Memory and boundary perturbations for disordered magnets

Alan Middleton, Syracuse University with Creighton Thomas, Sean Sweeney, Olivia White, David Huse

Complexity in mechanics: intermittency and collective phenomena ... KITP, October 24, 2014
[Including support from the National Science Foundation]

... is kind of like

... is kind of like ...

Tom Patker

... is kind of like ...

... but is kind of different.

Tom Patker

... is kind of like

... is kind of like ...

... is kind of like ...

... but is kind of different.

Behringer Group, Duke U.

... is kind of like

Behringer Group, Duke U.

... is kind of like ...

Behringer Group, Duke U.

$\bigcirc=\mathrm{Cu} \quad(=\operatorname{spin}-$ up Mn

... is kind of like ...

Behringer Group, Duke U.

$$
\bigcirc=\mathrm{Cu} \quad(=\operatorname{spin}-\text { up } \mathrm{Mn}
$$

... but is kind of different.

How universal is complex behavior, comparing disorder due to preparation or quenched? out of equilibrium or optimal/equilibrated?

How universal is complex behavior, comparing disorder due to preparation or quenched? out of equilibrium or optimal/equilibrated?

- Memory: hysteresis upon bulk parameter changes?
- Large intermittent responses (avalanches)?
- Response to bulk perturbations (temperature, vibration)?
- Response to boundary perturbations (cracks, force chains)?
- "Landscapes"?

Memory under quenched bulk perturbations

Aging, rejuvenation, memory

2D disordered Ising magnet

$L \times L$ grid, sites i,

$$
\mathcal{H}(\vec{s})=-\sum_{i j} J_{i j} s_{i} s_{j}
$$

with s_{i} Ising spins, $s_{i}= \pm 1$.

Spin glass, perturbed gaussian distribution:

$$
J_{i j}=\left(K_{i j}+\Delta \cdot K_{i j}^{\prime}\right)\left(1+\Delta^{2}\right)^{-1 / 2}
$$

with $K_{i j}, K_{i j}^{\prime}$ variance 1, mean 0 , Gaussian, tune perturbation strength Δ
Random bond, uniform distribution:

$$
P\left(J_{i j}\right)=1,0 \leq J_{i j}<1
$$

Spins \uparrow, \downarrow shown with graph:
Long bonds are dual to bonds with cost $J_{i j}$, separate opposite spins.
Short bonds have zero cost, make optimal complete matching (minimize total bond cost with all sites covered).

Spins \uparrow, \downarrow shown with graph:
Long bonds are dual to bonds with cost $J_{i j}$, separate opposite spins.
Short bonds have zero cost, make optimal complete matching (minimize total bond cost with all sites covered).

Algorithms exist to quickly find negative weight loops \Rightarrow ground state!

$T=0$ Domain walls

$T=0$ Domain walls

$T=0$ Domain walls

$T=0$ Domain walls

\bar{A}

$T=0$ Domain walls

$s_{i}= \pm 1$

$(\Delta E)^{2} \sim L^{2 \theta}$,
where for Gaussian disorder $\theta \approx-0.22$
and the domain wall has
fractal dimension
$d_{f} \approx 1.27$.

Patchwork dynamics example

$\uparrow \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow$
$\uparrow \uparrow \downarrow \downarrow \downarrow \downarrow \downarrow \uparrow$
$\downarrow \downarrow \uparrow \uparrow \downarrow \downarrow \downarrow \downarrow$ 个
$\uparrow \uparrow \downarrow \downarrow \downarrow \downarrow \uparrow \downarrow \uparrow$
$\uparrow \uparrow \downarrow \downarrow \uparrow \uparrow \downarrow \downarrow$
$\uparrow \downarrow \downarrow \downarrow \downarrow \downarrow \uparrow \downarrow \uparrow$
$\uparrow \uparrow \downarrow \uparrow \uparrow \downarrow \downarrow \downarrow$
$\uparrow \uparrow \downarrow \uparrow \downarrow \downarrow \downarrow \downarrow$

Patchwork dynamics example

	\uparrow	\downarrow	\uparrow	\downarrow	\uparrow	\uparrow	\uparrow

$\uparrow \uparrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \uparrow$

\downarrow	\downarrow	\uparrow	\uparrow	\downarrow	\downarrow	\downarrow	\uparrow
\uparrow	\uparrow	\downarrow	\downarrow	\downarrow	\uparrow	\downarrow	\uparrow

$\uparrow \uparrow \uparrow \begin{array}{llllll} & \uparrow & \downarrow & \uparrow & \uparrow & \downarrow \\ & & \downarrow\end{array}$
$\uparrow \quad \downarrow \quad \downarrow \quad \uparrow \quad \downarrow \quad \uparrow \quad \downarrow \uparrow$
$\uparrow \uparrow \uparrow \quad \downarrow \quad \uparrow \quad \uparrow \quad \downarrow \quad \uparrow \quad \downarrow$
$\uparrow \uparrow \downarrow \uparrow \downarrow \downarrow \downarrow \downarrow \uparrow$

Patchwork dynamics example

Patchwork dynamics example

	\downarrow	\uparrow	\downarrow	\uparrow	\uparrow	\uparrow	\uparrow

$\uparrow \uparrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \uparrow$

$\downarrow \quad \downarrow$| | \uparrow | \downarrow | \downarrow | \downarrow | \uparrow |
| :---: | :---: | :---: | :---: | :---: | :---: |

$\begin{array}{llllllll} & \uparrow & \uparrow & \downarrow & \downarrow & \uparrow & \uparrow & \downarrow \\ & & \downarrow\end{array}$
$\begin{array}{llllllll} & \uparrow & \downarrow & \downarrow & \uparrow & \downarrow & \uparrow & \downarrow\end{array} \uparrow$
$\begin{array}{llllllll} & \uparrow & \uparrow & \downarrow & \uparrow & \uparrow & \downarrow & \uparrow\end{array}$
$\uparrow \uparrow \downarrow \uparrow \downarrow \downarrow \downarrow \downarrow \uparrow$

Patchwork dynamics example

	\uparrow	\downarrow	\uparrow	\downarrow	\uparrow	\uparrow	\uparrow

$\uparrow \uparrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \uparrow$

$\begin{array}{llllllll}\uparrow & \uparrow & \uparrow & \uparrow & \downarrow & \uparrow & \downarrow & \uparrow\end{array}$
$\begin{array}{llllllll} & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \downarrow\end{array}$
$\uparrow \quad \downarrow \quad \downarrow \quad \uparrow \quad \downarrow \uparrow \downarrow \uparrow$
$\uparrow \quad \uparrow \quad \downarrow \quad \uparrow \quad \uparrow \quad \downarrow \uparrow \uparrow$
$\uparrow \uparrow \downarrow \uparrow \downarrow \downarrow \downarrow \downarrow$ \uparrow
$\uparrow \downarrow \downarrow \downarrow \downarrow$
$\downarrow \downarrow \downarrow$ 个 $\quad \downarrow \downarrow$
$\uparrow ~ \uparrow ~ \uparrow ~ \downarrow ~ \downarrow ~ \uparrow ~$
$\begin{array}{lllll} & \uparrow & \uparrow & \uparrow & \uparrow \\ \end{array}$
$\downarrow \downarrow \uparrow \downarrow \uparrow$

Patchwork dynamics example

$\uparrow \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow$
$\uparrow \uparrow \downarrow \downarrow \downarrow \downarrow \downarrow \uparrow$
$\downarrow \downarrow \downarrow \uparrow \downarrow \downarrow \downarrow \downarrow$ 个
$\uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \downarrow \uparrow \downarrow \uparrow$

$\uparrow \uparrow \uparrow \uparrow$		\uparrow	\uparrow	\uparrow

$\uparrow \downarrow \downarrow \downarrow \uparrow \downarrow \begin{array}{llll} \\ \uparrow\end{array}$
$\uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \quad \downarrow \uparrow \downarrow$
$\uparrow \uparrow \downarrow \uparrow \uparrow \downarrow \downarrow$ 个

Coarsening w/patches

Black $=A$ phase, white $=\bar{A}$ phase.

SG

$$
\ell_{m}=1
$$

$$
\ell_{m}=2
$$

$$
\ell_{m}=4
$$

$$
\ell_{m}=8
$$

Chaos

[Bray \& Moore, PRL, 1987]
Sensitivity of equilibrium configuration to

- Temperature changes δT
- Random perturbations Δ in bonds

Apparent beyond some chaos scale ξ_{c},

$$
\xi_{c} \sim(\delta T)^{-1 / \zeta}, \xi_{c} \sim \Delta^{-1 / \zeta}
$$

for a chaos exponent ζ.

Adding up all configurations to get Z: thermal chaos

Chaos and aging, rejuvenation, memory

From Bray/Moore/Fisher/Huse chaos + droplet picture.

- Slow coarsening \Rightarrow aging.
- When lower T, chaos \Rightarrow rejuvenation.
- Higher T memory is not fully erased \Rightarrow memory.

Chaos and aging, rejuvenation, memory

Numerical memory

1. Begin with ground state $s_{i}(1)$ for $J_{i j}$.
2. Add disorder Δ to $J_{i j}$, many patches at scale $\ell^{(2)}$. Overlap $q(2)=L^{-2} \sum s_{i}(1) s_{i}(2)$.
3. Remove disorder, many patches at scale $\ell^{(3)}$. Overlap $q(3)=L^{-2} \sum s_{i}(1) s_{i}(3)$.

Numerical memory

1. Begin with ground state $s_{i}(1)$ for $J_{i j}$.
2. Add disorder Δ to $J_{i j}$, many patches at scale $\ell^{(2)}$. Overlap $q(2)=L^{-2} \sum s_{i}(1) s_{i}(2)$.
3. Remove disorder, many patches at scale $\ell^{(3)}$.

Overlap $q(3)=L^{-2} \sum s_{i}(1) s_{i}(3)$.

Numerical memory

1. Begin with ground state $s_{i}(1)$ for $J_{i j}$.
2. Add disorder Δ to $J_{i j}$, many patches at scale $\ell^{(2)}$. Overlap $q(2)=L^{-2} \sum s_{i}(1) s_{i}(2)$.
3. Remove disorder, many patches at scale $\ell^{(3)}$.

Overlap $q(3)=L^{-2} \sum s_{i}(1) s_{i}(3)$.

ratio of recovery patch scale to chaos scale

Numerical memory

1. Begin with ground state $s_{i}(1)$ for $J_{i j}$.
2. Add disorder Δ to $J_{i j}$, many patches at scale $\ell^{(2)}$. Overlap $q(2)=L^{-2} \sum s_{i}(1) s_{i}(2)$.
3. Remove disorder, many patches at scale $\ell^{(3)}$.

Overlap $q(3)=L^{-2} \sum s_{i}(1) s_{i}(3)$.

- Ongoing work: replicate for finite temperature
ratio of recovery patch scale to chaos scale

Controllability by boundary conditions

Thermodynamic limit subtle in disordered matter

Convergence of correlation functions

$$
\left\langle s_{i} s_{j}\right\rangle \text { as } L \rightarrow \infty
$$

In a ferromagnet, have translation invariance, natural BCs.
How do you add to the boundary in a disordered material?
Different subsequences of sample growth \Rightarrow different states?
[See D. Fisher, D. Huse, G. Parisi, C. Newman, D. Stein, and many others.]

Thermodynamic limit: really want all BCs to see convergence of correlation functions.

Thermodynamic limit: really want all BCs

 to see convergence of correlation functions.
How to check $2^{4 L}$ boundary conditions?

Decomposability for the RB magnet.

Decomposability for the RB magnet.

Each domain wall piece is a global DW.

- For the RB magnet, examine all 2-ended DWs.
- Still a lot of paths: Naively something like $L^{3} \log (L)$ computations.
- Use recent computer science algorithms to get down to $L^{2} \log (L)$.
\Rightarrow Time to examine all $2^{4 L}$ ground states scales as $\#$ of spins.
$\Rightarrow 10^{6}$ samples of size 2048^{2} in a day on SU OrangeGrid.

All crossing

 paths (domain walls) from a midpoint, $L=512$
All domain wall paths, L=256

Scaling for density of controllable points?

Wandering of paths $\sim L^{2 / 3}$.
(Huse, Henley, Fisher, Johansson)
$\Rightarrow \#$ of independent sources $\sim L / L^{2 / 3}$.
\Rightarrow paths from same source $\Delta r \sim L^{2 / 3}$ at center.
\Rightarrow central linear density $\sim L^{-1 / 3}$
(Compare ferromagnet, no disorder: density $=1$)

All domain wall paths, L=256

$P(r)=$ prob a bond at distance r from bdy is controllable by BC.

- New algorithm.
- Uniqueness of thermodynamic limit
- Window of size w, all BCs: $L \sim w^{3}$.
- E.g., can reach a point by fracture by "smart paths"? Hide something from BCs?
[Currently: correlated disorder \Rightarrow vary scaling.]

Exact sampling from Boltzmann distribution

Kac, Ward; Kasteleyn; Saul, Kardar; Gallucio, Loebl,Vondrak; D.Wilson, D. Randall; Thomas,AAM

- Memory (bulk perturbation)
- Spin glass control parameters:
* Magnitude of distributed perturbation
* Length scale of "equilibration" (optimization)
- How/where is memory stored? Multiscale for, e.g., colloidal?
- Controllability (boundary perturbation)
- Random bond magnet example * All boundary conditions [algorithm] * Scaling of controllable points
- Other disorders, models?

