Field theory of avalanches at depinning and relation to sandpiles

Kay Wiese

LPT-ENS, Paris

with Pierre Le Doussal,
Alberto Rosso, Alain Middleton, Alejandro Kolton, Sébastien Moulinet, Etienne Rolley, Gianfranco Durin, Alexander Dobrinevski, Mathieu Delorme,Thimotée

Thiery, Andrei Fedorenko, Markus Mueller
KITP, November 2014
http://www.phys.ens.fr/~wiese/

Contact line wetting

(C) E. Rolley
isobutanol on a randomly silanized silicon wafer

- hydrogen on disordered

Cesium substrate

height jumps = avalanches

The model

$$
h(x)=u(x)-w \mathbb{1}
$$

Displacement field

$$
x \in \mathbb{R} \quad \longrightarrow u(x) \in \mathbb{R}
$$

Elastic energy:

$$
\mathscr{H}_{\mathrm{el}}=\frac{1}{2} \int \frac{\mathrm{~d}^{d} k}{2 \pi}\left|\tilde{u}_{k}\right|^{2} \varepsilon_{k}+\int_{x} \frac{m^{2}}{2}[u(x)-w]^{2}
$$

for contact angle $\theta=90^{\circ}$:

$$
\varepsilon_{k} \approx \sqrt{k^{2}+\kappa^{2}}-\kappa \quad w=v t
$$

$\kappa^{-1}=m^{-2}$ kapillary length
(instead of $\varepsilon_{k}=k^{2}$)
Disorder energy

$$
\mathscr{H}_{\mathrm{DO}}=\int \mathrm{d}^{d} x V(x, u(x))
$$

with correlations

$$
\overline{V(x, u) V\left(x^{\prime}, u^{\prime}\right)}=\delta^{d}\left(x-x^{\prime}\right) R\left(u-u^{\prime}\right)
$$

Functional renormalization group (FRG)

(D. Fisher 1986)

$$
\begin{aligned}
\frac{\mathscr{H}[u]}{T}= & \frac{1}{2 T} \sum_{\alpha=1}^{n}\left[\int_{k} \varepsilon_{k}\left|\tilde{u}_{k}^{\alpha}\right|^{2}+\int_{x} m^{2}\left(u^{\alpha}(x)-w\right)^{2}\right] \\
& -\frac{1}{2 T^{2}} \int_{x} \sum_{\alpha, \beta=1}^{n} R\left(u^{\alpha}(x)-u^{\beta}(x)\right)
\end{aligned}
$$

Functional renormalization group equation (FRG) for the disorder correlator $R(u)$ at 1-loop order:

$$
-\frac{m \mathrm{~d}}{\mathrm{~d} m} R(u)=(\varepsilon-4 \zeta) R(u)+\zeta u R^{\prime}(u)+\frac{1}{2} R^{\prime \prime}(u)^{2}-R^{\prime \prime}(u) R^{\prime \prime}(0)
$$

Solution for force-force correlator $-R^{\prime \prime}(u)$:

Cusp: $R^{\prime \prime \prime \prime}(0)=\infty$ appears after finite RG-time (at Larkin-length)

Why is a cusp necessary?

... calculate effective action for single degree of freedom. . .

$\xrightarrow{\mathrm{Min}}$
-10

Renormalized Disorder Correlator in FRG

$\mathscr{H}^{w}[u]=\int \frac{1}{2}[\nabla u(x)]^{2}+V(x, u(x))+\frac{m^{2}}{2}[u(x)-w]^{2} \mathrm{~d}^{d} x$
Local minimum $u_{w}(x)$ satisfies:
$0=\frac{\delta \mathscr{H}^{w}[u]}{\delta u_{w}(x)}=-\nabla^{2} u_{w}(x)-F\left(x, u_{w}(x)\right)+m^{2}\left[u_{w}(x)-w\right]$
Center-of-mass u_{w} fluctuates around w

$$
u_{w}-w:=\frac{1}{L^{d}} \int\left[u_{w}(x)-w\right] \mathrm{d}^{d} x=\frac{1}{L^{d} m^{2}} \int F\left(x, u_{w}(x)\right) \mathrm{d}^{d} x
$$

Thus naively

$$
\overline{h_{w} h_{w^{\prime}}}=\overline{\left[u_{w}-w\right]\left[u_{w^{\prime}}-w^{\prime}\right]}=\frac{\Delta\left(w-w^{\prime}\right)}{L^{d} m^{4}}
$$

FRG - Legendre-transform ... confirm this picture!
P. Le Doussal, EPL 76 (2006), 457; Annals of Physics 325 (2009) 49

Measuring the cusp $=$ effective action

 A. Middleton+PLD+KW, PRL 98 (2007) I5570 I

Depinning in 1+1 dimensions
$\zeta=\frac{\varepsilon}{3}+0.04777 \varepsilon^{2}: 1.0$ (1 loop), 1.2 ± 0.2 (2 loop), 1.25 (numerics).

A. Rosso, P. Le Doussal, KW, PRB 75 (2007) 220201

Experiments on contact line

The renormalized force-force correlator

P. Le Doussal, KW, S. Moulinet, E. Rolley, EPL 87 (2009) 56001

Slope at the cusp and avalanche size moments
$\uparrow x$

Avalanche

together:
(exact)

$$
\begin{aligned}
& \rho\langle S\rangle\left|w-w^{\prime}\right|
\end{aligned}=L^{d} \overline{\left|u_{w}-u_{w^{\prime}}\right|}=L^{d}\left|w-w^{\prime}\right| ~ 子 \begin{aligned}
& \text { \#avalanches/unit length } \\
& \rho\left\langle S^{2}\right\rangle\left|w-w^{\prime}\right| \approx L^{2 d} \overline{\left|u_{w}-u_{w^{\prime}}\right|^{2}} \\
& \approx 2 L^{d} \frac{\left|\Delta^{\prime}\left(0^{+}\right)\right|}{m^{4}}\left|w-w^{\prime}\right|
\end{aligned}
$$

$$
S_{m}:=\frac{\left\langle S^{2}\right\rangle}{2\langle S\rangle}=\frac{\left|\Delta^{\prime}\left(0^{+}\right)\right|}{m^{4}}
$$

Avalanches

- avalanches appear in many systems: contact-lines, vortex lattices, domain walls, earthquakes, etc.
- Oldest example: Galton process
- Galton process $=$ Mean Field (MF) $=$ ABBM model
- Brownian force model (BFM) = starting point for field theory
- center-of-mass mode of BFM $=$ ABBM
- avalanches in SK model are different ($\tau=1$) (M. Mueller, PLD, KW)
- Self-Organized Criticality (SOC)
- Manna model: mapping on disordered elastic manifolds

The Galton process

- old quesstion: survival probability of male line (Galton,Watsonl873)
- equivalent: driven particle in random force landscape which itself is a Brownian = records with drift

$P(S) \sim S^{-3 / 2} \mathrm{e}^{-S / S_{m}}$

Avalanche observables

velocity u

avalanche size S = area under curve

The ABBM model

B. Alessandro, C. Beatrice, G. Bertotti and A. Montorsi, J. Applied Phys. 68 (1990) 2901; ibid, 2908 A particle subjected to force which is a random walk:
$\partial_{t} \dot{u}(t)=m^{2}[v-\dot{u}(x, t)]+\partial_{t} F(u(t)) \quad\left\langle\left[F(u)-F\left(u^{\prime}\right)\right]^{2}\right\rangle=\left|u-u^{\prime}\right|$
$\partial_{t} F(u(t))=\sqrt{\dot{u}(t)} \xi(t), \quad\left\langle\xi(t) \xi\left(t^{\prime}\right)\right\rangle=\delta\left(t-t^{\prime}\right)$
The Brownian force model (BFM) PLD+KW
$\partial_{t} \dot{u}(x, t)=\nabla^{2} \dot{u}(x, t)+m^{2}[v-\dot{u}(x, t)]+\partial_{t} F(u(x, t), x)$
$\partial_{t} F(u(x, t), x)=\sqrt{\dot{u}(x, t)} \xi(x, t) \quad\left\langle\xi(x, t) \boldsymbol{\xi}\left(x^{\prime} t^{\prime}\right)\right\rangle=\delta^{d}\left(x-x^{\prime}\right) \boldsymbol{\delta}\left(t-t^{\prime}\right)$
Short-ranged rough disorder A. Dobrinevski, PLD+KW

$$
\partial_{t} F(u(x, t), x)=-\gamma \dot{u}(x, t) F(u(x, t), x)+\sqrt{\dot{u}(x, t)} \xi(x, t)
$$

$\overline{F(u, x) F\left(u^{\prime}, x^{\prime}\right)}=\delta^{d}\left(x-x^{\prime}\right) \frac{\mathrm{e}^{-\gamma\left|u-u^{\prime}\right|}}{2 \gamma}$
disorder correlator in steady state

The ABBM model

B. Alessandro, C. Beatrice, G. Bertotti and A. Montorsi, J. Applied Phys. 68 (1990) 2901; ibid, 2908 A particle subjected to force which is a random walk:

$$
\partial_{t} \dot{u}(t)=m^{2}[v-\dot{u}(x, t)]+\partial_{t} F(u(t)) \quad\left\langle\left[F(u)-F\left(u^{\prime}\right)\right]^{2}\right\rangle=\left|u-u^{\prime}\right|
$$

$$
\partial_{t} F(u(t))=\sqrt{\dot{u}(t)} \xi(t), \quad\left\langle\xi(t) \xi\left(t^{\prime}\right)\right\rangle=\delta\left(t-t^{\prime}\right)
$$

MF = model for 1 degree of freedom = ABBM Key Results

size and duration distributions
$\mathscr{P}(S) \simeq S^{-3 / 2} \mathrm{e}^{-\frac{S}{4 S_{m}}}$
$\mathscr{P}(T) \simeq 1 / \sinh ^{2}\left(\frac{T}{2 T_{m}}\right) \sim T^{-2}$
steady state velocity distribution
$\mathscr{P}(\dot{u}) \simeq \dot{u}^{\nu-1} \mathrm{e}^{-\dot{u} / \dot{u}_{m}}$
shape at fixed duration T (small durations):

$$
\langle\dot{u}(t)\rangle_{T}=t(1-t / T)
$$

shape at fixed size S (any size) $\langle\dot{u}(t)\rangle_{S}=\sqrt{S} \mathrm{e}^{-t^{2} / S}$
$\partial_{t} F(u(x, t), x)=\sqrt{\dot{u}(x, t)} \xi(x, t)$,
$\left\langle\xi(x, t) \xi\left(x^{\prime} t^{\prime}\right)\right\rangle=\delta^{d}\left(x-x^{\prime}\right) \boldsymbol{\delta}\left(t-t^{\prime}\right)$
(space dependent) field theory formulation for dynamics

THEOREM I

the zero mode of the field theory is the same random process as ABBM

THEOREM 2

The field theory of this process = sum of all tree diagrams

Short-ranged rough disorder

$$
\partial_{t} \dot{u}(x, t)=\nabla^{2} \dot{u}(x, t)+m^{2}[v-\dot{u}(x, t)]+\partial_{t} F(u(x, t), x)
$$

force is an Ornstein-Uhlenbeck process

$$
\partial_{t} F(u(x, t), x)=-\gamma \dot{u}(x, t) F(u(x, t), x)+\sqrt{\dot{u}(x, t)} \xi(x, t)
$$

$$
\left\langle\xi(x, t) \xi\left(x^{\prime} t^{\prime}\right)\right\rangle=\delta^{d}\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right)
$$

equivalent to (we use $\dot{u}(x, t) \geq 0$)
$\partial_{u} F(u, x)=-\gamma F(u, x)+\tilde{\xi}(u, x)$
$\left\langle\tilde{\xi}(u, x) \tilde{\xi}\left(u^{\prime}, x^{\prime}\right)\right\rangle=\delta\left(u-u^{\prime}\right) \delta\left(x-x^{\prime}\right)$
disorder correlator in steady state is short-ranged
$\overline{F(u, x) F\left(u^{\prime}, x^{\prime}\right)}=\delta^{d}\left(x-x^{\prime}\right) \frac{\mathrm{e}^{-\gamma\left|u-u^{\prime}\right|}}{2 \gamma}$

A tiny little bit of field theory...

Langevin equation

$$
\eta \partial_{t} u(x, t)=\nabla^{2} u(x, t)+m^{2}[w-u(x, t)]+F(x, u(x, t))
$$

this is now a theory of the velocity, not of the position:

$$
\begin{aligned}
S= & \int_{x, t} \tilde{u}(x, t)\left[\eta \partial_{t} \dot{u}(x, t)-\nabla^{2} \dot{u}(x, t)+m^{2}(\dot{w}-\dot{u}(x, t))\right]-\lambda(x, t) \dot{u}(x, t) \\
& -\int_{x, t, t^{\prime}} \tilde{u}(x, t) \tilde{u}\left(x, t^{\prime}\right) \partial_{t} \partial_{t^{\prime}} \Delta\left(u(x, t)-u\left(x, t^{\prime}\right)\right)
\end{aligned}
$$

Disorder Vertex:

$$
\begin{aligned}
& \partial_{t} \partial_{t^{\prime}} \Delta\left(v\left(t-t^{\prime}\right)+u_{x t}-u_{x t^{\prime}}\right) \\
& =\left(v+\dot{u}_{x t}\right) \partial_{t^{\prime}} \Delta^{\prime}\left(v\left(t-t^{\prime}\right)+u_{x t}-u_{x t^{\prime}}\right) \\
& =\left(v+\dot{u}_{x t}\right) \Delta^{\prime}\left(0^{+}\right) \partial_{t^{\prime}} \operatorname{sgn}\left(t-t^{\prime}\right)+\ldots
\end{aligned}
$$

simplifies to

$$
S_{\mathrm{dis}}^{\text {tree }}=\Delta^{\prime}\left(0^{+}\right) \int_{x t} \tilde{u}_{x t} \tilde{u}_{x t}\left(v+\dot{u}_{x t}\right)
$$

simple local cubic theory = Brownian Force model (BFM)

Avalanche Instanton

Since the action is linear in $\dot{u}(x, t)$, the instanton equation $\frac{\delta \mathscr{S}[\dot{u}, \tilde{u}]}{\dot{u}(x, t)}=0 \quad$ is exact:
$\left(\partial_{t}-m^{2}+\nabla^{2}\right) \tilde{u}(x, t)+\left|\Delta^{\prime}\left(0^{+}\right)\right| \tilde{u}(x, t)^{2}=-\lambda(x, t)$
For $\lambda(x, t)=\boldsymbol{\lambda} \boldsymbol{\delta}(t)$ and setting $m^{2}=\left|\Delta^{\prime}\left(0^{+}\right)\right|=1$:
$\left(\partial_{t}-1\right) \tilde{u}_{t}+\tilde{u}_{t}^{2}=-\lambda \delta(t)$
Solution $\quad \tilde{u}_{t}=\frac{\lambda}{\lambda+(1-\lambda) e^{-t}} \theta(-t)$

$$
\begin{array}{r}
Z_{\text {tree }}(\lambda)=\left.\left\langle\mathrm{e}^{\lambda \dot{u}(t)}-1\right\rangle\right|_{t=0}=\int_{t<0} \tilde{u}_{t}=-\ln (1-\lambda) \\
\mathscr{P}_{\text {tree }}(\dot{\mathrm{MF}})=\frac{\mathrm{e}^{-\dot{u}}}{\dot{u}} \quad=\mathrm{ABBN} \\
\text { for } \mathrm{COI}
\end{array}
$$

higher-point functions also possible.

Scaling laws

suppose that there is a small-m limit of response to kick

$$
\lim _{m \rightarrow 0} \frac{\delta u(x, t)}{\delta f}=\text { finite } \Leftrightarrow \tilde{u}(x, t) \text { unrenormalized }
$$

This implies a plethora of scaling laws:

	$\mathscr{P}(S)$	$\mathscr{P}\left(S_{\phi}\right)$	$\mathscr{P}(T)$	$\mathscr{P}(\dot{u})$	$\mathscr{P}\left(\dot{u}_{\phi}\right)$
	$S^{-\tau}$	$S_{\phi}^{-\tau_{\phi}}$	$T^{-\alpha}$	$\dot{u}^{-\mathrm{a}}$	$\dot{u}_{\phi}^{-a_{\phi}}$
SR	$\tau=2-\frac{2}{d+\zeta}$	$\tau_{\phi}=2-\frac{2}{d_{\phi}+\zeta}$	$\alpha=1+\frac{d-2+\zeta}{z}$	$\mathrm{a}=2-\frac{2}{d+\zeta-z}$	$\mathrm{a}_{\phi}=2-\frac{2}{d_{\phi}+\zeta-z}$
LR	$\tau=2-\frac{1}{d+\zeta}$	$\tau_{\phi}=2-\frac{1}{d_{\phi}+\zeta}$	$\alpha=1+\frac{d-1+\zeta}{z}$	$\mathrm{a}=2-\frac{1}{d+\zeta-z}$	$\mathrm{a}_{\phi}=2-\frac{1}{d_{\phi}+\zeta-z}$

	d	ζ	z	τ	τ_{ϕ}	α	a	γ
	1	1.25	1.433	1.11	0.4	1.17	-0.45	1.57
SR	2	0.75	1.56	1.27	-0.67	1.48	0.32	1.76
	3	0.35	1.75	1.40	-3.71	1.77	0.75	1.91
LR	1	0.39	0.77	1.28	-0.56	1.51	0.39	1.81

$$
\begin{aligned}
& S \sim_{S \ll 1} T^{\gamma} \\
& \gamma=\frac{d+\zeta}{z}
\end{aligned}
$$

Preliminary data by Alejandro Kolton

Shape at fixed duration

$\left\langle\dot{u}\left(x=\frac{t}{T}\right)\right\rangle=\mathcal{N}[T x(1-x)]^{1+\frac{2 \alpha}{d_{c}}} \exp \left(\frac{8 \alpha}{d_{c}}\left[\operatorname{Li}_{2}(1-x)-\operatorname{Li}_{2}\left(\frac{1-x}{2}\right)+\frac{x \log (2 x)}{x-1}+\frac{(x+1) \log (x+1)}{2(1-x)}\right]\right)$
$\langle\dot{u}(x)\rangle \simeq[T x(1-x)]^{\gamma-1} \exp \left(\mathcal{A}\left[\frac{1}{2}-x\right]\right) \quad \mathcal{A} \approx-0.336\left(1-\frac{d}{d_{c}}\right)$

The shape at fixed duration data by Lasse Laurson

$\dot{u}-\dot{u}_{\mathrm{MF}}$
$\begin{array}{ll}0.20 & =d=10 \\ 0.15 & =0\end{array}$

The shape at fixed duration ${ }_{0.2}^{\mathcal{F}}$ data by Lasse Laurson
$\dot{u}-\dot{u}_{\mathrm{MF}}$

The shape at fixed duration
FeSiB 500 nm

fracture: S. Santucci
data: G. Durin,
F. Bohn \longrightarrow Barkhausen
results

Shape at fixed (small) size

$$
\dot{u}(t, S)=S\left(\frac{S}{S_{m}}\right)^{-\frac{1}{\gamma}} f\left(\frac{t}{\tau_{m}} /\left(\frac{S}{S_{m}}\right)^{\frac{1}{\gamma}}\right)
$$

The shape at fixed size

data (Lasse) $=$ solid
theory $=$ dashed

Relation to Manna sandpiles

Manna sandpile rule: If 2 or more grains are on a site, topple them to randomly chosen neighbours.

2 grains can end up on same site.
activity

The CDP field theory

$$
\partial_{t} \rho(x, t)=[n(x, t)-1] \rho(x, t)-\rho(x, t)^{2}
$$

number of grains
"dissipation"

$$
\begin{aligned}
& \partial_{t} n(x, t)=\left(\nabla^{2}-m^{2}\right) \rho(x, t) \\
& \left\langle\xi(x, t) \xi\left(x^{\prime}, t^{\prime}\right)\right\rangle=\delta^{d}\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right)
\end{aligned}
$$

activity The CDP field theory arXiv:I4IO.I930

$$
\partial_{t} \rho(x, t)=[n(x, t)-1] \rho(x, t)-\rho(x, t)^{2}
$$

number of grains

$$
+\nabla^{2} \rho(x, t)+\sqrt{\rho(x, t)} \xi(x, t)
$$

$$
\partial_{t} n(x, t)=\left(\nabla^{2}-m^{2}\right) \rho(x, t)
$$

$$
\left\langle\xi(x, t) \xi\left(x^{\prime}, t^{\prime}\right)\right\rangle=\delta^{d}\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right)
$$

Change of variables to random manifold:

$$
\dot{u}(x, t):=\rho(x, t), \quad F(x, t)=\rho(x, t)-n(x, t)+1
$$

leads to

$$
\begin{aligned}
& \partial_{t} \dot{u}(x, t)=\left(\nabla^{2}-m^{2}\right) \dot{u}(x, t)+\partial_{t} F(x, t) \\
& \partial_{t} F(x, t)=-F(x, t) \dot{u}(x, t)+\sqrt{\dot{u}(x, t)} \xi(x, t)
\end{aligned}
$$

an interface in a short-range correlated disorder!

Some references for our work on Avalanches

[1] P. Le Doussal and K.J. Wiese, Driven particle in a random landscape: disorder correlator, avalanche distribution and extreme value statistics of records, Phys. Rev. E 79 (2009) 051105, arXiv:0808.3217.
[2] P. Le Doussal and K.J. Wiese, Size distributions of shocks and static avalanches from the functional renormalization group, Phys. Rev. E 79 (2009) 051106, arXiv:0812.1893.
[3] P. Le Doussal, K.J. Wiese, S. Moulinet and E. Rolley, Height fluctuations of a contact line: A direct measurement of the renormalized disorder correlator, EPL 87 (2009) 56001, arXiv:0904.1123.
[4] P. Le Doussal, A.A. Middleton and K.J. Wiese, Statistics of static avalanches in a random pinning landscape, Phys. Rev. E 79 (2009) 050101 (R), arXiv:0803.1142.
[5] A. Rosso, P. Le Doussal and K.J. Wiese, Avalanche-size distribution at the depinning transition: A numerical test of the theory, Phys. Rev. B 80 (2009) 144204, arXiv:0904.1123.
[6] P. Le Doussal and K.J. Wiese, Elasticity of a contact-line and avalanche-size distribution at depinning, Phys. Rev. E 82 (2010) 011108, arXiv:0908.4001.
[7] P. Le Doussal, M. Mueller and K.J. Wiese, Equilibrium avalanches in spin glasses, Phys. Rev. B 85 (2011) 214402, arXiv:1110.2011.
[8] P. Le Doussal and K.J. Wiese, First-principle derivation of static avalanche-size distribution, Phys. Rev. E 85 (2011) 061102, arXiv:1111.3172.
[9] A. Dobrinevski, P. Le Doussal and K.J. Wiese, Non-stationary dynamics of the Alessandro- Beatrice-Bertotti-Montorsi model, Phys. Rev. E 85 (2012) 031105, arXiv:1112.6307.
[10] P. Le Doussal and K.J. Wiese, Distribution of velocities in an avalanche, EPL 97 (2012) 46004, arXiv:1104.2629. [11] P. Le Doussal, A. Petkovic' and K.J. Wiese, Distribution of velocities and acceleration for a particle in Brownian correlated disorder: Inertial case, Phys. Rev. E 85 (2012) 061116, arXiv:1204.6221.
[12] A. Dobrinevski, P. Le Doussal and K.J. Wiese, Statistics of avalanches with relaxation and Barkhausen noise: A solvable model, Phys. Rev. E 88 (2013) 032106, arXiv:1304.7219.
[13] P. Le Doussal and K.J. Wiese, Avalanche dynamics of elastic interfaces, Phys. Rev. E 88 (2013) 022106, arXiv: 1302.4316.
[14] A. Dobrinevski, P. Le Doussal and K.J. Wiese, Avalanche shape and exponents beyond mean-field theory, arXiv: 1407.7353 (2014).
[15] P. Le Doussal and K.J. Wiese, An exact mapping of the stochastic field theory for manna sandpiles to interfaces in random media, arXiv:1410.1930 (2014).
[16] A.Dobrinevski,Field theory of disordered systems-avalanches of an elastic interface in a random medium, arXiv: 1312.7156 (2013).

Conclusions

-ABBM model = MF model for avalanches

- Brownian force model (BFM) = field theory
-zero-mode of BFM equivalent to ABBM = MF
-field theory can be constructed in an expansion around the
upper critical dimension
-non-trivial scaling relations and functions in all dimensions
- Manna sandpile = CDP = disordered elastic manifolds
-many theoretical results in search for high-precision
experiments

