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Granular Materials: Chunks are Ditferent

* Neither solid nor liquid nor gas

e Athermal state of matter



The Jamming Transition
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Maxwell’s Criterion!

Given: No particles can move

* Must constrain:
e up/down
o left/right
* forward/back




Geometry Uber alles: order
parameters defined for all ¢

Increasing ¢ =——p b,

Red lines = Neighbor Link
Blue lines = Contact (and Neighbor) Link

Mechanical order parameters defined only above ¢,



Simulated Frictionless Spheres

* Vary dimension
* Vary packing fraction ¢
* Periodic boundary conditions

* Infinite temperature quench
downtoT=0

* Find local energy minimum
(inherent structure) using
Conjugate Gradient
Minimization or FIRE on GPU
cluster

* BIG (up to 2!/ particles)




Voronoi Cell

* Defined by all space closest to a given sphere
* Look at any geometric quantity
* Number of Sides
* Maximum Inscribed Sphere
e Surface Area

* Volume

* Aspect Ratio

* Moment of Inertia
* Look at how these change as function of ¢



Number of Neighbors: dj.p = 3
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But What About Mechanics?

* Mechanical jamming has dp < 2

* Either same underlying physics or two different
phase transitions at same point
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Universal Behavior Below Jamming

Varied Polydispersity Varied Potential
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Maximum Inscribed Sphere

b - * Below Jamming: Insphere larger
+ ® ) than physical sphere, M =d+1

e At Jamming: Insphere exactly equal
to physical sphere <M> = 2d

* Above Jamming: Insphere smaller
than physical sphere M = d+1




Insphere Distribution
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Width of Insphere Distribution
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Another transition below jamming?
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Toward Renormalization

 We don’t have a field theory: reverse engineer one!

* On high renormalization step, order parameter x
(any of the previous metrics) should (?) become a
step

* Finite Size Effects will smooth out the step function
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Renormalization Scheme

e Goal: Build larger structures that preserve
underlying relationships to collapse phase space

e Scheme:

* Pair Voronoi cells with
neighbors that share
highest surface area

e Calculate quantities for
new cell

* Repeat




Aspect Ratio / Eccentricity Definition

* “Trash compactor” aspect ratio
* Define:

L — dlong 1

dshort
* |If concave, take the

convex hull first

* k =0 when spherical




All show signatures of jamming!
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Renormalization

Scaled Mean Neighbors Std(Volume)
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Surface Area (renorm)
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* Master curve has perfect memory
* Still contains signature of jamming at high steps



Aspect Ratio (renorm)
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Asymptotically approaching a step function

Gives a base line for determining scaling near the
transition



Aspect Ratio: Finite Size

* Finite size effects round out corners
* Increase size, doesn’t become more step-like
* Look at high iteration (9t step) of renormalization:
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Energy Landscape

* Problem: Can’t map ultra-high dimensional phase
space

e Solution: Random transects

* Minimize system at fixed ¢ then
* Pick random direction
* Calc Energy as a function of distance 6
* Repeat and average over many directions (~100)

* Results independent of system dimension!






Harmonic Contact Pot, D=4, N=8192
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Subtract Starting Energy







Dimension Independent
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Crossover distance Linear in A
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Two Regimes: Linear, Pot. Dependent




Conclusions

* All geometric signatures we’ve shown contain the
phase transition

* Surface Area keeps a memory of underlying packing
upon renormalization

* Aspect Ratio is a good renormalizable order
parameter, can look at scaling and finite size effects

* Universal behavior in energy landscape
* Transition from linear to potential-dependent
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