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* Robust connection between
diffusion and rheology given by
organization of plastic strain into
“transient slip lines”.

 Qualitative dependence on drag
model: “local drag” less rate sensitive
than “pair drag”.

* Low rates: Bursty dynamics and
transient slip lines span system.

* Intermediate rates: No bursts, but
slip lines still span system.

 Higher rates: Slip lines have length
& which determines diffusion and
rheology.

* Highest rates: § saturates at
particle scale.
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Outline

* Background and overview
 Soft particle suspensions
« Jamming and random close packing
* Elasticity: Development of shear modulus
* Plasticity: Development of yield stress
» Simple models

* Elasticity
» Scaling laws, (criticality?) and emergent
lengthscales
* Point response
» Constrained homogeneous deformation
* Unconstrained homogeneous deformation

* Plasticity:
» Shear transformations, slip avalanches, and
diffusion
 Short-time intermittency
 Long time diffusion
* Plastic strain correlations




Soft glasses

* Particles suspended in liquids
can behave like glasses or other
conventional amorphous solids.

* Particles can be:
e solid like in a paste
* liquid like in an emulsion
e air like in a foam or mousse

* Technological applications:
 Device fabrication/assembly
* Qil / Gas drilling/production
* Food
* Personal care
* Bio/Biomedical

* This work:
* Athermal
* Deformable
 Jammed




Soft sphere rheology
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A micromechanical model to predict the flow of
soft particle glasses
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Bubble model (Durian)

* Repulsion, Frep, linear in overlap, s:
* Frep=ks
* (could be arbitrary power of s)
*Drag, Fdrag, W/r/t imposed flow:

* Farag=b (Voubble-Viiow)
«—

" « For (massless) bubbles, Frep=Fdrag

* 50:50 bidisperse
* Rsmai = 1.4 Raig

* Vbubble=Frep/D + Viiow
 Single timescale: To=bR%*/k
* Dimensionless shearing rate:

* De=(dy/dt) 1o
(Deborah number)




Modified, inertial bubble model(s)

* Modifications:
* Farag, either w/r/t imposed flow:

* Farag=b (Voubble-Viiow)
or

° Fdrag ia=Db Zj (Vj-Vi)a
* Non-zero mass, Newton’s law:

* Maia = Frepia+ Fdragia
* New inertial timescale: ty=(m/k)(1/2)
* Tp/Tv=b/(km)(1/2)
* Non-brownian suspension: Tv >> Tp
» Granular material: Tv << Tp

Vi

Vi




Models

Mean Drag

Pair Dra Vi

Vi
Overdamped 299 T
Tv << TD R PR
. )9 Lemaitre and Caroli PRL 2009
Inertlal o O — 0y = A\/;
Tv >> TD

< Ay? > Ay = A(1— By




*First part of talk: Jammed states ($=0.9) o

Flow curves: Pair drag, overdamped, various ¢
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Flow curves: Pair drag various damping, L=20
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*Newresult: o — o, ~ ,-y1/2
* (Known previously for underdamped case)
* New result: kink at high rate

* Let’s look at how things organize in space to try to
understand the 1/2 exponent and the kink.
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Particle displacements near yield stress and in flow

SLOWI[¥ =1 x 10

s

* Look at vertical displacements

* After velocities de-correlate

» Slow shear:
* “transient slip line”-like features
* span the simulation cell

 Fast shear:
« correlated behavior goes away
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Aside: previous work on Lennard-Jones glasses

Typical displacement field (Lennard-Jones),
L=1000, (Ay~0.002)

-

| horizontal displacement |

a~11to 2 oo

strain in shear
zone ~ 2% to 4%

strain relieved ~
a/L ~0.002

Maloney and Robbins. J. Phys. Cond. Mat. 2007




Shear transformation zone (STZ) mechanism

 Local group rearranges (yields)
» Redistributes stresses according to Eshelby
» Mean field description?
* Versions:
» Bulatov and Argon (1994)
* kinetic monte carlo
* rates based on Eshelby
* yield conditions uniform
* Vandembroucq, Roux and co-workers
» extremal quasistatic model (no time)
* thresholds are stochastic
* slip amplitudes are fixed
* Bocquet, Ajdari, Picard, Martens and Barrat
» dynamical model (can get rheology)
* thresholds are fixed
* slip amplitudes are fixed
« delay times are stochastic
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Ab-initio estimate: quasi-static Defr=<Ay?>/2Ay
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active:

P(Ay) flat up to “a”

Elementary slip lines
have <Ay?>elem. ~ a@2/12

0.001

(Ay)

At larger Ay, these add
incoherently

<Ay2> = {Nevents} {<Ay2>elem.} = {AY/(a/L)} {@2/12} = La/12 Ay (see also,

Size dependent effective diffusion

Lemaitre and Caroli)




P(Ay) 2nd and 4th moments (Local drag T¢=Tv)

<Ay?> <Ayi>1/2
<AY>? VB<Ay>

O

* Low rate limit:
* P(Ay) non-Gaussian with big tails at early times (kurtosis is power-law)
 crosses to Gaussian with characteristic D at Ayc~1/L

* High rate limit:

» Gaussian at all times (Maxwell-Boltzmann distribution)
« ballistic scaling of both moments (solid black line)
 crossover to diffusive scaling at Ay~1 independent of rate




Diffusion: pair drag, T¢=Ty, (Overdamped) various L.

ab-initio quasi-static: D/L = a/24. a~1 -> D/L ~ 5%
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: e 1600160 |1 * Should go to
— ~Iidy/d)” L plateau if system

Is “quasi-static”
| » L=20 system is
at plateau by

1 rate=2x10-4.

1 * L=160 has no

idea about the
plateau
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e Just like Lemaitre&Caroli result for UNDERDAMPED Lennard-Jones

 Implies lsip~1/rate’’2 at high rate away from plateau




Argument for diffusion/rheology coupling

» Lemaitre and Caroli (PRL 2009):

» Assume: deformation from uncorrelated
slip lines of length & (assume &<<L)

* Linear elasticity gives: D~ In(L/§)

* Assume: 0-0y~UT (dy/dt) where T is
formation time of a slip line

» Suppose T~ (biggest assumption)

* Then: 0-oy~NE (dy/dt) ~ uD(dy/dt)

 For pair drag D~(dy/dt)-12 (at large rate)
predicts o-oy~u(dy/dt)12,

» Works for pair drag.

 Already known for inertial (Lennard-
Jones)...

* new result here is for overdamped
* What about “local drag”???

#




Diffusion: local drag, various damping, L=20
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ab-initio quasi-static: D/L = a/24. a~1 -> D/L ~ 5%
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* Low rate: correlations saturate at
system size.

» High rate: correlations disappear
at particle scale

* Scaling regime: D/L ~ (dy/dt)¢1/3)

° Dparticle-scale/ unasi-static~a/ L~1/20

* at “particle scale”:

*D=0.05 a2
e kink in BOTH D AND o
(see below)




Spatial structure: local drag, overdamped, L=40

10g1o(suy) [@b = 1-00]

 Quasi-static long-time vertical
displacement power spectrum
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Cayay(z) =

D~(dy/dt)-1/3 implies &~ (dy/dt)-1/3. Quantitative agreement?
Power spectrum of Ay, S(Ay)~q-2% along x axis.

Not understood. Should be S~qg-2 for a “sawtooth” slip line.
Real space correlations “not inconsistent with” &~ (dy/dt)-1/3.

(Ay(r)Ay(r + z))
(Ay(r)Ay(r))

* Real-space correlations
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Rheology/friction: Local drag L=20
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* Hershel Bulkley Rheolgoy exponent same as diffusion, 1/3.
* High rate cross-over more obvious in dynamic friction.
e Above rate = 10-2, spatial correlations are completely absent.




P(Ay) 2nd and 4th moments (Local drag T¢=Tv)

<Ay?> <Ayi>1/2
<AY>? VB<Ay>

O

* Low rate limit:
* P(Ay) non-Gaussian with big tails at early times (kurtosis is power-law)
 crosses to Gaussian with characteristic D at Ayc~1/L

* High rate limit:

» Gaussian at all times (Maxwell-Boltzmann distribution)
« ballistic scaling of both moments (solid black line)
 crossover to diffusive scaling at Ay~1 independent of rate




Flow curves: Local drag, various damping, L=20
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e Low rate:
correlations saturate
at system size.

* High rate:
correlations
disappear at particle
scale

* Ta/Tv=1/16, just
starting to inertia at
highest shear rate

*HB exponent~1/3.




Dissipation (Intermittency in time)

dU |oU
dt 87

*Energy change under  °ldentify as input power
affine deformation = o ¢ldentify as dissipation rate

* For local drag

ny—afy—— ZF L 0U; = DZM?

1
(F) B <a> DN <5v > *Ono et. al. PRE 2003
A *Rheology = fluctuations

* [ is energy dissipated per unit strain
e Like an instantaneous decorrelation rate
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* Slow shear:
» “Quasi-static Peak”
atlow "

* Power-law at high
r

* Fast shear:
* Gaussian

* Avalanches “go away”

while still: E~L and
D~Das

* Do not confound slip

Ves with avalanches!

“Fast” shear

I
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Conclusions

Local Drag

Pair Dra Vj

D ~ (dy/dt)'3 at high rate

Vi
Overdamped new result: new result:
Ty << TD e, | 6-0y~(dy/dt)!3 -Gy~(dy/dt)!2
\"/

D ~ (dy/dt)V> at high rate

Inertial
Tv >> 1D

7?

looks like exponent is bigger
than 1/3,

surprisingly difficult to
obtain underdamped limit.

like Lemaitre+Caroli:
o-oy~(dy/dt)!2
D ~ (dy/dt)-V> at high rate




