Laboratory Scale Model of an Earthquake Fault Drew Geller, Karin Dahmen (UIUC), Scott Backhaus and Robert Ecke Los Alamos National Laboratory

Earthquakes are complex and impactful -Generic stick-slip motion vs real earthquakes?

Burridge-Knopoff Model

SPRING-SLIDER BLOCK MODEL

FIXED PLATE

FIGURE 7

Behringer - Duke

Daniels - NC State

Granular Stick-Slip Motion

Granite Blocks w/ Glass Granular - Marone PSU

Block on Block Friction Fineberg - Hewbrew U.

Fault zones contain gouge, a granular material

ref: http://crust.geol.vt.edu/asayed/research/Gouge.htm

Outline

- Built an experimental "Lab Quake" apparatus with granular "fault gouge" and elastic "tectonic plates".
- Measurements of plate strain (ball bearing motion) and stress (photoelastic response).
- Global Response: Moment Distributions and Recurrence Time
- Granular Response: Corresponding granular motion for events

Geller, Dahmen, Backhaus, RE arXiv

Experimental Apparatus

E_{plate} ~ 2.5 MPa E_{grain} ~ I GPa (hard sphere gas)

Photoelastic field

Plate Dynamics F_N=80 N

Shear Rate: 4 µm/sec

1600

F_N=200 N

HARRING BARRING

Shear Rate: 4 µm/sec

Macroscopic Stress Field

202 unknown experimental F_N and F_T

Model Fit

Experiment

Maximize image cross correlation over 202 synthetic F_N and F_T

Detailed Interfacial Displacements

Time

Temporal Structure - 3 locations: L/4, L/2, 3L/4

Spatio-Temporal Structure - "Large" and "small" events; small events are spatially distributed

Moment Distribution

Event Spatial Distribution

Spatial Distribution of Events

Spatial Distribution of Events

Moment per Number Moved N_k

Moment Distribution - Separated

Fractional Slip

Moment Distribution

 $P(M) \sim M^{-1.5}$ for small M (mean-field result).

Enhanced probability for large, systemspanning events at higher F_N - Log-Normal distribution (?)

How about temporal recurrence?

Recurrence Time Statistics

Non-Brittle: Poisson distributed

Brittle: Broad Distribution

What is happening in the granular material?

$F_N = 40 N$

x 60000

F_N=200 N

x 60000

Characteristic Brittle Event

Local Grain Displacements

Mean Lateral Displacements

Total spatial RMS displacements

Where ever you look - it's the same

Summary

 "Lab Quake" apparatus with granular "fault gouge" and "tectonic plates".

- M^{-3/2} distribution for non-brittle events and Log-Normal distribution for brittle events.
- NB events Poisson distributed; Brittle events have a characteristic repeat period.
- Friction? Scaling? Size? Fracture? -Earthquakes?