Jamming shapes up: geometry and energy landscape near the jamming transition

Eric Corwin

Peter Morse
University of Oregon
Department of Physics

Granular Materials: Chunks are Different

The Jamming Transition

Maxwell's Criterion!

Given: No particles can move

- Must constrain:
 - up/down
 - left/right
 - forward/back

Must be 2d=6 constraints/particle

Geometry über alles: order parameters defined for all ф

Red lines = Neighbor Link
Blue lines = Contact (and Neighbor) Link

Mechanical order parameters defined only above φ₁

Simulated Frictionless Spheres

- Vary dimension
- Vary packing fraction φ
- Periodic boundary conditions
- Infinite temperature quench down to T = 0
- Find local energy minimum (inherent structure) using Conjugate Gradient Minimization or FIRE on GPU cluster
- BIG (up to 2¹⁷ particles)

Voronoi Cell

- Defined by all space closest to a given sphere
- Look at any geometric quantity
 - Number of Sides
 - Maximum Inscribed Sphere
 - Surface Area
 - Volume
 - Aspect Ratio
 - Moment of Inertia
- Look at how these change as function of φ

Number of Neighbors: d_{UCD} ≥ 3

P. K. Morse, E. I. Corwin, Geometric Signatures of Jamming in the Mechanical Vacuum, PRL (2014)

But What About Mechanics?

- Mechanical jamming has d_{UCD} ≤ 2
- Either same underlying physics or two different phase transitions at same point

Universal Behavior Below Jamming

Maximum Inscribed Sphere

• Below Jamming: Insphere larger than physical sphere, M = d+1

• At Jamming: Insphere exactly equal to physical sphere $\langle M \rangle = 2d$

• Above Jamming: Insphere smaller than physical sphere M = d+1

Insphere Distribution

Width of Insphere Distribution

Another transition below jamming?

Toward Renormalization

- We don't have a field theory: reverse engineer one!
- On high renormalization step, order parameter χ (any of the previous metrics) should (?) become a step
- Finite Size Effects will smooth out the step function

Renormalization Scheme

 Goal: Build larger structures that preserve underlying relationships to collapse phase space

• Scheme:

- Pair Voronoi cells with neighbors that share highest surface area
- Calculate quantities for new cell
- Repeat

Aspect Ratio / Eccentricity Definition

- "Trash compactor" aspect ratio
- Define: $k = \frac{d_{\text{long}}}{d_{\text{short}}} 1$
 - If concave, take the convex hull first
 - k = 0 when spherical

All show signatures of jamming!

Renormalization

Surface Area (renorm)

- Master curve has perfect memory
- Still contains signature of jamming at high steps

Aspect Ratio (renorm)

- Asymptotically approaching a step function
- Gives a base line for determining scaling near the transition

Aspect Ratio: Finite Size

- Finite size effects round out corners
- Increase size, doesn't become more step-like
- Look at high iteration (9th step) of renormalization:

Energy Landscape

- Problem: Can't map ultra-high dimensional phase space
- Solution: Random transects
- Minimize system at fixed φ then
 - Pick random direction
 - Calc Energy as a function of distance δ
 - Repeat and average over many directions (~100)
- Results independent of system dimension!

Harmonic Contact Pot, D=4, N=8192

Subtract Starting Energy

Two Different Harmonic Regimes!

Dimension Independent

Crossover distance Linear in Δφ

Two Regimes: Linear, Pot. Dependent

Conclusions

- All geometric signatures we've shown contain the phase transition
- Surface Area keeps a memory of underlying packing upon renormalization
- Aspect Ratio is a good renormalizable order parameter, can look at scaling and finite size effects
- Universal behavior in energy landscape
- Transition from linear to potential-dependent

