Avalanches, diffusion, and rheology in soft particle packings KITP Seminar. November 2014 - Robust connection between diffusion and rheology given by organization of plastic strain into "transient slip lines". - Qualitative dependence on drag model: "local drag" less rate sensitive than "pair drag". - Low rates: Bursty dynamics and transient slip lines span system. - Intermediate rates: No bursts, but slip lines still span system. - Higher rates: Slip lines have length ξ which determines diffusion and rheology. - Highest rates: ξ saturates at particle scale. Craig Maloney Soft and Nanoscale Mechanics # Acknowledgements - Arka Roy - Kamran Karimi - DMR-1056564 - CMMI-1250199 #### **Outline** - Background and overview - Soft particle suspensions - Jamming and random close packing - Elasticity: Development of shear modulus - Plasticity: Development of yield stress - Simple models - Elasticity - Scaling laws, (criticality?) and emergent lengthscales - Point response - Constrained homogeneous deformation - Unconstrained homogeneous deformation - Plasticity: - Shear transformations, slip avalanches, and diffusion - Short-time intermittency - Long time diffusion - Plastic strain correlations # Soft glasses - Particles suspended in liquids can behave like glasses or other conventional amorphous solids. - Particles can be: - solid like in a paste - liquid like in an emulsion - air like in a foam or mousse - Technological applications: - Device fabrication/assembly - Oil / Gas drilling/production - Food - Personal care - Bio/Biomedical - This work: - Athermal - Deformable - Jammed #### Soft sphere rheology PRL 105, 175701 (2010) PHYSICAL REVIEW LETTERS AdGIF UNREGISTERED - www.gif-animator.com week ending #### Microfluidic Rheology of Soft Colloids above and below Jamming K. N. Nordstrom, ¹ E. Verneuil, ^{1,2} P. E. Arratia, ^{1,3} A. Basu, ¹ Z. Zhang, ^{1,2} A. G. Yodh, ¹ J. P. Gollub, ^{1,4} and D. J. Durian ¹ ¹ Pepartment of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA ² Complex Assemblies of Soft Matter, CNRS-Rhodia-UPenn UMI 3254, Bristol, Pennsylvania 19007, USA ³ Department of Mechanical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA ⁴ Department of Physics and Astronomy, Haverford College, Haverford, Pennsylvania 19041, USA (Received 26 July 2010; published 21 October 2010) # LETTERS PUBLISHED ONLINE: 25 SEPTEMBER 2011 | DOI: 10.1038/NMAT3119 nature materials # A micromechanical model to predict the flow of soft particle glasses Jyoti R. Seth¹, Lavanya Mohan¹, Clémentine Locatelli-Champagne², Michel Cloitre²* and Roger T. Bonnecaze¹ # Bubble model (Durian) - 50:50 bidisperse - $R_{Small} = 1.4 R_{Big}$ - Repulsion, F_{rep}, linear in overlap, s: - F_{rep}=ks - (could be arbitrary power of s) - Drag, F_{drag}, w/r/t imposed flow: - F_{drag}=b (V_{bubble}-V_{flow}) - For (massless) bubbles, F_{rep}=F_{drag} - V_{bubble}=F_{rep}/b + V_{flow} - Single timescale: τ_D=bR⁴/k - Dimensionless shearing rate: - De=(dγ/dt) τ_D (Deborah number) # Modified, inertial bubble model(s) - Modifications: - F_{drag}, either w/r/t imposed flow: - F_{drag}=b (V_{bubble}-V_{flow}) - $F_{drag\ i\ \alpha} = b\ \Sigma_j\ (v_j-v_i)_{\alpha}$ - Non-zero mass, Newton's law: - $ma_{i\alpha} = F_{rep i \alpha} + F_{drag i \alpha}$ - New inertial timescale: $\tau_V = (m/k)^{(1/2)}$ - $\tau_D/\tau_v = b/(km)^{(1/2)}$ - Non-brownian suspension: $\tau_{v} >> \tau_{D}$ - Granular material: $\tau_{v} << \tau_{D}$ # Models | | Mean Drag | Pair Drag
Vi | |------------------------------------|-----------|---| | Overdamped $\tau_{v} \ll \tau_{D}$ | ??? | ??? | | Inertial $\tau_{V} >> \tau_{D}$ | ??? | Lemaitre and Caroli PRL 2009 $\sigma-\sigma_y=A\sqrt{\dot{\gamma}} \ <\Delta y^2>/\Delta\gamma=A(1-B\dot{\gamma}^{-1/2})$ | # Flow curves: Pair drag, overdamped, various φ # Flow curves: Pair drag various damping, L=20 - New result : $\sigma \sigma_y \sim \dot{\gamma}^{1/2}$ - (Known previously for underdamped case) - New result: kink at high rate - Let's look at how things organize in space to try to understand the 1/2 exponent and the kink. # Particle displacements near yield stress and in flow # Aside: previous work on Lennard-Jones glasses Typical displacement field (Lennard-Jones), L=1000, ($\Delta \gamma \sim 0.002$) $a\sim1$ to 2 σ_0 strain in shear zone ~ 2% to 4% strain relieved ~ $a/L \sim 0.002$ Maloney and Robbins. J. Phys. Cond. Mat. 2007 # Shear transformation zone (STZ) mechanism - Local group rearranges (yields) - Redistributes stresses according to Eshelby - Mean field description? - Versions: - Bulatov and Argon (1994) - kinetic monte carlo - rates based on Eshelby - yield conditions uniform - Vandembroucq, Roux and co-workers - extremal quasistatic model (no time) - thresholds are stochastic - slip amplitudes are fixed - Bocquet, Ajdari, Picard, Martens and Barrat - dynamical model (can get rheology) - thresholds are fixed - slip amplitudes are fixed - delay times are stochastic # Ab-initio estimate: quasi-static $D_{eff} = \langle \Delta y^2 \rangle / 2\Delta \gamma$ # $P(\Delta y)$ 2nd and 4th moments (Local drag $T_d = T_v$) - Low rate limit: - $P(\Delta y)$ non-Gaussian with big tails at early times (kurtosis is power-law) - crosses to Gaussian with characteristic D at Δγ_c~1/L - High rate limit: - Gaussian at all times (Maxwell-Boltzmann distribution) - ballistic scaling of both moments (solid black line) - crossover to diffusive scaling at Δy~1 independent of rate #### Diffusion: pair drag, $\tau_d = \tau_{v_r}$ (overdamped) various L. - Just like Lemaitre&Caroli result for UNDERDAMPED Lennard-Jones - Implies I_{slip}~1/rate^{1/2} at high rate away from plateau # Argument for diffusion/rheology coupling - Lemaitre and Caroli (PRL 2009): - Assume: deformation from uncorrelated slip lines of length ξ (assume $\xi <<$ L) - Linear elasticity gives: D~ξ ln(L/ξ) - Assume: σ - σ_y ~ $\mu\tau$ (d γ /dt) where τ is formation time of a slip line - Suppose τ~ξ (biggest assumption) - Then: σ - σ_y ~ $\mu\xi$ ($d\gamma/dt$) ~ μ D($d\gamma/dt$) - For pair drag D~ $(d\gamma/dt)^{-1/2}$ (at large rate) predicts σ - σ_y ~ $\mu(d\gamma/dt)^{1/2}$. - Works for pair drag. - Already known for inertial (Lennard-Jones)... - new result here is for overdamped - What about "local drag"???? # Diffusion: local drag, various damping, L=20 # Spatial structure: local drag, overdamped, L=40 - D~ $(d\gamma/dt)^{-1/3}$ implies ξ ~ $(d\gamma/dt)^{-1/3}$. Quantitative agreement? - Power spectrum of Δy , $S(\Delta y) \sim q^{-2.5}$ along x axis. - Not understood. Should be S~q-2 for a "sawtooth" slip line. - Real space correlations "not inconsistent with" $\xi \sim (d\gamma/dt)^{-1/3}$. #### Rheology/friction: Local drag L=20 - Hershel Bulkley Rheolgoy exponent same as diffusion, 1/3. - High rate cross-over more obvious in dynamic friction. - Above rate = 10⁻², spatial correlations are completely absent. # $P(\Delta y)$ 2nd and 4th moments (Local drag $T_d = T_v$) - Low rate limit: - $P(\Delta y)$ non-Gaussian with big tails at early times (kurtosis is power-law) - crosses to Gaussian with characteristic D at Δγ_c~1/L - High rate limit: - Gaussian at all times (Maxwell-Boltzmann distribution) - ballistic scaling of both moments (solid black line) - crossover to diffusive scaling at Δy~1 independent of rate # Flow curves: Local drag, various damping, L=20 - Low rate: correlations saturate at system size. - High rate: correlations disappear at particle scale - $\tau_d/\tau_v=1/16$, just starting to inertia at highest shear rate - •HB exponent~1/3. # Dissipation (Intermittency in time) $$\frac{dU}{dt} = \left| \frac{\partial U}{\partial \gamma} \right|_{s} \dot{\gamma} + \sum_{i} \frac{\partial U}{\partial \vec{s}_{i}} \dot{\vec{s}}_{i} = \sigma \dot{\gamma} - \sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}$$ - •Energy change under affine deformation = σ - Identify as input power - Identify as dissipation rate For local drag $$\Gamma\dot{\gamma} = \sigma\dot{\gamma} - \frac{dU}{dt} = \sum_{i} \vec{F}_{i} \cdot \delta\vec{v}_{i} = D\sum_{i} \delta v_{i}^{2}$$ $$\langle \Gamma \rangle = \langle \sigma \rangle = \frac{DN}{\dot{\gamma}} \langle \delta v^{2} \rangle$$ •Ono *et. al. PRE 2003* •Rheology = fluctuations - Γ is energy dissipated per unit strain - Like an instantaneous decorrelation rate # Dissipation spectrum: local drag ($\tau_d = \tau_v$) (L=40) #### **Conclusions**