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Earthquakes versus Specimens of Materials

» |n talks before, condensed matter physicists worked on
mostly engineering problems related to properties of
granular and glassy materials.

 |n most cases statistical distributions of avalanches
exhibited dual properties: for small scales the system self-
organizes to produce a scale-invariant distribution.
However, for large scales, comparable to the system size,
“characteristic” size events dominate the distribution.

 For earthquakes, the Earth is significantly bigger than the
size of the largest earthquakes, so one should expect power-
law distributions for all earthquake properties.



MOTIVATION

 [T]he ultimate test of every scientific
theory worthy of its name, is its ability to
predict the behavior of a system governed

by the laws of said discipline (Ben-

Menahem, 1995, p. 1217).

 The most fundamental characteristic of
any scientific method Is the falsifiability

of its hypotheses and ability to moc

Ify a

model depending of test results (Po
1980).

nper,



Outline of the Talk

Statistical analysis of earthquake occurrence —
earthquake numbers, spatial scaling, size, time,
space, and focal mechanism orientation statistical
distributions.

Comparison of earthquake size distribution and
crystal plasticity results.

Current global earthquake rate and focal mechanism
forecasts and their retrospective and prospective
testing.

Friction and earthquake occurrence.
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World seismicity: 1976 — 2012
(Global Centroid Moment Tensor Catalog)
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Earthquake Phenomenology

Modern earthquake catalogs include origin
time, hypocenter location, and second-rank
seismic moment tensor for each earthquake.
The DC tensor Is symmetric, traceless, with
zero determinant; hence it has only four
degrees of freedom -- one for the norm of the
tensor and three for the 3-D orientation of the
earthquake focal mechanism. An earthguake
occurrence Is considered to be a stochastic,
tensor-valued, multidimensional, point process.



Statistical studies of earthquake catalogs

-- time, size, space, focal mechanism

 Catalogs are a major source of information on
earthquake occurrence.

« Since late 19th century certain statistical
features have been established: Omori (1894)
studied temporal distribution; Gutenberg &
Richter (1941; 1944) -- size distribution.

 Quantitative investigations of spatial patterns
started later (Kagan & Knopoff, 1980).

 Focal mechanism investigations (Kagan, 1982;
1991; 2009; 2012), Kagan & Jackson, 2014-5.



Earthquake number distribution, PDE global Catalog, 19269-2007, m = 5.0+, 1 year intervals
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CCB: Continental Convergent Boundaries (excluding orogens) of PB2002
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B-values, with 95%-confidence limits:

SETTING

Continental Convergent Boundaries
Continental Transform Faults
Continental Rift Boundaries
Oceanic Spreading Ridges-normal
Oceanic Transform Faults-slow
Oceanic Transform Faults-medium
Oceanic Transform Faults-fast
Oceanic Convergent Boundaries
Subduction Zones

Plate Interiors

common values: 0.61-0.66
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Corner Magnitudes by Plate-Tectonic Setting
(shown with spheres whose volumes are proportional to corner moment)

Sources: Plate model PB2002 from Bird [2003: G7]:
Corner moments & magnitudes from Bird & Kagan [2004; BSSA|.




Gutenberg-Richter Law

 For the last 20 years a paper has been published every
10 days which substantially analyses b-values.

« Theoretical analysis of earthquake occurrence (Vere-
Jones, 1976, 1977) suggests that, given its branching
nature, the exponent B of earthquake size distribution
should be identical to 1/2. The same values of power-
law exponents are derived for percolation and self-
organized criticality (SOC) processes Iin a high-
dimensional space (Kagan, 1991, p. 132).

» The best measurements of beta-value yields 0.63
(Kagan, 2002; Bird and Kagan, 2004), i.e. about 25%
higher than 0.5.




Gutenberg-Richter Law (cont.)

» \We consider possible systematic and random errors in
determining earthquake size, especially its seismic
moment. These effects increase the estimate of the
parameter [3 of the power-law distribution of
earthquake sizes.

« Magnitude errors increase beta-value by 1-3%
(Kagan, 2000, 2002, 2003); aftershocks increase it
by 10-15%; focal mechanism incoherence by 2-7%.
The centroid depth distribution should also influence
the B-value by increasing it by 2-6%.

» Therefore, we conjecture that beta- (or b-) value
variations are property of catalogs not of earthquakes.



Crystal Plasticity

Recent experimental and theoretical
Investigations have demonstrated that crystal
plasticity Is characterized by large intrinsic
spatiotemporal fluctuations with scale
Invariant characteristics similar to
Gutenberg-Richter law. In other words,
deformation proceeds through intermittent
bursts (micro-earthquakes) with power-law
size distributions (Zaiser, 2006).



Scale invariance in plastic flow of erysialline solids
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Fig. 3. Saling wllapse of 10
avalanche size distributions.
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Earthquake Size Distribution
CONJECTURE:

If the hypothesis that the power-law
exponent Is a

and the corner moment IS
IS correct, then it would provide a new
theoretical approach to features of
earthquake occurrence and account for
the transition from brittle to plastic
deformation (Kagan, TECTO, 2010).



Omori’s Law (short-term time dependence)

1. Most often measured value of P iIs around 1.0.

If the branching property of earthquake occurrence
IS taken into account, the P-value would increase
from ~1.0 to ~1.5 (Kagan and Knopoff, 1981).

2. P=1.5 Is suggested by the Inverse Gaussian
distribution (Brownian Passage Time) or at the short
time intervals by the Levy distribution.
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Figure 1. Time interval distributions. The probability densities for equations (1) and (4) are displayed for
various values of the dimensionless random £ and external stress n fields. Time is measured in arbitrary
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Cumulative number of pairs
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Subduction zones (Kagan, GJI, 2011)
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Spatial Distribution of Earthquakes

» \WWe measure distances between earthquake
pairs. The distribution of distances turns out to
be fractal, i.e., power-law with the value of the
fractal correlation dimension of 2.25 for
shallow seismicity (Kagan, 2007).

» The power-law exponent depends on catalog
length, location errors, depth distribution of
earthquakes. All this makes statistical analysis
difficult.
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Focal Mechanisms Distribution

 Rotation between pairs of focal mechanisms
could be evaluated using quaternion algebra:
3-D rotation is equivalent to multiplication of
normalized quaternions (Kagan, 1991).

 Because of focal mechanism orthorhombic
symmetry four rotations of less than 180
degrees exist. We usually select the minimal
rotation (Kagan, 2011).

» Distribution of rotation angles is well
approximated by the rotational Cauchy law
(Zolotarev, 1986 result for stress pattern).
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Statistical Analysis
Conclusions

» The major theoretical challenge in describing earthquake
occurrence Is to create scale-invariant models of
stochastic processes, and to describe
geometrical/topological and group-theoretical properties
of stochastic fractal tensor-valued fields (stress/strain,
earthquake focal mechanisms).

* |t needs to be done in order to connect phenomenological
statistical results to theoretical models and to attempt
earthquake occurrence modeling with a non-linear theory
appropriate for large deformations.

» The statistical results can also be used to evaluate seismic
hazard and to reprocess earthquake catalog data in order
to decrease their uncertainties.



Earthquake Rate Forecasting

* The fractal dimension of earthquake process Is
lower than the embedding dimension: Space —
2.21n 3D, Time—-0.51n 1D.

 This allows us to forecast rate of earthquake
occurrence — specify regions of high
probability and use temporal clustering for
short-term forecast -- evaluating possibility of
new event.

» Long-term forecast: spatial smoothing kernel
IS optimized by using first temporal part of a
catalog to forecast its second part.



RESEARCH LETTERS
Volume 70, Number 4 July/August 1999

Forecast January 1, 1997, Earthquakes 1997-1998
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Log,, probability of earthquake occurrence, M,, > 5.8, eq/year*(100km)*

SEISMOLOGICAL SOCIETY OF AMERICA

Jackson, D. D., and
Y. Y. Kagan, 1999.
estable earthquake
forecasts for 1999,
Seism. Res. Lett., 70,
393-403.

Long-term forecast for
south-western Pacific
area, based on 1977-
1996 CMT catalog, and
subsequent (1997-98)
earthguakes.
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Global Short-term Forecast, PDE 1969-Today, full sphere, 0.1 deg

o o O Forecast:
-3 Short-term
earthquake
rate based on
PDE catalog
1969-present.
0.1x0.1

degree,
Magnitude

M>=5.0
(Kagan &

Jackson, 2012)
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Error diagram tau,
nu for global long-
term seismicity (M
> 5.0) forecast.
Solid black line --
the strategy of
random guess.
Solid thick red
diagonal line is a
curve for the
global forecast.
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STATISTICAL FOCAL
MECHANISM FORECAST

1. Focal mechanisms are necessary to calculate
seismograms due to forecasted events.

2. Forecast must be GLOBAL, i1.e. available
everywhere where earthquakes occur [Kagan &
Jackson (K&J), JGR, 1994].

3. Forecast uncertainty should be estimated
(K&J 1994).

4. Forecast skill should be evaluated by
prospective testing (K&J 2014, K&J 2015).



Kagan & Jackson, GJlI, 2000.

Table 1. Example of long- and short-term forecasts, 1999 February 11, north of the Plulppines.

Latitude Longtude Long-term forecast Short-term forecast
Probability Focal mechamsm Probability Probability
mz=358 T-axis P-axis Rowtion mz=38 ratio
eq/day*km” Pl Az Pl Az angle eq/day*km” time-dependent/
depree time-dependent independant
119.5 19.5 I 18E09 3l 208 10 04 648 1.T9E-14 5.62E-06
120.0 19.5 5.23E09 17 213 32 il4 68.8 L41E-10 2.71E02
120.5 19.5 4.28E-08 93 75 335 21.4 2 12E-07 5.0
121.0 19.5 3.02E-08 69 135 21 302 28.2 2HE-07 94
121.5 19.5 1.82E-08 ] 106 13 296 40.9 6. 14E-08 i4
122.0 19.5 T.R1E09 60 12 3 297 484 L13E-10 1. 45E-02
122.5 19.5 4. 15E09 81 228 4 113 51.8 1.OOE-12 241E04
123.0 19.5 J0IED9 T8 231 9 110 50.3 1. NE-16 2.56E-07
123.5 19.5 243E09 76 273 13 107 495 1.OSE-20 443E-12

Focal mechanism forecast is calculated by summing
seismic moment tensors in 1000 km distance area and

evaluating eigenvectors of the sum tensor. We
compare this source forecast with other mechanisms to
measure degree of uncertainty (\Phi_1).
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Earthquake Forecast Conclusions

» We present an earthquake forecast program
which quantitatively predicts both long- and
short-term earthquake probabilities.

» The program Is numerically and rigorously
testable both retrospectively and prospectively as
done by CSEP worldwide, as well as In
California, Italy, Japan, New Zealand, etc.

|t s ready to be implemented as a technological
solution for earthquake hazard forecasting and
early warning.



Seismicity Model -- Friction

This picture represent a

paradigm of the current
earthquake physics.

Originally, when Burridge

and Knopoff proposed this "
model Iin 1967, this was the

first mathematical treatment

of earthquake rupture, a very
Important development.



The Model must be Modernized.
Why?
 Earthquake fault in the model
Is a well-defined geometrical

object -- a planar surface with
dimension 2.

* In nature only earthquake
exists as a fractal

set. This set IS not a surface,
Its dimension IS about 2.2.



The Model must be Modernized. Why?

 Incompatibility problem is
circumvented because of flat
plate boundaries. Real
earthquake faults always
contain triple junctions;
further deformation is
Impossible without creating
new fractures and rotational
defects (disclinations).



Geometric incompatibility at fault junction. Corners Aand C
are either converging and would overlap or are diverging; this
Indicates that the movement cannot be realized without the
change of the fault geometry (Gabrielov, Keilis-Borok &
Jackson, 1996. P. Natl. Acad. Sci. USA, 93, 3838).



Kagan, Y. Y., 1982.
Earthquake fault models Stochastic model of
Friction earthquake fault
d=2.0 Time- geometry, Geophys.
reversible J. R. astr. Soc., 71,
659-691.
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