag

• vbubble=Frep/b + vflow

• Single timescale: τD=bR4/k
•  Dimensionless shearing rate: 

•  De=(dγ/dt) τD 
(Deborah number)

vflow



Modified, inertial bubble model(s)

• Modifications: 
•  Fdrag, either w/r/t imposed flow:

• Fdrag=b (vbubble-vflow)
or

• Fdrag i α = b Σj (vj-vi)α
• Non-zero mass, Newton’s law:

• maiα = Frep i α + Fdrag i α

• New inertial timescale: τv=(m/k)(1/2) 
•  τD/τv=b/(km)(1/2)

• Non-brownian suspension: τv >> τD  
•  Granular material: τv << τD  

vi

vj



Mean Drag Pair Drag

Overdamped
τv << τD 

Inertial
τv >> τD 

??? ???

??? Lemaitre and Caroli PRL 2009
� � �y = A

�
�̇

< �y2 > /�� = A(1�B�̇�1/2)

Models

vi

vj
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Flow curves: Pair drag, overdamped, various φ

•First part of talk:  Jammed states (φ=0.9)

•Herschel-Bulkley 
with a=-1/2 not a 
bad fit

•Second part of talk:  Near 
jamming (φ~0.85)

dγ/dt τv



10−6 10−5 10−4 10−3 10−2 10−1
10−4

10−3

10−2

10−1

γ̇τV

σ
x
y

 

 

b = 0.0625

b = 0.25

b = 1

b = 4

b = 16

b = 64

Flow curves: Pair drag various damping, L=20

10−8 10−6 10−4 10−2 100 102
10−4

10−3

10−2

10−1

γ̇τD

σ
x
y

 

 

b = 0.0625

b = 0.25

b = 1

b = 4

b = 16

b = 64

•inertial scaling •viscous scaling

�̇1/2

�̇1/2

• New result : 
• (Known previously for underdamped case)
• New result: kink at high rate
• Let’s look at how things organize in space to try to 
understand the 1/2 exponent and the kink.

� � �y � �̇1/2
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Particle displacements near yield stress and in flow

• Look at vertical displacements 
• After velocities de-correlate 
• Slow shear: 

• “transient slip line”-like features
•  span the simulation cell

• Fast shear:
• correlated behavior goes away

a~1 to 2 σ0
strain relieved ~ 
a/L ~ 1/40 to 
2/40



h

L

a

a~1 to 2 σ0

strain in shear 
zone ~ 2% to 4%

strain relieved ~ 
a/L ~ 0.002

horizontal displacement

vertical displacement

Aside: previous work on Lennard-Jones glasses

Typical displacement field (Lennard-Jones), 
L=1000, (Δγ~0.002)

Maloney and Robbins.  J. Phys. Cond. Mat. 2007



Shear transformation zone (STZ) mechanism

• Local group rearranges (yields)
• Redistributes stresses according to Eshelby
• Mean field description? 
• Versions:

• Bulatov and Argon (1994)
• kinetic monte carlo
• rates based on Eshelby
• yield conditions uniform 

• Vandembroucq, Roux and co-workers
• extremal quasistatic model (no time)
• thresholds are stochastic
• slip amplitudes are fixed 

• Bocquet, Ajdari, Picard, Martens and Barrat
• dynamical model (can get rheology)
• thresholds are fixed
• slip amplitudes are fixed
• delay times are stochastic

Eshelby Solution (From Barrat)
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Ab-initio estimate: quasi-static Deff=<Δy2>/2Δγ

Elementary slip lines 
have <Δy2>elem. ~ a2/12

At larger Δγ, these add 
incoherently

<Δy2> = {Νevents} {<Δy2>elem.} = {Δγ/(a/L)} {a2/12} = La/12 Δγ 

active:
P(Δy) flat up to “a”

(see also, 
Lemaitre and Caroli)Size dependent effective diffusion
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P(Δy) 2nd and 4th moments (Local drag τd=τv) 

•  Low rate limit: 
•  P(Δy) non-Gaussian with big tails at early times (kurtosis is power-law)
•  crosses to Gaussian with characteristic D at Δγc~1/L

•  High rate limit: 
•  Gaussian at all times (Maxwell-Boltzmann distribution)
•  ballistic scaling of both moments (solid black line)
•  crossover to diffusive scaling at Δγ~1 independent of rate

• Fast

• Slow
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Diffusion: pair drag, τd=τv, (overdamped) various L.

• Define “D” as:
• D=<Δy2>/2Δγ
• Should go to 
plateau if system 
is “quasi-static”

• L=20 system is 
at plateau by 
rate=2x10-4.

• L=160 has no 
idea about the 
plateau

ab-initio quasi-static: D/L = a/24.  a~1 -> D/L ~ 5%  

• Just like Lemaitre&Caroli result for UNDERDAMPED Lennard-Jones
• Implies lslip~1/rate1/2 at high rate away from plateau



Argument for diffusion/rheology coupling

• Lemaitre and Caroli (PRL 2009):
•  Assume: deformation from uncorrelated 
slip lines of length ξ (assume ξ<<L)

• Linear elasticity gives: D~ξ ln(L/ξ) 
•  Assume: σ-σy~μτ (dγ/dt) where τ is 
formation time of a slip line

• Suppose τ~ξ (biggest assumption)
• Then: σ-σy~μξ (dγ/dt) ~ μD(dγ/dt)
•  For pair drag D~(dγ/dt)-1/2 (at large rate) 
predicts σ-σy~μ(dγ/dt)1/2.

•  Works for pair drag.
• Already known for inertial (Lennard-
Jones)... 

•  new result here is for overdamped
• What about “local drag”???

L

ξ



Diffusion: local drag, various damping, L=20
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Non − I ner tial

D̄ ∝ (bγ̇)−1/3

D̄ ∝ (bγ̇)−0 . 35

ab-initio quasi-static: D/L = a/24.  a~1 -> D/L ~ 5%  

•  Low rate: correlations saturate at 
system size.

•  High rate: correlations disappear 
at particle scale

•  Scaling regime: D/L ~ (dγ/dt)(-1/3)

•  Dparticle-scale/Dquasi-static~a/L~1/20

•at “particle scale”:
•D=0.05 a2

• kink in BOTH D AND σ 
   (see below)
 



Spatial structure: local drag, overdamped, L=40

log10(Suy)[φ = 1.00]
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•  D~(dγ/dt)-1/3 implies ξ~ (dγ/dt)-1/3.  Quantitative agreement?
•  Power spectrum of Δy, S(Δy)~q-2.5 along x axis.  
•  Not understood. Should be S~q-2 for a “sawtooth” slip line.  
•  Real space correlations “not inconsistent with” ξ~ (dγ/dt)-1/3.

•Quasi-static long-time vertical 
displacement power spectrum 

•Real-space correlations 
at various rates 



Rheology/friction: Local drag L=20

• Hershel Bulkley Rheolgoy exponent same as diffusion, 1/3. 
•  High rate cross-over more obvious in dynamic friction.
•  Above rate = 10-2, spatial correlations are completely absent. 
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• Particle scale 
saturation • Particle scale 

saturation
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P(Δy) 2nd and 4th moments (Local drag τd=τv) 

•  Low rate limit: 
•  P(Δy) non-Gaussian with big tails at early times (kurtosis is power-law)
•  crosses to Gaussian with characteristic D at Δγc~1/L

•  High rate limit: 
•  Gaussian at all times (Maxwell-Boltzmann distribution)
•  ballistic scaling of both moments (solid black line)
•  crossover to diffusive scaling at Δγ~1 independent of rate

• Fast

• Slow



Flow curves: Local drag, various damping, L=20
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Non − I ner tial

• Low rate: 
correlations saturate 
at system size.

• High rate: 
correlations 
disappear at particle 
scale

• τd/τv=1/16, just 
starting to inertia at 
highest shear rate

•HB exponent~1/3.
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Dissipation (Intermittency in time)

•Identify as input power•Energy change under 
affine deformation = σ •Identify as dissipation rate

• Γ is energy dissipated per unit strain
• Like an instantaneous decorrelation rate

•Ono et. al. PRE 2003
•Rheology = fluctuations

• For local drag



102 103 104 105 106 107 108 109
10−5

10−4

10−3

10−2

10−1

100

Γ/γ̇

P
(Γ

)

 

 

γ̇ = 1 × 10−6

γ̇ = 2 × 10−6

γ̇ = 5 × 10−6

γ̇ = 10 × 10−6

b = 1

Dissipation spectrum: local drag (τd=τv) (L=40)

0.35 0.36 0.37 0.38 0.39 0.410−3

10−1

101

∆γ

Γ

γ̇ = 1 × 10−06

0.35 0.36 0.37 0.38 0.39 0.4

100.44

100.45

100.46

∆γ

Γ

γ̇ = 1 × 10−02

 Slow shear

 “Fast” shear

• Slow shear:
•  “Quasi-static Peak” 
at low Γ

• Power-law at high 
Γ

• Fast shear:
•  Gaussian

• Avalanches “go away” 
while still: ξ~L and 
D~DQS

• Do not confound slip 
lines with avalanches!

•QS peak: v � �̇ � � �̇



Local Drag Pair Drag

Overdamped
τv << τD 

Inertial
τv >> τD 

new result:
σ-σy~(dγ/dt)1/3

D ~ (dγ/dt)-1/3 at high rate

new result:
σ-σy~(dγ/dt)1/2

D ~ (dγ/dt)-1/2 at high rate

???
looks like exponent is bigger 
than 1/3, 
surprisingly difficult to 
obtain underdamped limit.

like Lemaitre+Caroli:
σ-σy~(dγ/dt)1/2

D ~ (dγ/dt)-1/2 at high rate

Conclusions

vi

vj


