The Status Quo of Self-Organised Criticality

History, Models, Universality Classes, Tools

Gunnar Pruessner

Department of Mathematics
Imperial College London

Kavli Institute for Theoretical Physics, Santa Barbara, Nov 2014
Outline

1. SOC: Past and Present
2. Universality Classes
3. Theory of SOC
4. Summary: Any Answers?
Prelude: The physics of fractals

Question: Where does scale invariant behaviour in nature come from?

Answer: Due to a phase transition, self-organised to the critical point.
Prelude: The physics of fractals

- Anderson, 1972: *More is different*
 Correlation, cooperation, emergence
- 1/f noise “everywhere” (van der Ziel, 1950; Dutta and Horn, 1981)
- Kadanoff, 1986: *Fractals: Where’s the Physics?*
The BTW Model

The sandpile model:

- Simple (randomly driven) cellular automaton → avalanches.
- Intended as an explanation of $1/f$ noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng et al.)

- The physics of fractals.
The BTW Model

The sandpile model:
- Simple (randomly driven) cellular automaton \rightarrow avalanches.
- Intended as an explanation of $1/f$ noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng et al.)
- The physics of fractals.
The BTW Model

The sandpile model:

- Simple (randomly driven) cellular automaton → avalanches.
- Intended as an explanation of $1/f$ noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng et al.)
- **The physics of fractals.**
The BTW Model

The sandpile model:

- Simple (randomly driven) cellular automaton \(\rightarrow\) avalanches.
- Intended as an explanation of \(1/f\) noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng et al.)
- The physics of fractals.
The BTW Model

The sandpile model:

- Simple (randomly driven) cellular automaton → avalanches.
- Intended as an explanation of $1/f$ noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng *et al.*)
- The physics of fractals.
The BTW Model

The sandpile model:

- Simple (randomly driven) cellular automaton \rightarrow avalanches.
- Intended as an explanation of $1/f$ noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng et al.)

- The physics of fractals.
The BTW Model

The sandpile model:
- Simple (randomly driven) cellular automaton \rightarrow avalanches.
- Intended as an explanation of $1/f$ noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng et al.)
- The physics of fractals.
The BTW Model

The sandpile model:

- Simple (randomly driven) cellular automaton \(\rightarrow\) avalanches.
- Intended as an explanation of \(1/f\) noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng \(et\ al.)
- The physics of fractals.
The BTW Model

The sandpile model:

- Simple (randomly driven) cellular automaton → avalanches.
- Intended as an explanation of $1/f$ noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng et al.)
- The physics of fractals.
The BTW Model

Key ingredients for SOC models:

- Separation of time scales.
- Interaction.
- Thresholds (non-linearity).
- Observables: Avalanche sizes and durations.
Why is SOC important?

SOC today: Slowly driven, avalanching (intermittent) systems with non-linear interactions, that display non-trivial power-law correlations (cutoff by the system size) as known from ordinary critical phenomena, but with internal, self-organised, rather than external tuning of a control parameter (to a non-trivial value).

Emergence!

- Explanation of emergent,
- ... cooperative,
- ... long time and length scale
- ... phenomena,
- ... as signalled by power laws.
Why is SOC important?

SOC today: Slowly driven, avalanching (intermittent) systems with non-linear interactions, that display non-trivial power-law correlations (cutoff by the system size) as known from ordinary critical phenomena, but with internal, self-organised, rather than external tuning of a control parameter (to a non-trivial value).

Universality!

- Understanding and classifying natural phenomena
- ... using *Micky Mouse Models*
- ... on a small scale (in the lab or on the computer).
- (Triggering critical points?)
- But: Where is the evidence for scale invariance in nature (dirty power laws)?
Experiments:
Granular media, superconductors, rain . . .

- Large number of experiments and observations:
- Earthquakes suggested by Bak, Tang and Wiesenfeld.
- Ricepiles experiments by Frette et al. (Nature, 1996).
- Precipitation statistics by Peters and Christensen (PRL, 2002).

Experiments:
Granular media, superconductors, rain…

- Large number of experiments and observations:
- Earthquakes suggested by Bak, Tang and Wiesenfeld.
- Ricepiles experiments by Frette et al. (Nature, 1996).
- Precipitation statistics by Peters and Christensen (PRL, 2002).
Experiments:
Granular media, superconductors, rain...

- Large number of experiments and observations:
- Earthquakes suggested by Bak, Tang and Wiesenfeld.
- Ricepiles experiments by Frette et al. (Nature, 1996).
- Precipitation statistics by Peters and Christensen (PRL, 2002).
Experiments:
Granular media, superconductors, rain...

- Large number of experiments and observations:
- Earthquakes suggested by Bak, Tang and Wiesenfeld.
- Ricepiles experiments by Frette et al. (Nature, 1996).
- Precipitation statistics by Peters and Christensen (PRL, 2002).
Experiments:
Granular media, superconductors, rain...
More models

- Initial intention for more models: Expand BTW universality class.
- Later: Provide more evidence for SOC as a whole.
- More models...
More models

- Zhang Model (1989) [scaling questioned]
- Dhar-Ramaswamy Model (1989) [solved, directed]
- Forest Fire Model (1990, 1992) [no proper scaling]
- Manna Model (1991) [solid!]
- Olami-Feder-Christensen Model (1992) [scaling questioned, \(\alpha \approx 0.05 \) (localisation), \(\alpha = 0.22 \) (jump)]
- Bak-Sneppen Model (1993) [scaling questioned]
- Zaitsev Model (1992)
- Sneppen Model (1992)
- Oslo Model (1996) [solid!]
The Bak-Chen-Tang Forest Fire Model

- Intended as a model of turbulence.
- Sites empty, occupied (by tree) or on fire.
- Slow regrowth at rate p.
- Occasional re-lighting.
 Deterministic pattern, scale given by $1/p$.
The Bak-Chen-Tang Forest Fire Model

- Intended as a model of turbulence.
- Sites empty, occupied (by tree) or on fire.
- Slow regrowth at rate p.
- Occasional re-lighting.
 Deterministic pattern, scale given by $1/p$.
The Bak-Chen-Tang Forest Fire Model

- Intended as a model of turbulence.
- Sites empty, occupied (by tree) or on fire.
- Slow regrowth at rate p.
- Occasional re-lighting.
 Deterministic pattern, scale given by $1/p$.

Originally by Bak, Chen and Tang (1990).
Intended as a model of turbulence.
Sites empty, occupied (by tree) or on fire.
Slow regrowth at rate p.
Occasional re-lighting.
Grassberger and Kantz (1991):
Deterministic pattern, scale given by $1/p$.

Originally by Bak, Chen and Tang (1990).
Intended as a model of turbulence.
Sites empty, occupied (by tree) or on fire.
Slow regrowth at rate p.
Occasional re-lighting.
Grassberger and Kantz (1991):
Deterministic pattern, scale given by $1/p$.

Originally by Bak, Chen and Tang (1990).
Intended as a model of turbulence.
Sites empty, occupied (by tree) or on fire.
Slow regrowth at rate p.
Occasional re-lighting.
Grassberger and Kantz (1991):
Deterministic pattern, scale given by $1/p$.

Originally by Bak, Chen and Tang (1990).
Intended as a model of turbulence.
Sites empty, occupied (by tree) or on fire.
Slow regrowth at rate p.
Occasional re-lighting.
Grassberger and Kantz (1991):
Deterministic pattern, scale given by $1/p$.

Originally by Bak, Chen and Tang (1990).
Intended as a model of turbulence.
Sites empty, occupied (by tree) or on fire.
Slow regrowth at rate p.
Occasional re-lighting.
Grassberger and Kantz (1991):
Deterministic pattern, scale given by $1/p$.

Originally by Bak, Chen and Tang (1990).
Intended as a model of turbulence.
Sites empty, occupied (by tree) or on fire.
Slow regrowth at rate p.
Occasional re-lighting.
Grassberger and Kantz (1991):
Deterministic pattern, scale given by $1/p$.
The Bak-Chen-Tang Forest Fire Model

- Intended as a model of turbulence.
- Sites empty, occupied (by tree) or on fire.
- Slow regrowth at rate p.
- Occasional re-lighting.
 Deterministic pattern, scale given by $1/p$.
The Bak-Chen-Tang Forest Fire Model

- Intended as a model of turbulence.
- Sites empty, occupied (by tree) or on fire.
- Slow regrowth at rate p.
- Occasional re-lighting.
 Deterministic pattern, scale given by $1/p$.
The Bak-Chen-Tang Forest Fire Model

- Intended as a model of turbulence.
- Sites empty, occupied (by tree) or on fire.
- Slow regrowth at rate p.
- Occasional re-lighting.
 Deterministic pattern, scale given by $1/p$.

Originally by Bak, Chen and Tang (1990).
Intended as a model of turbulence.
Sites empty, occupied (by tree) or on fire.
Slow regrowth at rate p.
Occasional re-lighting.
Grassberger and Kantz (1991):
Deterministic pattern, scale given by $1/p$.
The Drossel-Schwabl Forest Fire Model

- Fires **instantaneous**, explicit lightning mechanism with θ trees grown between two lightning attempts.
The Drossel-Schwabl Forest Fire Model

- Fires *instantaneous*, explicit lightning mechanism with θ trees grown between two lightnings attempts.
The Drossel-Schwabl Forest Fire Model

- Fires *instantaneous*, explicit lightning mechanism with θ trees grown between two lightnings attempts.
The Drossel-Schwabl Forest Fire Model

- Fires *instantaneous*, explicit lightning mechanism with θ trees grown between two lightnings attempts.
The Drossel-Schwabl Forest Fire Model

- Fires *instantaneous*, explicit lightning mechanism with θ trees grown between two lightning attempts.
The Drossel-Schwabl Forest Fire Model

Lack of scaling

- Finite size not the only scale.
- Scale invariance possible only in the limit of $\theta \to \infty$.
- Lower cutoff moves as well.
Manna Model

Manna Model (1991)
- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.
- Robust, solid, universal, reproducible.
- Defines a universality class.
Manna Model (1991)
- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.
- Robust, solid, universal, reproducible.
- Defines a universality class.
Manna Model (1991)
- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.
- Robust, solid, universal, reproducible.
- Defines a universality class.
Manna Model

Manna Model (1991)
- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.
- Robust, solid, universal, reproducible.
- Defines a universality class.
Manna Model

Manna Model (1991)
- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.
- Robust, solid, universal, reproducible.
- Defines a universality class.
Manna Model (1991)
- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.
- Robust, solid, universal, reproducible.
- Defines a universality class.
Manna Model (1991)
- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.
- Robust, solid, universal, reproducible.
- Defines a universality class.
Collapse with Oslo

The Manna Model is in the same universality class as the Oslo model.
Manna on different lattices

One and two dimensions

(a) The simple chain. $L = 10, N = 10$.

(b) The rope ladder. $L = 10, N = 20$.

(c) The next nearest neighbour (nnn) chain. $L = 10, N = 20$.

(d) The Futatsubishi lattice. $L = 7, N = 22$.

From: Huynh, G P, Chew, 2011

The Manna Model has been investigated numerically in great detail.
Manna on different lattices
One and two dimensions

(a) The square lattice. \(L_x = L_y = 6, N = 36 \).
(b) The jagged lattice. \(L_x = 4, L_y = 9, N = 36 \).
(c) The triangular lattice. \(L_x = 5, L_y = 7, N = 36 \).
(d) The Kagomé lattice. \(L_x = 10, L_y = 4, N = 40 \).
(e) The Archimedes lattice. \(L_x = 8, L_y = 4, N = 32 \).
(f) The non-crossing (nc) diagonal square lattice. \(L_x = L_y = 5, N = 25 \).
(g) The honeycomb lattice. \(L_x = 9, L_y = 4, N = 36 \).
(h) The Mitsubishi lattice. \(L_x = 5, L_y = 7, N = 35 \).

From: Huynh, G P, Chew, 2011

The Manna Model has been investigated numerically in great detail.
Manna on different lattices

One and two dimensions

<table>
<thead>
<tr>
<th>lattice</th>
<th>d</th>
<th>D</th>
<th>τ</th>
<th>z</th>
<th>α</th>
<th>D_a</th>
<th>τ_a</th>
<th>$\mu^{(s)}_1$</th>
<th>$-\Sigma_\alpha$</th>
<th>$-\Sigma_\lambda$</th>
<th>$-\Sigma_\Sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple chain</td>
<td>1</td>
<td>2.27(2)</td>
<td>1.117(8)</td>
<td>1.450(12)</td>
<td>1.19(2)</td>
<td>0.998(4)</td>
<td>1.260(13)</td>
<td>2.000(4)</td>
<td>0.27(2)</td>
<td>0.27(3)</td>
<td>0.259(14)</td>
</tr>
<tr>
<td>rope ladder</td>
<td>1</td>
<td>2.24(2)</td>
<td>1.108(9)</td>
<td>1.44(2)</td>
<td>1.18(3)</td>
<td>0.998(7)</td>
<td>1.26(2)</td>
<td>1.989(5)</td>
<td>0.24(2)</td>
<td>0.26(5)</td>
<td>0.26(2)</td>
</tr>
<tr>
<td>nnn chain</td>
<td>1</td>
<td>2.33(11)</td>
<td>1.14(4)</td>
<td>1.48(11)</td>
<td>1.22(14)</td>
<td>0.997(15)</td>
<td>1.27(5)</td>
<td>1.991(11)</td>
<td>0.33(11)</td>
<td>0.3(2)</td>
<td>0.27(5)</td>
</tr>
<tr>
<td>Futatsubishi</td>
<td>1</td>
<td>2.24(3)</td>
<td>1.105(14)</td>
<td>1.43(3)</td>
<td>1.16(6)</td>
<td>0.999(15)</td>
<td>1.24(5)</td>
<td>2.008(11)</td>
<td>0.24(3)</td>
<td>0.23(9)</td>
<td>0.24(5)</td>
</tr>
<tr>
<td>square</td>
<td>2</td>
<td>2.748(13)</td>
<td>1.272(3)</td>
<td>1.52(2)</td>
<td>1.48(2)</td>
<td>1.992(8)</td>
<td>1.380(8)</td>
<td>1.9975(11)</td>
<td>0.748(13)</td>
<td>0.73(4)</td>
<td>0.76(2)</td>
</tr>
<tr>
<td>jagged</td>
<td>2</td>
<td>2.764(15)</td>
<td>1.276(4)</td>
<td>1.54(2)</td>
<td>1.49(3)</td>
<td>1.995(7)</td>
<td>1.384(8)</td>
<td>2.0007(12)</td>
<td>0.764(15)</td>
<td>0.76(5)</td>
<td>0.77(2)</td>
</tr>
<tr>
<td>Archimedes</td>
<td>2</td>
<td>2.76(2)</td>
<td>1.275(6)</td>
<td>1.54(3)</td>
<td>1.50(3)</td>
<td>1.997(10)</td>
<td>1.382(11)</td>
<td>2.001(2)</td>
<td>0.76(2)</td>
<td>0.78(6)</td>
<td>0.76(3)</td>
</tr>
<tr>
<td>nc diagonal square</td>
<td>2</td>
<td>2.750(14)</td>
<td>1.273(4)</td>
<td>1.53(2)</td>
<td>1.49(2)</td>
<td>1.992(7)</td>
<td>1.381(8)</td>
<td>2.0005(12)</td>
<td>0.750(14)</td>
<td>0.75(4)</td>
<td>0.76(2)</td>
</tr>
<tr>
<td>triangular</td>
<td>2</td>
<td>2.76(2)</td>
<td>1.275(5)</td>
<td>1.51(2)</td>
<td>1.47(3)</td>
<td>2.003(11)</td>
<td>1.388(12)</td>
<td>1.997(2)</td>
<td>0.76(2)</td>
<td>0.71(6)</td>
<td>0.78(3)</td>
</tr>
<tr>
<td>Kagomé</td>
<td>2</td>
<td>2.741(13)</td>
<td>1.270(4)</td>
<td>1.53(2)</td>
<td>1.49(2)</td>
<td>1.993(8)</td>
<td>1.381(9)</td>
<td>1.9994(12)</td>
<td>0.741(13)</td>
<td>0.75(5)</td>
<td>0.76(2)</td>
</tr>
<tr>
<td>honeycomb</td>
<td>2</td>
<td>2.73(2)</td>
<td>1.268(6)</td>
<td>1.55(4)</td>
<td>1.51(4)</td>
<td>1.990(13)</td>
<td>1.376(14)</td>
<td>2.000(2)</td>
<td>0.73(2)</td>
<td>0.79(8)</td>
<td>0.75(3)</td>
</tr>
<tr>
<td>Mitsubishi</td>
<td>2</td>
<td>2.75(2)</td>
<td>1.273(6)</td>
<td>1.54(3)</td>
<td>1.50(4)</td>
<td>1.999(12)</td>
<td>1.387(12)</td>
<td>1.998(2)</td>
<td>0.75(2)</td>
<td>0.77(7)</td>
<td>0.77(3)</td>
</tr>
</tbody>
</table>

From: Huynh, G P, Chew, 2011

The Manna Model has been investigated numerically in great detail.
Manna on different lattices

Three dimensions

<table>
<thead>
<tr>
<th>Lattice</th>
<th>q</th>
<th>$q^{(v)}$</th>
<th>$\langle z \rangle$</th>
<th>D</th>
<th>τ</th>
<th>z</th>
<th>α</th>
<th>D_{a}</th>
<th>τ_{a}</th>
<th>$\mu_{1}^{(*)}$</th>
<th>$-\Sigma$</th>
<th>$-\Sigma_{t}$</th>
<th>$-\Sigma_{a}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC</td>
<td>6</td>
<td>1</td>
<td>$[0.622325(1)]$</td>
<td>3.38(2)</td>
<td>1.408(3)</td>
<td>1.779(7)</td>
<td>1.784(9)</td>
<td>3.04(5)</td>
<td>1.45(4)</td>
<td>2.0057(5)</td>
<td>1.38(2)</td>
<td>1.395(16)</td>
<td>1.36(13)</td>
</tr>
<tr>
<td>BCC</td>
<td>8</td>
<td>4</td>
<td>$[0.600620(2)]$</td>
<td>3.36(2)</td>
<td>1.404(4)</td>
<td>1.777(8)</td>
<td>1.78(1)</td>
<td>2.99(2)</td>
<td>1.444(18)</td>
<td>2.0030(5)</td>
<td>1.36(2)</td>
<td>1.390(19)</td>
<td>1.33(6)</td>
</tr>
<tr>
<td>BCCN</td>
<td>14</td>
<td>5</td>
<td>$[0.581502(1)]$</td>
<td>3.38(3)</td>
<td>1.408(4)</td>
<td>1.776(9)</td>
<td>1.783(11)</td>
<td>3.01(3)</td>
<td>1.44(3)</td>
<td>2.0041(6)</td>
<td>1.38(3)</td>
<td>1.39(2)</td>
<td>1.32(7)</td>
</tr>
<tr>
<td>FCC</td>
<td>12</td>
<td>4</td>
<td>$[0.589187(3)]$</td>
<td>3.35(4)</td>
<td>1.402(8)</td>
<td>1.765(16)</td>
<td>1.78(2)</td>
<td>3.1(2)</td>
<td>1.48(14)</td>
<td>2.0035(11)</td>
<td>1.35(4)</td>
<td>1.37(4)</td>
<td>1.5(5)</td>
</tr>
<tr>
<td>FCCN</td>
<td>18</td>
<td>5</td>
<td>$[0.566307(3)]$</td>
<td>3.38(4)</td>
<td>1.408(7)</td>
<td>1.781(14)</td>
<td>1.787(18)</td>
<td>3.00(4)</td>
<td>1.44(3)</td>
<td>2.0051(8)</td>
<td>1.38(4)</td>
<td>1.40(3)</td>
<td>1.32(9)</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
<td></td>
<td>3.370(11)</td>
<td>1.407(2)</td>
<td>1.777(4)</td>
<td>1.783(5)</td>
<td>3.003(14)</td>
<td>1.442(12)</td>
<td>2.0042(3)</td>
<td>1.380(13)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From: Huynh, G P, 2012

The Manna Model has been investigated numerically in great detail.
Outline

1. SOC: Past and Present
2. Universality Classes
 - Early themes
 - Relevant fields
 - Universality classes
3. Theory of SOC
4. Summary: Any Answers?
Early themes

- Initially the BTW Model was conceived as the paradigm of SOC and maybe the **SOC universality class**.
- Zhang and Manna Models were initially suggested to be in that BTW/SOC universality class.
- Starting from the mid-ninties, new universality classes proposed.
- Universality requires (some) robustness.
Dividing lines between models

The following features are generally considered as relevant fields:\(^1\)

- stochastic vs deterministic
- directed vs undirected (isotropy generally)
- Abelian vs non-Abelian (note initial confusion of stochastic=non-Abelian)
- conservative vs non-conservative

Most observations made in variations of BTW and Manna Models.

\(^1\) e.g. Ben-Hur and Biham, 1996; Milshtein, Biham, Solomon, 1998; Karmakar, Manna, Stella, 2005
Universality classes

Widely accepted universality classes are:

- **Directed sandpiles (stochastic and deterministic).**
- **Manna universality class in** \(d = 1, 2, 3, 4, \) **free above.**
- **BTW (multiscaling) in** \(d = 2, 3, 4, \) **free above?**, includes possibly the Zhang Model.
- **OFC Model** (somewhat robust if conservative, class of its own?).
- **Forest Fire Model** (not robust, class of its own?).
- **Bak-Sneppen Model** (not robust, class of its own?).
Directed Models

- Typically solved by mapping to random walker (time is equivalent to one spatial dimension, $d = d_\perp + 1$).
- Exact solutions and controlled approximations.
- $d_\perp = 0, 1, 2$, upper critical dimension is $d_\perp = 2$.

From Pruessner 2012, p.287
Directed Models

- Plethora of models.
- Two classes: Random distribution to downstream neighbours vs deterministic distribution to downstream neighbours.
- Directedness results in no (or short-ranged or trivial) spatial correlations.
- Fully characterised (Dhar and Ramaswamy, 1989; Paczuski and Bassler, 2000; Bunzarova 2010).

From Pruessner 2012, p.287
The Manna Universality Class

- The only large universality class in SOC.
- Includes large number of models, which seemingly are very different.
- Spatially isotropic.
- Numerically characterised in $d = 1, 2, 3, 4, 5$ (e.g. Luebeck and Heger, 2003).
- Little known analytically, no proper mean field theory.
Outline

1. SOC: Past and Present
2. Universality Classes
3. Theory of SOC
 - Tools in SOC
 - The Absorbing State Mechanism
 - Field theory for SOC
 - The SOC mechanism
4. Summary: Any Answers?
Tools in SOC

- (Extensive) numerics (BTW, FFM, BS, Manna, Oslo).
- Analytical tools:
 - Exact solutions (so far: directed models only).
 - Mappings to known (understood?) phenomena.
 - Growth processes and field theories.
Link to growth phenomena (generic scale invariance)

Stochastic evolution of sandpile surface.

\[\partial_t \phi(r, t) = (\nu_\parallel \partial^2_\parallel + \nu_\perp \partial^2_\perp) \phi + \eta(r, t) \]

- **Generic** scale invariance (Hwa and Kardar, 1989, and Grinstein, Lee and Sachdev 1990)
- No mass term $-\epsilon \phi$ on the right \(\longrightarrow\) conservative dynamics (finiteness generates ϵ).
- Anisotropy (boundaries?) required in the presence of conserved noise.
- Non-trivial exponents in the presence of non-linearities and non-conserved noise.
- Concept abandoned with the arrival of non-conservative models (FFM [1990], OFC [1992], BS [1993]).
Effect of a mass term

Mass term

\[\partial_t \phi = \nu \nabla^2 \phi - \epsilon \phi + \ldots + \eta \]

represents dissipation

\[\partial_t \int_V d^d x \phi = \text{surface terms} - \epsilon \int_V d^d x \phi \]

and correlation length

\[\phi = \ldots e^{-|x|\sqrt{\epsilon/\nu}}. \]

But: How can a renormalised \(\epsilon = 0 \) be maintained without trivialising (no additive renormalisation, \(\epsilon = 0 \) is the critical point in mean field) the phenomenon?
Field theories for Manna and Oslo

Number of charges interpreted as an interface.

- **Manna model** has a (weird!) Langevin equation.
- **Oslo model** implements *quenched Edwards Wilkinson equation* → interfaces!

Field theories for both still investigated.

Mechanism of self-organisation still investigated.

Link to known universality classes.

Link to **directed percolation**?
The Absorbing State Mechanism
Dickman, Vespignani, Zapperi 1998

- SOC model: activity ρ_a leads to dissipation
- dissipation reduces particle density ζ
- density is reduced until system is inactive
 \rightarrow absorbing phase
- external drive increases particle density
 \rightarrow back to active phase

An SOC model can be seen as an AS model that drives itself into the inactive phase by dissipation ϵ and is pushed back into the active phase by external drive h.

\[\dot{\zeta} = h - \epsilon \rho_a \quad \text{stationarity} \quad \rho_a = h/\epsilon \]
The Absorbing State Mechanism

Idea: SOC drives $h/\epsilon = \rho_a$ to 0 as $L \to \infty$

Leading orders: $h(L) = h_0 L^{-\omega}$ and $\epsilon(L) = \epsilon_0 L^{-\kappa}$
The Absorbing State Mechanism

Problem: SOC exponents would be affected by the way how driving and dissipation are implemented \(\rightarrow \) no universality.

Fey, Levine and Wilson suggest that critical point is not reached.
Outline

1. SOC: Past and Present
2. Universality Classes
3. Theory of SOC
 - Tools in SOC
 - The Absorbing State Mechanism
 - Field theory for SOC
 - The SOC mechanism
4. Summary: Any Answers?
Field theory for SOC

The Manna Model

Field theoretic formulation of the time evolution of the Manna Model. Note: Before taking any limits, this theory is *exact*.

- Continuum limit
- Simplify...
- Diagrams (meaning?, process?, tree level?)
- Renormalisation
Simplification of the field theory

Bare propagators from field theory by inspection. Simplification by considering periodic boundary conditions in $d - 1$ directions. Surface appears in only one dimension.
Bare propagators

\begin{align*}
\frac{1}{-\omega + D(\mathbf{k}^2 + q_n^2)}
\end{align*}

where \(q_n = \frac{\pi}{L} n \) with \(n = 1, 2, \ldots \)

- \(d - 1 \) dimensions can be treated the “usual” way.
- Usually, the gap in the propagator is the mass \(r_0 \) in

\begin{align*}
\frac{1}{-\omega + D(\mathbf{k}^2 + r_0)}
\end{align*}

found by evaluating the inverse propagator at minimal momentum and frequency magnitude, \(\mathbf{k} = 0 \) and \(\omega = 0 \).

- Here, the gap is set by the minimum magnitude of \(q_n \) allowed. The effective mass is \(q_1^2 = (\pi/L)^2 \).
Bare propagators

Consider the system size as the effective mass of the system. Expect convergence as circumference is increased; critical point controlled by height (L) only.
Bare propagators

Consider the system size as the effective mass of the system. Expect convergence as circumference is increased; critical point controlled by height (L) only.
Bare propagators

Consider the system size as the effective mass of the system. Expect convergence as circumference is increased; critical point controlled by height (L) only.
Bare propagators

Consider the system size as the effective mass of the system. Expect convergence as circumference is increased; critical point controlled by height (L) only.
Bare propagators

Consider the system size as the effective mass of the system. Expect convergence as circumference is increased; critical point controlled by height (L) only.
Bare propagators

Consider the system size as the effective mass of the system. Expect convergence as circumference is increased; critical point controlled by height (L) only.
Bare propagators

Exact first moments

Circumference does not enter into first moment.

Avalanche size: Total activity (total number of charges).

In one dimension (continuum limit):

$$\langle s \rangle = \frac{1}{6} L^2$$

and $$\langle s \rangle = \frac{1}{6} (L + 1)(L + 2)$$ discretely. In higher dimensions:

$$\langle s \rangle = \frac{d}{6} L^2$$

and $$\langle s \rangle = \frac{d}{6} (L + 1)(L + 2)$$ discretely.
Vertices

The interaction vertices are

- Spontaneous branching and substrate deposition:

- Substrate interaction resulting in attenuation or deposition:

All relevant for $d \leq d_c = 4$. Loops occur.
Vertices

The interaction vertices are

- Spontaneous branching and substrate deposition:

- Substrate interaction resulting in attenuation or deposition:

Only the former are relevant for $d > d_c = 4$; as in ϕ^4 the latter enter only for the lowest mode. No loops.
Tree level

Tree level becomes exact above $d_c = 4$. Two vertices are relevant there:

For example:

$$\langle s^2 \rangle = 2 \left(\frac{2}{L} \right)^3 \sum_{n,m,l \text{ odd}} \frac{4}{q_l q_m} \frac{2}{q_n} = \frac{d^3}{140} L^6$$

Higher order moments follow similarly.
Tree level

Comparison to numerics

Tree level moments can be compared to the numerics of the Manna Model at $d > 4$, here $d = 5$:

<table>
<thead>
<tr>
<th>Observable</th>
<th>analytical</th>
<th>numerical (leading order)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle s \rangle$</td>
<td>$(d/6)L^2 = 0.833 \ldots L^2$</td>
<td>$0.83334(6)L^2$</td>
</tr>
<tr>
<td>$\langle s \rangle \langle s^3 \rangle / \langle s^2 \rangle^2$</td>
<td>$3.08754 \ldots$</td>
<td>$3.111(11)$</td>
</tr>
<tr>
<td>$\langle s^2 \rangle \langle s^4 \rangle / \langle s^3 \rangle^2$</td>
<td>$1.6693 \ldots$</td>
<td>$1.70(3)$</td>
</tr>
</tbody>
</table>

Note: Numerical fitting pretty *ad hoc*.
Tree level: Mean Field Theory

The process corresponding to tree level is the \textit{effective} mean field theory of the Manna Model (random walk, not space-less!). Parameters are self-organised (see below).

- For that process, avalanche moments can be calculated easily2 directly (not via the field theory).
- Results coincide with those from field theory and numerics in $d = 5$.

This mean field theory identifies precisely the correlations and fluctuations to be ignored. Not an \textit{ad-hoc} approximantion. Mean field theories in SOC are usually effective theories of certain observables and do not incorporate space at any level.

2Mathematica takes care of the mess
The SOC mechanism

How does SOC work?

→ Organisation to the critical point? Why are the propagators massless?

Mass is attenuation (loss of activity). At tree level:

\[
\begin{align*}
\text{mass} & \\
+ & \rightarrow + \rightarrow + \rightarrow + \\
+ & \rightarrow + \\
\end{align*}
\]
The SOC mechanism

How does SOC work?

Attenuation leads to deposition by the external drive — diagrams have that symmetry.
Density of particles in the substrate:
The SOC mechanism

How does SOC work?

Attenuation leads to deposition by the external drive — diagrams have that symmetry.

Density of particles in the substrate:

\[
\text{Additional deposition by external drive vanishes at stationarity.}
\]
The SOC mechanism

How does SOC work?

Mass:

Additional deposition:

Only difference between the two diagrams: Left most vertex (coupling identical at renormalised and bare level).
The SOC mechanism

So how does it work then?

- Activity attenuation is mass.
- Conservation links attenuation to (additional) substrate deposition...
- or equivalently, symmetry of vertices equates mass terms of activity and substrate deposition terms.
- Additional substrate deposition vanishes *as we choose to consider stationarity.*

Terms and conditions apply...

Issue: Deposition without attenuation, by seemingly conservative terms.
The SOC mechanism
So how does it work then?

- **Stationarity causes criticality.** (qualification of Hwa and Kardar: Masslessness by conservation).
- Conservation is secondary to stationarity (links attenuation and deposition, the latter being stationary) — non-conservative SOC is possible!
- (Ward-Takahashi) symmetry of diagrams produces for self-tuning.
- Shift of stationary particle density understood.
- Innocent looking processes (such as “catalytic” diffusion in substrate) destroy critical state.
- Relation to absorbing state mechanism unclear.
Summary: Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably: Superconductors, granular media, earthquakes, precipitation
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Jury is still out.
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!
Summary: Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably: Superconductors, granular media, earthquakes, precipitation.
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Jury is still out.
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!
Summary: Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably: Superconductors, granular media, earthquakes, precipitation
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Jury is still out.
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!
Summary: Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably: Superconductors, granular media, earthquakes, precipitation.
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Jury is still out.
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!
Summary: Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably: Superconductors, granular media, earthquakes, precipitation
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Jury is still out.
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!
Summary: Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably: Superconductors, granular media, earthquakes, precipitation
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Jury is still out.
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!
Summary: Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably: Superconductors, granular media, earthquakes, precipitation
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Jury is still out.
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!
Summary: Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably: Superconductors, granular media, earthquakes, precipitation
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Jury is still out.
 - Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!
Summary: Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably: Superconductors, granular media, earthquakes, precipitation
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Jury is still out.
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!
Summary: Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably: Superconductors, granular media, earthquakes, precipitation
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Jury is still out.
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!