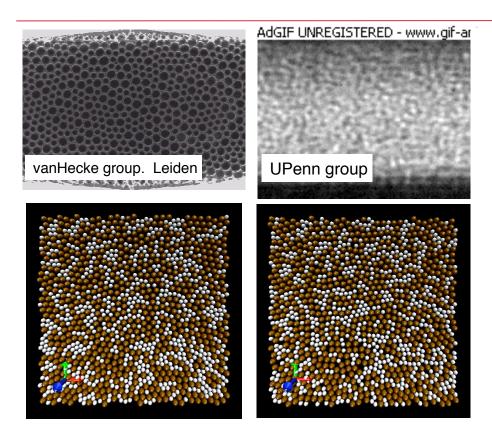
Avalanches, diffusion, and rheology in soft particle packings



KITP Seminar.

November 2014

- Robust connection between diffusion and rheology given by organization of plastic strain into "transient slip lines".
- Qualitative dependence on drag model: "local drag" less rate sensitive than "pair drag".
- Low rates: Bursty dynamics and transient slip lines span system.
- Intermediate rates: No bursts, but slip lines still span system.
- Higher rates: Slip lines have length ξ which determines diffusion and rheology.
- Highest rates: ξ saturates at particle scale.

Craig Maloney
Soft and Nanoscale Mechanics

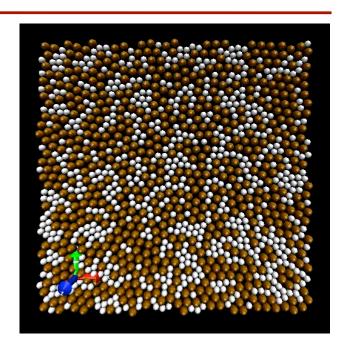
Acknowledgements

- Arka Roy
- Kamran Karimi

- DMR-1056564
- CMMI-1250199

Outline

- Background and overview
 - Soft particle suspensions
 - Jamming and random close packing
 - Elasticity: Development of shear modulus
 - Plasticity: Development of yield stress
 - Simple models
- Elasticity
 - Scaling laws, (criticality?) and emergent lengthscales
 - Point response
 - Constrained homogeneous deformation
 - Unconstrained homogeneous deformation
- Plasticity:
 - Shear transformations, slip avalanches, and diffusion
 - Short-time intermittency
 - Long time diffusion
 - Plastic strain correlations



Soft glasses

- Particles suspended in liquids can behave like glasses or other conventional amorphous solids.
- Particles can be:
 - solid like in a paste
 - liquid like in an emulsion
 - air like in a foam or mousse
- Technological applications:
 - Device fabrication/assembly
 - Oil / Gas drilling/production
 - Food
 - Personal care
 - Bio/Biomedical
- This work:
 - Athermal
 - Deformable
 - Jammed

Soft sphere rheology

PRL 105, 175701 (2010) PHYSICAL REVIEW LETTERS

AdGIF UNREGISTERED - www.gif-animator.com

week ending

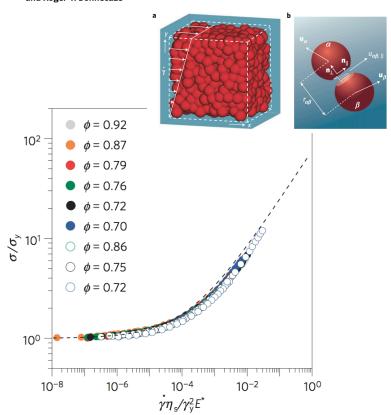
Microfluidic Rheology of Soft Colloids above and below Jamming

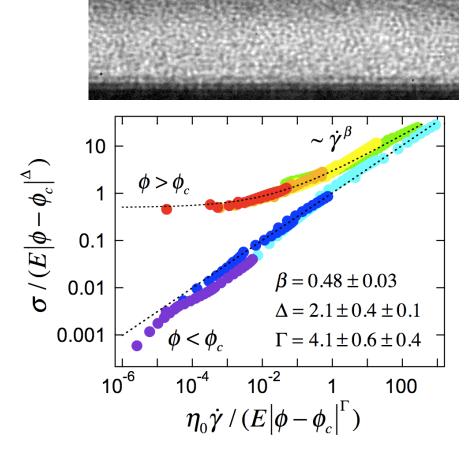
K. N. Nordstrom, ¹ E. Verneuil, ^{1,2} P. E. Arratia, ^{1,3} A. Basu, ¹ Z. Zhang, ^{1,2} A. G. Yodh, ¹ J. P. Gollub, ^{1,4} and D. J. Durian ¹
¹ Pepartment of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
² Complex Assemblies of Soft Matter, CNRS-Rhodia-UPenn UMI 3254, Bristol, Pennsylvania 19007, USA
³ Department of Mechanical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
⁴ Department of Physics and Astronomy, Haverford College, Haverford, Pennsylvania 19041, USA
(Received 26 July 2010; published 21 October 2010)

LETTERS PUBLISHED ONLINE: 25 SEPTEMBER 2011 | DOI: 10.1038/NMAT3119 nature materials

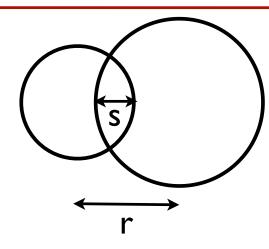
A micromechanical model to predict the flow of soft particle glasses

Jyoti R. Seth¹, Lavanya Mohan¹, Clémentine Locatelli-Champagne², Michel Cloitre²* and Roger T. Bonnecaze¹

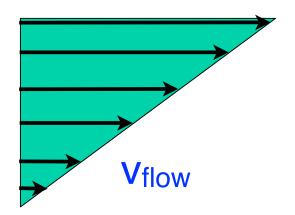




Bubble model (Durian)



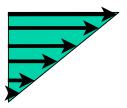
- 50:50 bidisperse
- $R_{Small} = 1.4 R_{Big}$

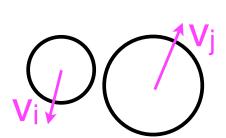


- Repulsion, F_{rep}, linear in overlap, s:
 - F_{rep}=ks
 - (could be arbitrary power of s)
- Drag, F_{drag}, w/r/t imposed flow:
 - F_{drag}=b (V_{bubble}-V_{flow})
- For (massless) bubbles, F_{rep}=F_{drag}
 - V_{bubble}=F_{rep}/b + V_{flow}
- Single timescale: τ_D=bR⁴/k
- Dimensionless shearing rate:
 - De=(dγ/dt) τ_D
 (Deborah number)

Modified, inertial bubble model(s)

- Modifications:
- F_{drag}, either w/r/t imposed flow:
 - F_{drag}=b (V_{bubble}-V_{flow})
 - $F_{drag\ i\ \alpha} = b\ \Sigma_j\ (v_j-v_i)_{\alpha}$
- Non-zero mass, Newton's law:
 - $ma_{i\alpha} = F_{rep i \alpha} + F_{drag i \alpha}$
- New inertial timescale: $\tau_V = (m/k)^{(1/2)}$
- $\tau_D/\tau_v = b/(km)^{(1/2)}$
- Non-brownian suspension: $\tau_{v} >> \tau_{D}$
- Granular material: $\tau_{v} << \tau_{D}$

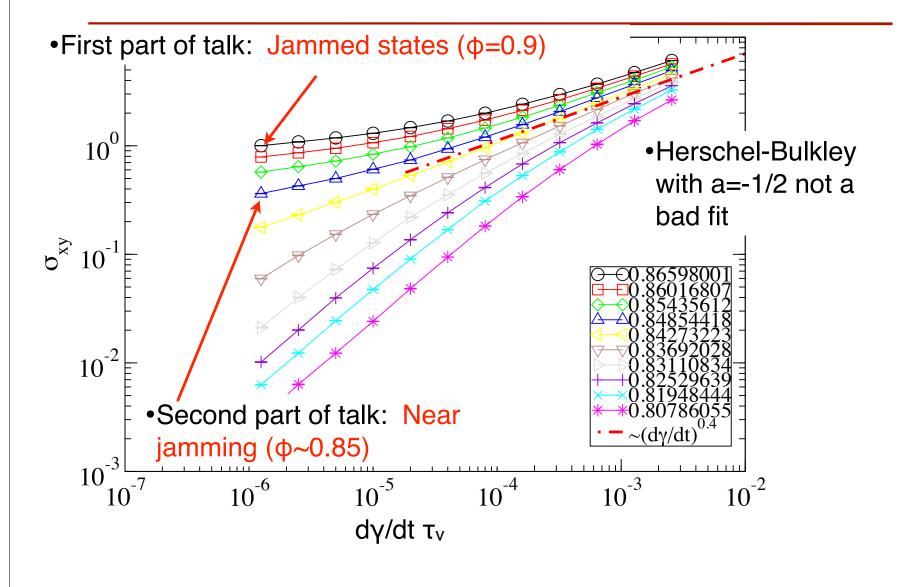




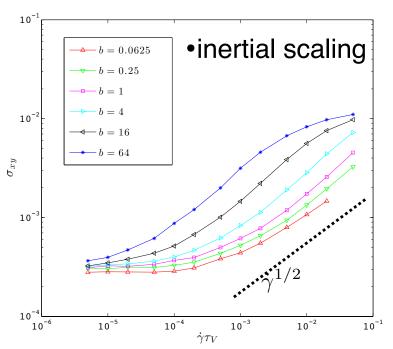
Models

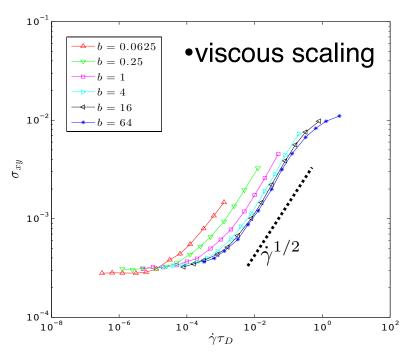
	Mean Drag	Pair Drag Vi
Overdamped $\tau_{v} \ll \tau_{D}$???	???
Inertial $\tau_{V} >> \tau_{D}$???	Lemaitre and Caroli PRL 2009 $\sigma-\sigma_y=A\sqrt{\dot{\gamma}} \ <\Delta y^2>/\Delta\gamma=A(1-B\dot{\gamma}^{-1/2})$

Flow curves: Pair drag, overdamped, various φ



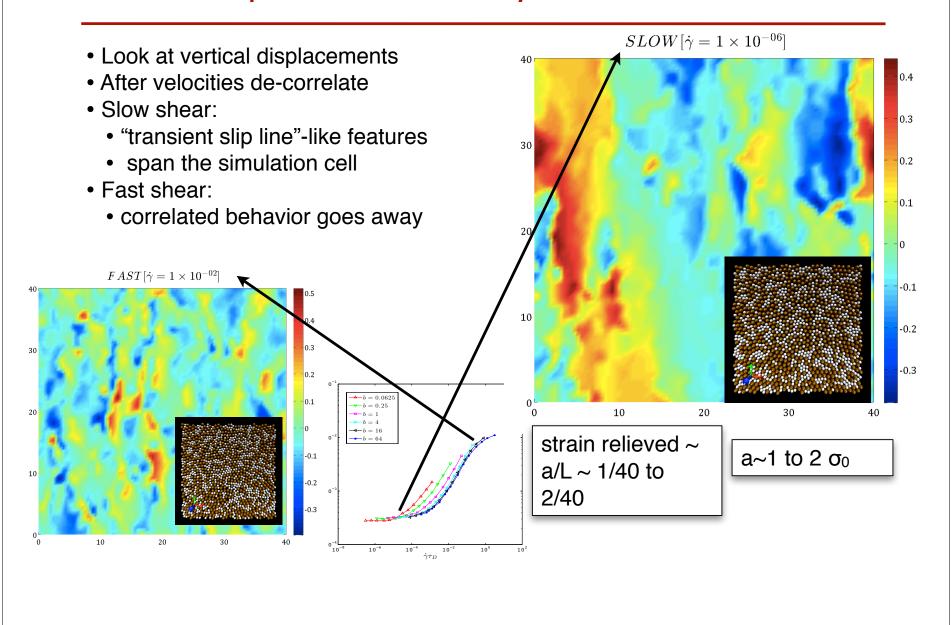
Flow curves: Pair drag various damping, L=20





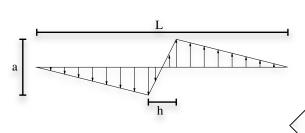
- New result : $\sigma \sigma_y \sim \dot{\gamma}^{1/2}$
- (Known previously for underdamped case)
- New result: kink at high rate
- Let's look at how things organize in space to try to understand the 1/2 exponent and the kink.

Particle displacements near yield stress and in flow



Aside: previous work on Lennard-Jones glasses

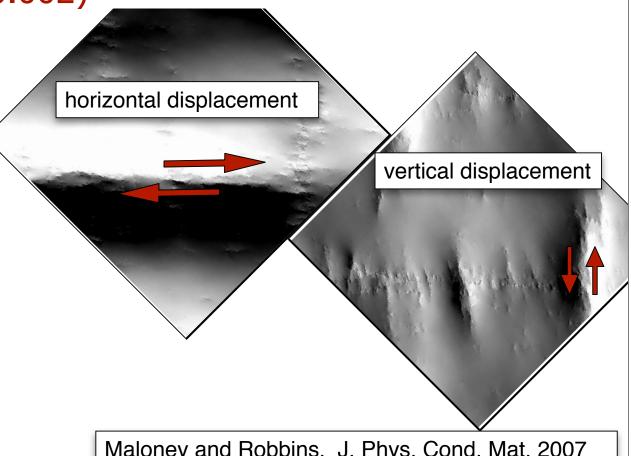
Typical displacement field (Lennard-Jones), L=1000, ($\Delta \gamma \sim 0.002$)



 $a\sim1$ to 2 σ_0

strain in shear zone ~ 2% to 4%

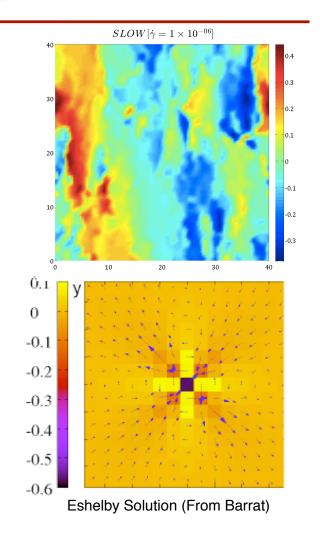
strain relieved ~ $a/L \sim 0.002$



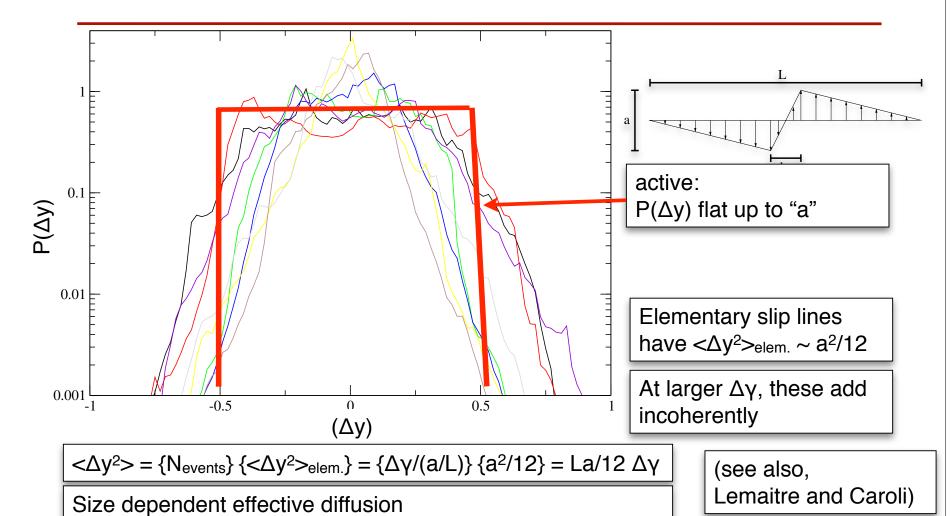
Maloney and Robbins. J. Phys. Cond. Mat. 2007

Shear transformation zone (STZ) mechanism

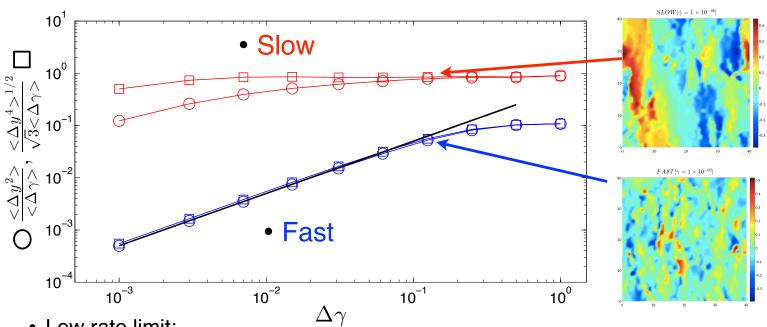
- Local group rearranges (yields)
- Redistributes stresses according to Eshelby
- Mean field description?
- Versions:
 - Bulatov and Argon (1994)
 - kinetic monte carlo
 - rates based on Eshelby
 - yield conditions uniform
 - Vandembroucq, Roux and co-workers
 - extremal quasistatic model (no time)
 - thresholds are stochastic
 - slip amplitudes are fixed
 - Bocquet, Ajdari, Picard, Martens and Barrat
 - dynamical model (can get rheology)
 - thresholds are fixed
 - slip amplitudes are fixed
 - delay times are stochastic



Ab-initio estimate: quasi-static $D_{eff} = \langle \Delta y^2 \rangle / 2\Delta \gamma$

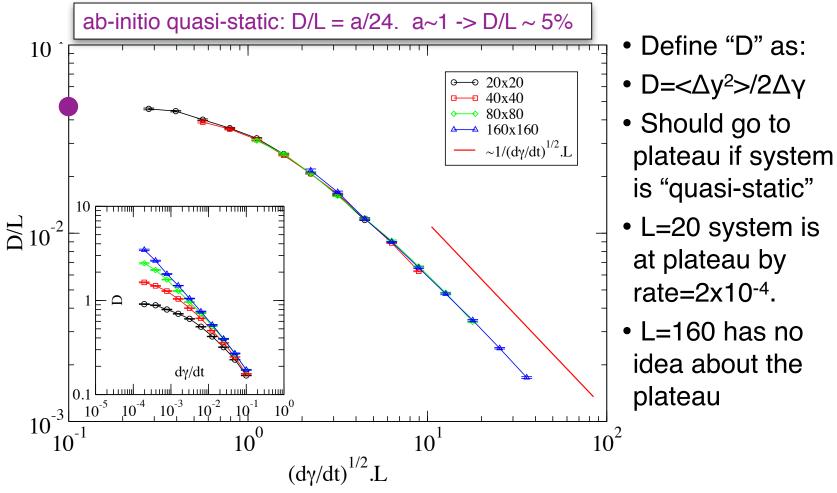


$P(\Delta y)$ 2nd and 4th moments (Local drag $T_d = T_v$)



- Low rate limit:
 - $P(\Delta y)$ non-Gaussian with big tails at early times (kurtosis is power-law)
 - crosses to Gaussian with characteristic D at Δγ_c~1/L
- High rate limit:
 - Gaussian at all times (Maxwell-Boltzmann distribution)
 - ballistic scaling of both moments (solid black line)
 - crossover to diffusive scaling at Δy~1 independent of rate

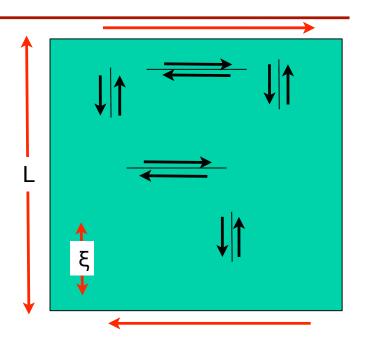
Diffusion: pair drag, $\tau_d = \tau_{v_r}$ (overdamped) various L.



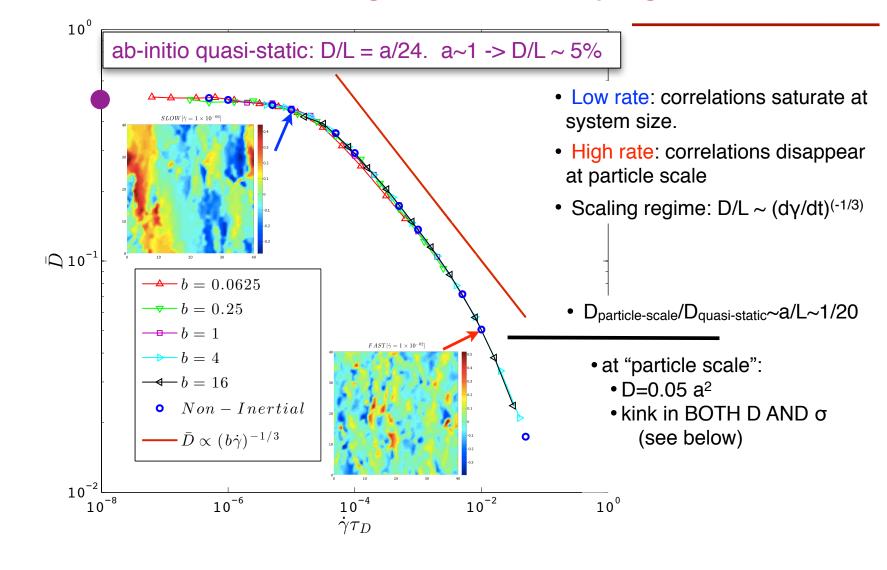
- Just like Lemaitre&Caroli result for UNDERDAMPED Lennard-Jones
- Implies I_{slip}~1/rate^{1/2} at high rate away from plateau

Argument for diffusion/rheology coupling

- Lemaitre and Caroli (PRL 2009):
- Assume: deformation from uncorrelated slip lines of length ξ (assume $\xi <<$ L)
- Linear elasticity gives: D~ξ ln(L/ξ)
- Assume: σ - σ_y ~ $\mu\tau$ (d γ /dt) where τ is formation time of a slip line
- Suppose τ~ξ (biggest assumption)
- Then: σ - σ_y ~ $\mu\xi$ ($d\gamma/dt$) ~ μ D($d\gamma/dt$)
- For pair drag D~ $(d\gamma/dt)^{-1/2}$ (at large rate) predicts σ - σ_y ~ $\mu(d\gamma/dt)^{1/2}$.
- Works for pair drag.
- Already known for inertial (Lennard-Jones)...
- new result here is for overdamped
- What about "local drag"????

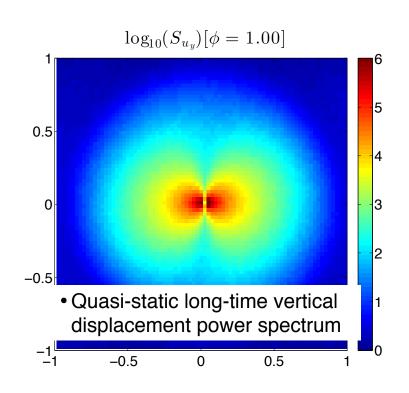


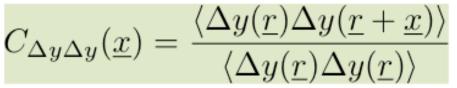
Diffusion: local drag, various damping, L=20

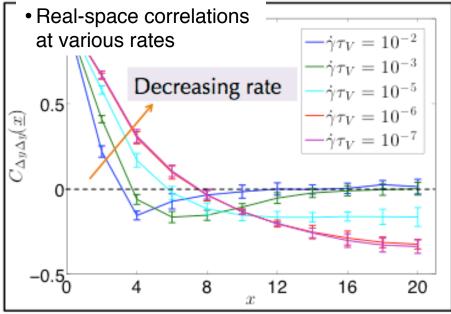


Spatial structure: local drag, overdamped, L=40

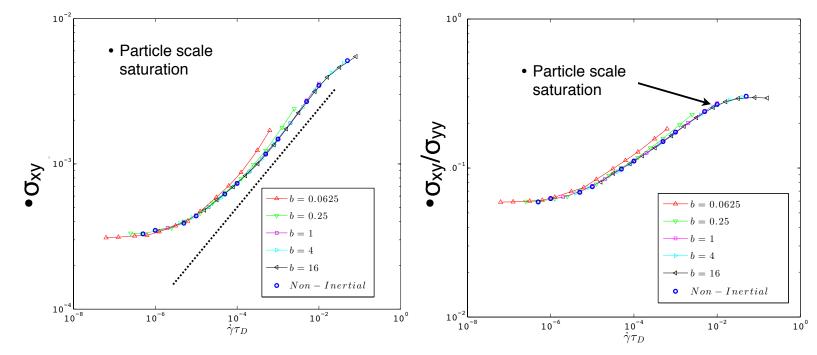
- D~ $(d\gamma/dt)^{-1/3}$ implies ξ ~ $(d\gamma/dt)^{-1/3}$. Quantitative agreement?
- Power spectrum of Δy , $S(\Delta y) \sim q^{-2.5}$ along x axis.
- Not understood. Should be S~q-2 for a "sawtooth" slip line.
- Real space correlations "not inconsistent with" $\xi \sim (d\gamma/dt)^{-1/3}$.





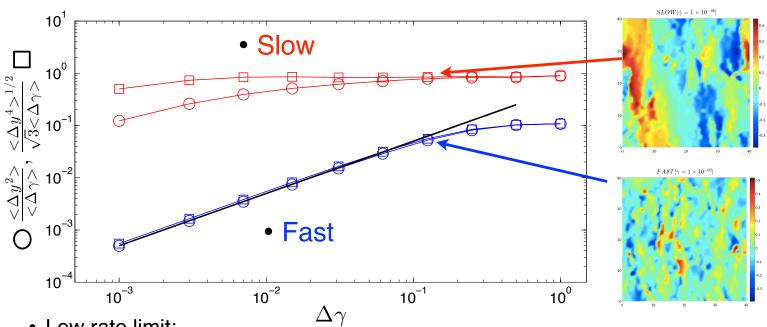


Rheology/friction: Local drag L=20



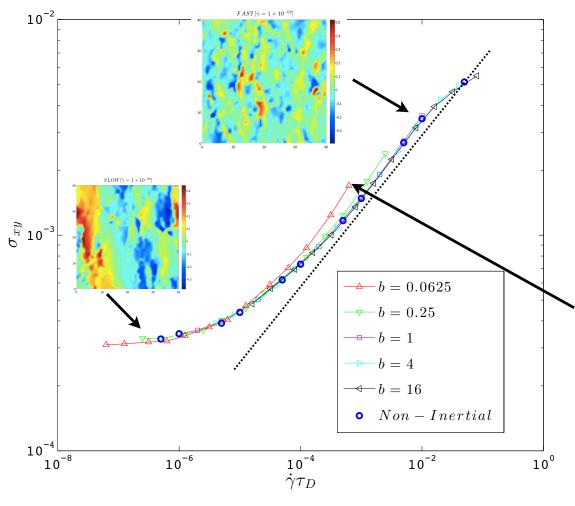
- Hershel Bulkley Rheolgoy exponent same as diffusion, 1/3.
- High rate cross-over more obvious in dynamic friction.
- Above rate = 10⁻², spatial correlations are completely absent.

$P(\Delta y)$ 2nd and 4th moments (Local drag $T_d = T_v$)



- Low rate limit:
 - $P(\Delta y)$ non-Gaussian with big tails at early times (kurtosis is power-law)
 - crosses to Gaussian with characteristic D at Δγ_c~1/L
- High rate limit:
 - Gaussian at all times (Maxwell-Boltzmann distribution)
 - ballistic scaling of both moments (solid black line)
 - crossover to diffusive scaling at Δy~1 independent of rate

Flow curves: Local drag, various damping, L=20



- Low rate: correlations saturate at system size.
- High rate: correlations disappear at particle scale
- $\tau_d/\tau_v=1/16$, just starting to inertia at highest shear rate
- •HB exponent~1/3.

Dissipation (Intermittency in time)

$$\frac{dU}{dt} = \left| \frac{\partial U}{\partial \gamma} \right|_{s} \dot{\gamma} + \sum_{i} \frac{\partial U}{\partial \vec{s}_{i}} \dot{\vec{s}}_{i} = \sigma \dot{\gamma} - \sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}$$

- •Energy change under affine deformation = σ
- Identify as input power
- Identify as dissipation rate

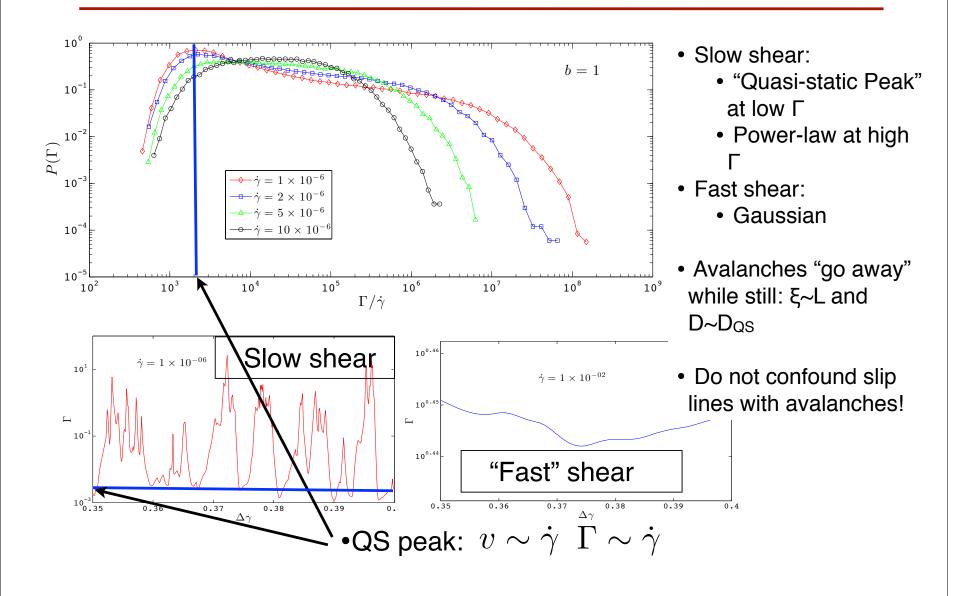
For local drag

$$\Gamma\dot{\gamma} = \sigma\dot{\gamma} - \frac{dU}{dt} = \sum_{i} \vec{F}_{i} \cdot \delta\vec{v}_{i} = D\sum_{i} \delta v_{i}^{2}$$

$$\langle \Gamma \rangle = \langle \sigma \rangle = \frac{DN}{\dot{\gamma}} \langle \delta v^{2} \rangle$$
 •Ono *et. al. PRE 2003* •Rheology = fluctuations

- Γ is energy dissipated per unit strain
- Like an instantaneous decorrelation rate

Dissipation spectrum: local drag ($\tau_d = \tau_v$) (L=40)



Conclusions

