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Materials Fracture Mechanics
 Fundamental issues:

 What is the relation between crack growth resistance, microstructure 
and applied loading?

 What is the relation between fracture surface roughness, 
microstructure and applied loading?

 Corollary:  What is the relation, if any, between a material 
system’s crack growth resistance and the statistics of fracture 
surface roughness?

 Aim: simulate ductile fracture for model microstructures and predict the 
crack growth resistance and the fracture surface roughness.

 Can the analyses be used to develop a design methodology for 
materials with improved failure resistance?
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Toughness/Roughness Relation

 Possible uses:

 Provide a quantitative measure of toughness (crack initiation and 
growth resistance) in circumstances where a valid fracture test cannot 
be carried out.

 Identify and provide insight into the physical mechanism of crack 
initiation/growth.

 Provide a basis for assessing the predictive capability of theories of 
crack initiation and growth.
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Ductile Fracture in Structural Metals

 Ductile fracture limits the performance, reliability and manufacturability of a 
variety of engineering components and structures.

http://www.ntsb.gov

www.seattlerobotics.org

www.geekologie.com
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Ductile Fracture in Structural Metals

 Near room temperature the main mechanism of ductile failure in 
structural metals involves the nucleation, growth and coalescence of 
voids originating at second phase particles.

 The key role played by porosity in ductile fracture was identified 
Tipper (1949).

 Puttick (1959), Rogers (1960), Beachem (1963) and Gurland and 
Plateau (1963) documented the process of micro-void evolution.

Benzerga et al. (2004)
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Void Nucleation, Growth and Coalescence

 Void nucleation by inclusion debonding
or cracking.

 Void growth occurs by plastic 
deformation of the matrix.

 Void coalescence occurs either by 
impingement or through a void sheet.

Benzerga et al. (2004)

Brocks (2008)

Bron and Besson (2006)



7

Ductile Crack Growth

Lautridou and Pineau,
Eng. Fract. Mech., 15, 55, 1981 

 Atomic work of separation: 
1-10 J/m2.

 Work per unit area of crack 
advance for ductile metals: 
104-105 J/m2.
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Modified Gurson Relation

Matrix flow strength Void volume fraction f

 The stress carry capacity vanishes when f*=1/q1 which is when f=ff

(the surface Φ= 0 shrinks to a point) and new free surface is created.

Rice & Tracey (1969); Gurson (1975); Tvergaard (1981, 1982); 
Tvergaard & Needleman (1984) 
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Heterogeneous Material Microstructures Analyzed

 Random 3D array of discretely modeled void nucleation sites 
(“inclusions”)

 Length scale: mean nucleation site spacing.

 Grain boundary fracture in a 2D polycrystal

 Length scale: mean grain size.
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Void Nucleation
 Large, low strength regions that are modeled by stress controlled 

nucleation.

 Spherical inclusions (3D “islands” of f
N
) with randomly distributed  

centers or within grain boundary layers of a prescribed thickness.

 Uniformly distributed sites (small particles) that are modeled by strain 
controlled nucleation (no characteristic length).
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Small-Scale Yielding Boundary Value 
Problem

 A thin strip subject to overall plane strain conditions.

 3D dynamic finite strain formulation.

 Displacements corresponding to the isotropic elastic mode I field are imposed on the 
remote boundaries.

 Initial and boundary conditions chosen to minimize wave effects.
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Possible Length Scales

 Macro length scale J/s0

 The mean inclusion spacing.

 The grain size.

 The inclusion size.

 The grain boundary layer thickness.

 Material rate dependence also provides regularization and thus implicitly 
introduces a length.

 The finite element mesh length scale.

 Can dominate in the limit of a homogeneous material - no inclusions or all 
inclusions, and no grains.

Needleman and Tvergaard, Eng. Frac. Mech., 47, 75, 1994. 
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 Calculations carried out for eight inclusion volume fractions/spacings; n=0.012 to 
n=0.19; l0=10.6ex to 4.21ex.

 Seven realizations for each inclusion volume fraction n.

 For the smallest volume fraction results only obtained for five realizations: in two 
realizations no inclusion sufficiently close to the initial crack tip for small scale 
yielding crack growth to occur.

 Fracture surface is f=0.1 (the material has essentially lost all stress carrying capacity).

Microstructure with Discretely Modeled Inclusions

n=0.143
l0/ex=4.63

n=0.024
l0/ex=8.41

Srivastava et al.,  J. Mech. Phys. Solids, 63, 62-79, 2014. 

Osovski et al., The effect of loading rate on ductile fracture toughness and fracture surface

roughness.  J. Mech. Phys. Solids, accepted.
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Crack Growth – Low Inclusion Density

n=0.024
l0/ex=8.41

Three through thickness slices.
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Crack Growth – High Inclusion Density

n=0.143
l0/ex=4.63

Three through thickness slices.
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Void-Crack Interaction Near a Crack Tip

Low volume fraction – void by void crack growth

High volume fraction – multiple voids 
interaction crack growth



J-R Curves – Variation with Inclusion Density
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 Compute J-R where curves (Da is defined by the extent of the f=0.10 contour).

 ex is the mesh spacing (a fixed reference length).

 Compute JIC  mimicking the ASTM E1820-11 standard procedure. 

 TR is computed from the slope between Da/ex=100 and 150.

n=0.024
l0/ex=8.41

n=0.143
l0/ex=4.63
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Variation of JIC and TR with Inclusion Spacing

 Compute JIC mimicking the ASTM E1820-11 standard procedure.

 TR is computed from the slope between Da/ex=100 and 150.

 l0 is the mean inclusion spacing.



J-R curves – Variation with Loading Rate
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 Only one realization for each loading rate.

 The crack growth resistance increases with 
increasing loading rate. 

 A fixed mechanism of void nucleation, 
growth and coalescence 

n=0.071

n=0.036
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Effect of Loading Rate on the Ductile Fracture Mode

Void-by-void dominated.

Multiple void interaction 
dominated.

Nucleation dominated 
distributed damage.

n=0.071
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Variation of Plastic Dissipation with Loading Rate
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Calculation of the Fracture Surface Roughness

 Thin strip: only roughness in the crack growth direction.

 Mimic the procedure used in the experimental work of Bouchaud, Ponson and 
co-workers.

 The fracture surface is identified with a constant value of f.

 Extrapolate f to a uniform grid in the fracture plane.

 Take cross sections of the “fracture surface” at various planes through 
the thickness and plot h(x) which at uniformly spaced values of x.
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 The small dx Hurst exponent is in the 
range 0.53 to 0.63.

 The Hurst exponent value depends 
(within about 0.02) on the extrapolation 
from finite element Gauss points to a 
uniform grid.

 The independence of inclusion volume 
fraction and loading rate does not.

Fracture Surface Statistics – Hurst Exponent
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Fracture Surface Statistics – Beyond the Hurst Exponent

 A transition at about l0/ex=6.5 (n=0.07) 
from void-by-void dominated crack 
growth to multiple void interaction 
dominated crack growth.
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Fracture Surface Statistics – Beyond the Hurst Exponent

 x and Dhs are nearly independent of loading rate for low 
loading rates but Dhs has a more nearly monotonic 
variation with loading rate for high loading rates, 
particularly for n=0.036.
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Fracture Surface Toughness/Roughness Relation

 Fixed rate; varying inclusion density.

 Increased surface roughness, increased crack growth resistance.

 Good correlation for roughness values above about 6.5 ex.
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 Fixed rate; varying inclusion density.

 Increased surface roughness, increased crack growth resistance.

 Good correlation for roughness values above about 6.5 ex.

Fracture Surface Toughness/Roughness Relation
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 Loading rates dK/dt from 1x105 to 4x107.

 Inclusion volume fraction n=0.036 corresponds to l0/ex=7.35.

 More void-by-void dominated crack growth.

 Inclusion volume fraction n=0.071 corresponds to l0/ex=5.83.

 Transition from void-by-void to multiple void interaction crack growth.

Fracture Surface Toughness/Roughness Relation
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Revisiting the Scaling of the Correlation Function

10-5 3x10-6

2.5x10-7

 Transition from persistent to anti-
persistent (at about 4ex) to a smooth 
surface at 14-15ex at the lower rates and 
19ex at the high rate.

 The transition lengths are relatively 
independent of rate until the higher rates.

n=0.071, l0/ex=5.83
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Revisiting the Scaling of the Correlation Function

3x10-6n=0.071, l0/ex=5.83

b=0.61 b=0.43
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Revisiting the Scaling of the Correlation Function

n=0.071, 10-5 n=0.071, 3x10-6

n=0.036, 3x10-6
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 Three regimes: (i) dx smaller than the mean grain size (b>0.5); (ii) dx larger than the 
mean grain size (b<0.5); (iii) straight crack. The small dx b is a fit from ex to D/2, 
larger dx b is a fit from D to 2D.

Revisiting the Scaling of the Correlation Function

Osovksi et al., Acta Mat., 82, 167, 2015.
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 Ductile fracture histograms have fat  tails.

 Characterization via Student’s t-distribution. 

 k going to infinity is the Gaussian limit.

Going Beyond the Correlation Function 

n=0.024 n=0.143
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Going Beyond the Correlation Function 
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Going Beyond the Correlation Function 

 For the variation with rate, explored the use of the a-stable 
distributions S(a,b,s,m). 

 a is in the range between 0 and 2; 2 corresponds to a 
Gaussian distribution

The correlation between xa=2 and JIC and TR was not as good as for Dhs.
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Crack Growth Along Grain Boundaries

 The use of some of the most attractive lightweight metals is limited 
because they lack toughness due to room temperature grain boundary 
fracture, e.g. Al-Li alloys and meta-stable Ti b alloys.

 Modeled the effects of properties and microstructure on crack growth 
in meta-stable Ti b alloys.

 Voronoi diagrams are used  to generate a grain microstructure 
with mean grain size D.

 One element thickness so the microstructure is 2D.

 1 cm fine mesh region ahead of the initial crack.

Osovksi et al., Acta Mat., 82, 167, 2015.
Osovski et al., work in progress. 
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Crack Growth Along Grain Boundaries

 2D microstructure; 3D finite 
element formulation with 
41,192,214 D.O.F.

 Grain boundary a layer 
thickness to mean grain size in 
the range 18 to 50.

Fixed grain size, various realizations.Various grain sizes.

Two realizations with the same mean grain size.
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How Smart is a Crack?

Global maximum

Local minimum

Global minimum

Model prediction follows the actual path.
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Concluding Remarks

 Can simulations such as these be used to design more fracture resistant 
material microstructures?

 Can parameters characterizing the fracture surface roughness be quantitatively 
related to parameters characterizing the material’s crack growth resistance?

 Results so far suggest that this can be done for void-by-void dominated 
ductile crack growth.

 Is there a parameter (or a set of parameters) that can provide a quantitative 
toughness/roughness relation spanning the range from void-by-void 
dominated crack growth through multiple void interactions to distributed 
damage?

 Can parameters measuring the fracture surface provide a signature for 
identifying the mechanism of crack growth; for example identify a ductile-brittle 
transition?

 Needs: improved and more microscale fracture theories and improved 
computational capability.


