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Fractal character of
fracture surfaces of metals

Benoit B. Mandelbrot*, Dann E. Passojat
& Alvin J. Paullay:

Fracture energy vs
fractal dimension
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A powerful predictive theory:
Linear Elastic Fracture Mechanics

Predicting the stability of cracks in an idealized elastic homogeneous solid
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A powerful predictive theory:
Linear Elastic Fracture Mechanics

Predicting the stability of cracks in an idealized elastic homogeneous solid
A.A. 6riffith 1920

J.R. Rice 1968
Energy balance:
F
i W, = SE, +  BE,
Work of the Variation of Variation of
external force elastic energy surface energy

Griffith's criterion:

Mechanical energy Vs Fracture energy
release rate
l G = 5(Wg-5E,)/(da.b) G, = 5E./(da.b)
F

6 < 6., =——p Stable crack

G = 6. =—» Propagating crack

= But no hint on the actual value of fracture energy 6,
| Silica glass | Paper | Aluminum
Fracture energy |  7J/m2 | 100J/m? | 10kJ/m?
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Crack in a paper sheet
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Statistical properties of crack roughness
as a probe of the microscopic failure
processes...
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Statistical properties of crack roughness
as a probe of the microscopic failure
processes...

F/

F
..if their complex geometry can be deciphered

Fracture surface of P
an aluminum alloy

Rosetta stone
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Goal: Providing a statistical description of the roughness of cracks

Using it for (i) exploring the dissipative failure mechanisms
(ii) fracing back the history of the failure of a material

Outline:

1- Roughness exponents: A signature of the failure
mechanisms?
=== Persitent vs anti-persitent crack paths

2- Beyond the roughness exponent: Full statistics and fat
tails in the height fluctuations of fracture surfaces

=== (Gaussian vs non-Gaussian statistics of roughness

3- Application: Measuring material foughness from the
post-mortem analysis of fracture surfaces



The roughness exponent as a signature of

the fculur'e mechanisms
R B. Mandelbrot et al. 1984, E. Bouchaud et al. 1990
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The roughness exponent as a signature of

the failure mechanisms
J.M. Boffa et al. 1998, LP et al. 2007
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The roughness exponent as a signature of

the failure mechanisms
J.M. Boffa et al. 1998, LP et al. 2007

Fracture of Sandstone -
3D solids p " " \\. 41
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—p Two distinct classes of roughness D. Bonamy et al. 2006, LP 2007

Failure by damage

Brittle failure
coalescence

~ 0.40 N
o e B = 0.60

Ceramics, ~ Metallic alloys,
sandstone... mortar, granite...
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Interpretation of the value of the

exponents: Crack paths in 2D thin sheets [

J. Kertész et al. 1993, T. Engoy et al. 1994, S. Santucci et al. 2007

10

Ah (mm

Fracture profile of a paper sheet

Fracture of

2D thin sheets ;

10+

—~ 02 T T T T T 5
= 0 10
E o il
N -

02l i

LP et ql. 2014

o Cardboard
©00

---. £=0.65 ,
o Drawing paper 00@{ o
cee. =067 e
o Fax paper M
—e (=069 f,o@
5
gagoj? Ah ~ oxH
A with H = 0.65

<9

10’ 10°
Ox (mm)

107" 10°




Interpretation of the value of the
exponents: Crack paths in 2D thin sheets

Key
assumption: <
o
E )24 << dgrain %

Fracture profile of a sheet of expanded polystyrene
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o Experiments
— Fit: H=0.48
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with H= 0.5 |

LPetal 2014
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Interpretation of the value of the
exponents: Crack paths in 2D thin sheets

Key
assumption:

Epz<<d

grain

Fracture profile of a sheet of expanded polystyrene

o Simulations
-- Fit: H=0.50
o Experiments

— FittH= o.480@e°"

o°

with H= 0.5 |

LPetal 2014
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=== Simulation of the process of crack propagation via cohesive zone model




Roughness exponent vs failure mechanisms:
A tentative scenario

Anti-persistent Persistent
crack path crack path
Fracture of
3D solids
£~ 0.40 (= 0.75
B~=0.50 p=0.60
Fracture of
2D thin sheets H =~ 0.50 H = 0.65
I N




Roughness exponent vs failure mechanisms:
A tentative scenario

Anti-persistent Persistent
crack path crack path
Fracture of
3D solids
5= 0.40 £=0.75
B=0.50 p=0.60

Failure by damage

Brittle failure

coalescence

Fracture of

L 2D and 3D: Exponents 2D: Exponent captured
== captured by fracture == by damage coalescence
mechanics based models based models
D. Bonamy et al. 2006, M. Alava, S. Zapperi et al. 2006,
E. Katzav et al. 2007, E. Bouchbinder et al. 2007

L. Konate et al. 2014
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Roughness exponent vs failure mechanisms:
A tentative scenario

Anti-persistent Persistent
crack path crack path
Fracture of
3D solids
= 0.40 > {=0.75
p=0.50 —> B=0.60

Fracture of
2D thin sheets

Brittle failure

Failure by damage

H = 0.50
Epz <<d

ustructure

N\

Crack growth direction
governed by elasticity

coalescence

H = 0.65
Epz >> (

ustructure

7
d

Crack growth direction governed
by damage nucleation



Beyond the value of the roughness exponent:
Full statistics of fracture surfaces

The materials
One representative sample of each major class of failure mechanisms

(a) Ductile: aluminum alloy (4% copper)
(b) Quasi-brittle: Mortar
(c) Brittle: Glass ceramics



Statistics of height fluctuations
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—> Fracture surfaces treated as isotropic



Statistics of height fluctuations

Aluminum s
aloy 4 Distribution of height variations:
P(Oh16r) with oh=h(r +0r)—h(r)

where |c517| = Or

—> Fracture surfaces treated as isotropic
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Statistics of height fluctuations

Aluminum s

ally - 4 Distribution of height variations:

P(Ooh|0or) with Oh=h(r+0r)-h(r)

_
E 0..
1 where |c5r| = Or
—> Fracture surfaces treated as isotropic
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1: 550 pgm, 2: 115 pm, 3: 25 pm 1: 3.8mm, 2: 915 pm, 3: 225 pm  1: 1.5mm, 2: 310 pm, 3: 60 pum

Aluminum and mortar: non- ﬂ One exponent only insufficient to
Gaussian at small scales fully describe their statistics



Origin of the fat tail statistics?

Aluminum alloy
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located on the fracture surface?



Spatial organization of the largest fluctuations

1
Operator w.(x) = 5 log (<5h(x, 5X)2>|5x|:e)

Mortar (¢ = 50um) Ceramics (€ = 50um)



Spatial organization of the largest fluctuations

1
Operator w.(x) = 5 log (<5h(x, 5X)2>|5x|:e)

Aluminum (€ = 3um)

Qualitatively: For the aluminum and mortar
— Large scale features, long-range correlation of w

For the ceramics
— Absence of large scale features



Spatial correlations of w

Characterized by its correlation function

C(0r) =(w(F)(F +0r)).
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Characterized by its correlation function
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Characterized by its correlation function

Spatial correlations of w

C(0r) =(w(F)(F +0r)).
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Characterized by its correlation function

Spatial correlations of w

C(0r) =(w(F)(F +0r)).
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Roughness exponents

Natural extension of the roughness exponent: <|(5h(7 ,OF )|q> .
F Jo|=or

Computed for the two ranges of length scales
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Roughness exponents at large scales

One well-defined

r'oughness exponem- * Aluminum 4 Mortar = Ceramic
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Mortar and ceramics: &,/ q=0.45

Low variations withq  —» Consistent with (i) a mono-affine behavior
(ii) a Gaussian distribution



Roughness exponents at small scales

Multi-affine
Spectrum:

e Aluminum 4 Mortar = Ceramic

Slope consistent
with the spatial
— .

05- correlations of
height fluctuations
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0.3 I 1 1 1
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Simple multi-affine model: ~ Multi-affine Spatial correlation
J.F. Muzy and E. Bacry 2002 spectrum of slopes
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Cluster and spatial organization of the largest fluctuations

Aluminum
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Cluster and spatial organization of the largest fluctuations

Aluminum
—> Fractal geometry of clusters o :
Dy17 Thrgfhhold
independent of .
the material

Surface vs caracteristic length of clusters
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Cluster and spatial organization of the largest fluctuations

Aluminum
—> Fractal geometry of clusters o :

D=1.7
independent of
the material

—> Power law distributed clusters

P(S) ~ S*with @ 2.2
independent of the material
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Cluster and spatial organization of the largest fluctuations

Aluminum
—> Fractal geometry of clusters o \

D=1.7
independent of
the material

—> Power law distributed clusters

P(S) ~ S* with ot ® 2.2 Cut-off length of the
independent of the material — cluster size distribution
consistent with §
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Cluster and spatial organization of the largest fluctuations

Aluminum
—> Fractal geometry of clusters o \

D~17 Thr:fhhold
independent of ~
the material
— Power law distributed clusters
P(S) ~ S* with ot ® 2.2 Cut-off length of the
independent of the material — cluster size distribution

consistent with §

Interpretation:
==p Clusters reminiscent of the
process of damage coalescence




Full statistics of 2D fracture surfaces: Summary
S. Vernéde, LP and J.P. Bouchaud, 2014

Operator w
 Characterized the local intensity of height fluctuations 8h
Defined a cut-off length ¢
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Full statistics of 2D fracture surfaces: Summary
S. Vernéde, LP and J.P. Bouchaud, 2014

Operator w
 Characterized the local intensity of height fluctuations 8h
Defined a cut-off length ¢

or > §
« W uncorrelated: (wW(x)w(y) =0
Mono-affine Gaussian roughness with £ =0.45

dr< &
Long range correlations of w, with (w(F)w(7 +6r)). " ~Alog(dr)

« Multi-affine spectrum of the roughness
—— Consistent with the spatial correlations of w

Universal geomeftrical properties of clusters of largest fluctuations



Towards a unified description of 2D fracture surfaces?

Three different failure behavior
Ductile - quasi-brittle - brittle

One description
« dr <& —— Roughness signature of damage
« dr > & — Roughness signature of the propagation of a brittle crack front
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Towards a unified description of 2D fracture surfaces?

Three different failure behavior
Ductile - quasi-brittle - brittle

One description
« dr <& —— Roughness signature of damage
« dr > & — Roughness signature of the propagation of a brittle crack front

Appl ication 8. Vernéde and LP, French Patent 2014
« Length& —— characteristic size of the dissipative failure mechanisms
 Post-mortem measurement of the fracture energy

—> See A. Needleman'’s talk



Application: Post-mortem measurement of fracture

Same steel (A508) broken at
different temperatures

LW:JDG
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Opening
measurement

toughness

S. Chapuliot et al. 2005

Effect of temperature on
fracture properties
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Towards a unified description of fracture surfaces?
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Fracture of
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