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Memory and boundary perturbations 
for disordered magnets
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How universal is complex behavior, comparing
disorder due to preparation or quenched?
out of equilibrium or optimal/equilibrated?



How universal is complex behavior, comparing
disorder due to preparation or quenched?
out of equilibrium or optimal/equilibrated?

• Memory: hysteresis upon bulk parameter changes?

• Large intermittent responses (avalanches)?

• Response to bulk perturbations (temperature, vibration)?

• Response to boundary perturbations (cracks, force chains)?

• “Landscapes”?



Memory under
quenched bulk perturbations



Aging, rejuvenation, memory

Multiple rejuvenation and memory effects in a spin glass
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Hierarchical models (REM, GREM, traps):
Bouchaud and Dean (1995)
Sasaki and Nemoto (2000) 
Sasaki et al, EPJ B 29, 469 (2002)

hierarchical organisation of the 
metastable states as a function of T
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« memory dips » experiments:
Uppsala / Saclay PRL 81, 3243 (1998)

more details and references in cond-mat/0603583

V. Dupuis, PhD Orsay (2002)



2D disordered Ising magnet
L⇥ L grid, sites i,

H(~s) = �P
ij Jijsisj

with si Ising spins, si = ±1.

Spin glass, perturbed gaussian distribution:

Jij = (Kij +� ·K 0
ij)(1 +�

2
)

�1/2
,

with Kij ,K 0
ij variance 1, mean 0, Gaussian,

tune perturbation strength �

Random bond, uniform distribution:

P (Jij) = 1, 0  Jij < 1

Tg(L = 1) = 0, but glassy chaotic regime

for T < L�1/⌫
.





Spins ", # shown with graph:

Long bonds are dual to bonds with cost Jij ,
separate opposite spins.

Short bonds have zero cost,

make optimal complete matching

(minimize total bond cost with all sites covered).



Algorithms exist to quickly find negative weight loops

) ground state!

Spins ", # shown with graph:

Long bonds are dual to bonds with cost Jij ,
separate opposite spins.

Short bonds have zero cost,

make optimal complete matching

(minimize total bond cost with all sites covered).
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T=0 Domain walls

A

A+A

(�E)2 ⇠ L2�,
where for Gaussian disorder

� ⇡ �0.22
and the domain wall has
fractal dimension

df ⇡ 1.27.

AL

si = ±1















Coarsening w/patches
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Black = A phase, white = A phase.
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Chaos
[Bray & Moore, PRL, 1987]

Sensitivity of equilibrium configuration to

• Temperature changes �T

• Random perturbations � in bonds

Apparent beyond some chaos scale ⇠c,
⇠c ⇠ (�T )�1/⇣ , ⇠c ⇠ �

�1/⇣ ,
for a chaos exponent ⇣.
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From Bray/Moore/Fisher/Huse chaos + droplet picture.

• Slow coarsening ) aging.

• When lower T , chaos ) rejuvenation.

• Higher T memory is not fully erased ) memory.

Chaos and aging, rejuvenation, memory
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Numerical memory
1. Begin with ground state si(1) for Jij .

2. Add disorder � to Jij , many patches at scale `(2).
Overlap q(2) = L�2

P
si(1)si(2).

3. Remove disorder, many patches at scale `(3).
Overlap q(3) = L�2

P
si(1)si(3).
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• Ongoing work: 
replicate for 
finite 
temperature

1. Begin with ground state si(1) for Jij .

2. Add disorder � to Jij , many patches at scale `(2).
Overlap q(2) = L�2

P
si(1)si(2).

3. Remove disorder, many patches at scale `(3).
Overlap q(3) = L�2

P
si(1)si(3).



Controllability by 
boundary conditions



Thermodynamic limit subtle 
in disordered matter

Convergence of correlation functions
hsisji as L ! 1

In a ferromagnet, have translation invariance, natural BCs.

How do you add to the boundary in a disordered material?
Di↵erent subsequences of sample growth ) di↵erent states?

[See D. Fisher, D. Huse, G. Parisi, C. Newman, D. Stein, and many others.]



Thermodynamic limit:
really want all BCs

to see convergence of 
correlation functions.



Thermodynamic limit:
really want all BCs

to see convergence of 
correlation functions.

How to check 24L boundary conditions?
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Decomposability for the RB magnet.
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Decomposability for the RB magnet.

Each domain

wall piece is

a global DW.

=
P



• For the RB magnet, examine all 2-ended DWs.

• Still a lot of paths: Naively something
like L3 log(L) computations.

• Use recent computer science algorithms
to get down to L2 log(L).

)Time to examine all 24L ground states scales as # of spins.
)106 samples of size 20482 in a day on SU OrangeGrid.



All crossing 
paths (domain 
walls) from a

midpoint, 
L=512



All domain 
wall paths, 

L=256



Scaling for density of 
controllable points?

(Compare ferromagnet, no disorder: density = 1)

Wandering of paths ⇠ L2/3.
(Huse, Henley, Fisher, Johansson)

)# of independent sources ⇠ L/L2/3.
)paths from same source �r ⇠ L2/3 at center.

)central linear density ⇠ L�1/3



All domain 
wall paths, 
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• New algorithm.

• Uniqueness of thermodynamic limit

• Window of size w, all BCs: L ⇠ w3.

• E.g., can reach a point by fracture by “smart paths”?
Hide something from BCs?

[Currently: correlated disorder ) vary scaling.]



Kac, Ward;
Kasteleyn;
Saul, Kardar;
Gallucio, Loebl, Vondrak;
D. Wilson, D. Randall;
Thomas, AAM

Exact sampling from Boltzmann distribution

physics.syr.edu/~aam/software

http://physics.syr.edu/~aam/software


• Memory (bulk perturbation)

– Spin glass control parameters:

⇤ Magnitude of distributed perturbation

⇤ Length scale of “equilibration” (optimization)

– How/where is memory stored? Multiscale for, e.g., colloidal?

• Controllability (boundary perturbation)

– Random bond magnet example

⇤ All boundary conditions [algorithm]

⇤ Scaling of controllable points

– Other disorders, models?


