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Schmittbuhl and  Måløy (97)

Bouchaud et al (93)
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Interfacial crack

 Quasi-static limit

 Linear elastic material, weakly heterogeneous

using long-range elastic kernel of Gao & Rice (89)

 Non-Local approach !

Propagation of an elastic line through a disordered interface

Schmittbuhl, Roux,Vilotte and Måløy (95) 
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out-of-plane 

┴in plane 

||

Vortex lines in superconductors, 

Ertas and Kardar (92),

Contact lines of liquid menisci on rough substrates, 

Ertas and Kardar (94), Rolley (98)

Crack propagation in solids, 

Schmittbuhl, Roux et al. (95), Ramanathan et al. (97)

Magnetic domain wall in disordered ferromagnets, 

Zapperi, Durin et al (98)

A model experiment 

in plane 

||

Schmittbuhl and  Måløy (97)

Bouchaud et al (93)
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Propagation of an elastic line through a disordered landscape

Interfacial crack



Goal : Clarify the apparent disagreement and controversy 

Morphology of interfacial cracks 
Avalanche Dynamics of interfacial cracks     
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BUT :  disagreement between predictions and experimental measurements

ζ||
exp~ 0.5-0.6                ≠               ζ|| ~ 0.35 / 0.38,  

Schmittbuhl and Måløy(97), Delaplace et al (99) Schmittbuhl, Roux et al. (95), Rosso et al (02)
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 ζ||  ~ 0.6 

Hansen and Schmittbuhl, (03)

“Elastic line” model vs “Damage coalescence” model

Bonamy, Santucci, Ponson (08)

Laurson, Santucci, Zapperi (10)

 Long-standing controversy 



Sample preparation

Key points

• Transparent block                             

→ direct observation

• Heterogeneities, toughness fluctuations 

→ rough crack front        → 

burst dynamics

32 cm 34 cm

14 cm 12 cm

30 min

( PMMA )

Experimental  setup
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Experimental  setup

Optical and mechanical set-up

Optical tracking

high speed & high resolution camera

•high  frame rate vs the  average crack velocity

Acoustic tracking
2 microphones, Wide Band (100 kHz-1 MHz)

•Sampling rate : 1 MHz

0.03 μm.s-1 <  ‹V› < 300 μm.s-1

0.5 μm < pixel size: a < 10 μm

A press imposes a normal displacement

• creep conditions

• constant low speed ~ μm/s :

→ Crack front propagating in quasi-mode I in the 
annealing plane of the 2 sandblasted plates
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1 picture; x 6.5;    pixel size  ~ 3.9 µm             ~   4 000 pixels

-assembling pictures for a crack at rest-

assembling 3 pictures;      x 12.5;  pixel size  ~ 2 µm                 ~   8 000 pixels

assembling 7 pictures;      x 25;     pixel size  ~ 1 µm                 ~  16 000 pixels

assembling 11 pictures;    x 50;     pixel size  ~ 0.48 µm;           ~ 25 000 pixels

Crack at rest  Multi - High resolution description 

‹ 20 fronts ›
for each set

Interfacial crack fronts morphology
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Sand-blasting 

with glass beads

Ø ~ 50 μm



Statistical distribution of the height fluctuations P(Δh) 

Interfacial crack fronts morphology
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δ > δ* Gaussian distribution

ζ+ ~ 0.35     in agreement with elastic line model 

δ < δ* Non-Gaussian distribution  with large tails        multi-scaling behavior

ζ- ~ 0.6        in agreement with coalescence model

2 ≠ scaling regimes

Santucci et al, EPL (10)



Multi-scaling analysis

Gaussian statistics 

with a self-affine scaling

exple: Brownian motion

• Structure functions

Interfacial crack fronts morphology
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• Normalized Structure Functions by a Gaussian Statistics 
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x

h(x)

δ

Set of “Universal numbers”

independent of σ and δ

Structure Functions Ratios 

(Coll.: A. Hansen)

Santucci et al, EPL (10)



δ* ~ 35 μm 

For δ < δ* Fanning of the structure functions Ck/Rk
G :

→  Non-Gaussian statistics

→  Non-unique roughness exponent : multiscaling ζ (k) 

Scaling behavior the structure functions Ck/Rk
G

Interfacial crack fronts morphology
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Santucci et al, EPL (10)



For δ > δ* Collapse of the structure functions Ck/Rk
G :

→  underlying distribution Gaussian

→  extraction of  a unique roughness ζ exponent : ζ (k) ~ 0.38

Scaling behavior the structure functions Ck/Rk
G

Interfacial crack fronts morphology
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δ* ~ 35 μm 

Santucci et al, EPL (10)



Interfacial crack fronts morphology

Ø ~ 300 μm

Ø ~ 100/200 μm

Ø ~ 50 μm

Blasting with ≠ glass beads

What controls the cross-over length scale  δ* ?
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Effect of the disorder and material heterogeneities

Santucci et al, EPL (10)



Interfacial crack fronts morphology

Ø ~ 300 μm

Ø ~ 100/200 μm

Ø ~ 50 μm

Blasting with ≠ glass beads

~ 0.3

What controls the cross-over length scale  δ* ?
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Local slope of the front 

Effect of the disorder and material heterogeneities

Santucci et al, EPL (10)



Interfacial crack fronts morphology

What controls the cross-over length scale  δ* ?
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High Local slope of the front

Effect of the disorder and material heterogeneities

 Deviations to Mono-affine scaling observed 
for various crack fronts and surfaces

 Limit for elastic line model using the Kernel of 
Gao & Rice assuming small deviations

Also in agreement with numerical simulations 
Laurson & Zapperi (2010)

way fronts are extracted / lack of resolution

Santucci et al, PRE (07), Santucci et al, EPL (10)



1 cm

Partial Conclusion 

A detailed statistical description of the morphology of interfacial crack fronts 

δ* cross-over length scale microstructure, toughness fluctuations, 
could depend on loading, sample geometry…

δ > δ* :
• The height fluctuations follow a Gaussian statistics

• Self-affine behavior with a unique roughness exponent ζ + ~ 0.35
• Agreement with the predictions of elastic line model 

δ < δ* :
• Separation of the structure functions at small scales Multi-scaling; Ck(δ) ~ δ ζ(k)

• Deviation to a Gaussian statistics

• C2(δ) ~ δ ζ- with ζ - ~ 0.6
• Agreement with the prediction of a coalescence model
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Santucci et al, PRE (07), Santucci et al, EPL (10)
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Forced expt.

‹V› ~ 30 μm.s-1

resolution : 3.5 μm

acquisition rate :1000 fps

expt ~ 10 s

Complex dynamics

• large scale : stable slow crack propagation

• locally : pinning ← heterogeneities, toughness fluctuations

→ rough crack front

→ avalanches 

large velocity and size fluctuations

500 μm

Interfacial crack fronts dynamics
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Waiting time matrix M ←  front dynamics

M0

0     0     0     0     0     0 

0     0     0     0     0     0

0     0     0     0     0     0          

0     0     0     0     0     0

0     0     0     0     0     0

M1

0     0     0     0     0     0 

0     1     0     0     0     0

1     0     1     1     0     1          

0     0     0     0     1     0

0     0     0     0     0     0

F1

M2

0     0     0     1     0     0 

0     2     1     0     1     0

2     0     1     1     0     2          

0     0     0     0     1     0

0     0     0     0     0     0

F2

Raw image   →   front extraction
Image analysis

waiting time matrix obtained by adding fronts Fi

M = ∑ Fi .δt
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Analysis procedure
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M → V : 

local front velocity
a    pixel size

δt time delay between 2 pictures

w element  in waiting time matrix

Results

• local front velocity field

the darker parts the longer waiting times

image recording so fast 

→ no holes in M

Creep expts

‹V› ≈ 1 μm.s-1

Santucci et al, (06), Måløy et al, PRL (06)
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Results

• local front velocity distribution

Distribution independent of 

loading regime : creep or forced  

0.03 μm.s-1 <  ‹V› < 300 μm.s-1

α + 1= 2.6 ± 0.15

-(α+1)

Santucci et al, (06), Måløy et al, PRL (06), Tallakstad et al, PRE (11)
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Results

• Crackling Noise 

Forced expts

‹V› ≈ 200 μm.s-1

Santucci et al, ICF (09), 
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Results

• Crackling Noise 

4

breakdown of the usual CLT. Characterist ic of such non-

Gaussian stat ist ics, is the slower than 1/
√

l rate of decay

of the standard deviat ion σ. However, we can explain

these results by invoking a generalizat ion of the CLT, in

part icular that the fat tail, seen in Fig. 3, of the exper-

imental data should decay with a power law exponent

1 + α. It states that an average variable, V , of a num-

ber of independent random variables, v, with an asymp-

tot ic power law tail dist ribut ion 1/ |v|α+ 1, where α < 2

(and therefore having infinite variance) will tend to a so-

called alpha stable Levy distr ibution [23] (Levy for short),

Ψ(V ; α, β, c, δ), as the number of individual variables v,

used to obtain the average V, grow [16, 20]. Generally

not analyt ically expressible, Ψ contains four parameters

and is defined through the inverse Fourier t ransform of

its characterist ic funct ion Φ,

Ψ(V ; α, β, c, δ) =
1

2π

∞

− ∞

Φ(k) exp(− iVk) dk , (5)

Φ(k) = exp ikδ− |ck|α 1 + iβ
k

|k|
tan(

π

2
α) , (6)

for α = 1. Here, V is the random variable(in our casethe

global velocity), α is the index of the dist ribut ion giving

the exponent of the asymptot ic power law tail (α + 1),

β ∈ [− 1, 1] is the so-called skewness parameter and a

measure of asymmetry. Note in this context that the

usual skewness, given by the third moment of the dis-

t ribut ion [20], is not well defined for α < 2 due to the

divergence of the 2nd and higher order moments. The

shift parameter δ gives the peak posit ion for a symmet-

ric dist ribut ion, whereas c is a scale factor characterizing

its width. For α > 1, it is possible to reduce the number

of varying parameters in Ψ by the following normaliza-

t ion of V [20]:

V =
Vl − Vl T

bl

, with bl =
π(λ+ + λ− )

2Γ(α) sin(απ/ 2)

1
α

l1/ α− 1 .

(7)

Here, bl is proport ional to the standard deviat ion, and

with this normalizat ion V will be centered around zero,

leading to δ = 0, and c = 1. In Eq. (7), Γ is the Gamma

funct ion, whereas the constants λ+ and λ− characterize

theasymptot ic behavior on the posit iveand negat iveaxis

respect ively, of the cumulat ive distribut ion funct ion of v:

R(v → ∞ ) = λ+ v− α , and 1− R(v → −∞ ) = λ− |v|− α .

The skewness parameter is given as, β = λ + − λ −

λ + + λ − ,which

has its extreme value of 1 in the case of non-negat ive

summands v [20]. This will be the case for the crack

front velocity, leading to λ− = 0 and thus, β = 1. Fi-

nally, from the cumulat ive PDF R(v/ v̄), shown by the

dashed line in the inset in Fig. 3, we obtain λ+ ≈ 1.4.

Thus, our experimental data should converge to the dis-

t ribut ion Ψ(V ; 1.7, 1, 1, 0) ≡ Ψ(V ; 1.7, 1). This funct ion

is plot ted, without any fit t ing parameters, on top of the
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FIG. 4. (Color online) PDFsΨ(V ) for one experiment in log-
log representat ion, at the scales l/ x∗ ≈ { 40, 20, 13, 10} (upper
collapsed curves, empty markers), and in filled markers from

top to bot tom, at l / x∗ ≈ { 3, 1, 0.5, 0.2, 0.05} respect ively. The

lat ter dist ribut ions with the theoret ical curves, Ψ(V ; 1.7, 1)

shown as solid lines, have been shifted for visual clarity.

experimental dist ribut ions, in Fig. 3. Thecomparison be-

tween experiments and theory is highly sat isfactory.

Finally, we examine the rate of convergence to such a

stable law, when the measuring length scale increases

from the micron to the millimeter scale, below and

above the correlat ion length respect ively. This evolu-

t ion over the scales is shown in Fig. 4, where Ψ(V )

is represented in log-log form, for the scales l / x∗ ≈

{ 3, 1, 0.5, 0.2, 0.05} , and shifted systemat ically for visual

clarity. The solid lines show the corresponding Levy dis-

t ribut ion Ψ(V ; 1.7, 1). The convergence to the Levy law

is clear, as soon as the measuring window is larger than

the correlat ion length x∗ . However more strikingly, the

fat tail of the velocity dist ribut ion survives clearly the

upscaling. This shows very explicit ly, the validity of the

generalized CLT for the fracture velocity stat ist ics.

We have analyzed the intermit tent propagat ion of a

crack front along a heterogeneous plane in a Plexiglas

block, focusing on the temporal fluctuat ions of the global

velocity, i.e. spat ially averaged at various length scales.

We have shown how the fat tail of the local crack front

velocity leads to thebreakdown of theCentral Limit The-

orem, with anomalous scaling behaviors of the average

maximum velocity vl
m ax T and variance σ of Vl (t), and

thus non-Gaussian fluctuat ions also at the large scale.

Moreover, we have demonstrated explicit ly how the gen-

eralized version of the CLT must be applied, in order to

predict the full global dist ribut ion of crack front veloci-

t ies.

The authors thank J. Bergli, L. Angheluta, and A.

Hansen for fruit ful discussions, and also Mark Veil-

let te for his Mat lab rout ine to integrate stable distribu-

t ions [25]. The work was supported by: the Norwegian

Research Council and the University of Strasbourg.

Ψ (V’ ; α, 1)
α = 1.7  ± 0.1

Ψ (V’)
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ing and can be measured, provided good enough stat is-

t ics. Furthermore this can be exploited to predict the

scaling of extremes, and of the individual summands in

the global variable. This is, to the best of our knowledge,

the first t ime such Levy distribut ions and its formalism

are reported and used in the case of fracture.

Weobservedirect ly, with a high resolut ion fast camera,

a crack front propagat ing slowly (0.1 − 100µm/ s) along

a weak heterogeneous interface of a Plexiglas block. It

is made of two weakly sintered sandblasted plates of di-

mension of (27, 14, 1) cm and (30, 12, 0.4) cm. The rough-

ening procedure generates heterogeneit ies in the range

of ∼ 15 − 50µm [21, 22]. The crack front propagation

is imaged at a very high spatial– (up to 3000 pixels,

with a pixel size of a ≈ 2.5µm) and temporal resolu-

t ion (up to 40000 images recorded at a rate from 1f ps

up to 1000f ps), relat ive to its velocity fluctuat ions. The

imaged area, covered by the crack front , corresponds to

roughly (6× 0.5) mm transverse to, and along the direc-

t ion of propagation respect ively. The quasi mode-I crack

growth isobtained by imposing a normal displacement to

the bottom plate while the upper plate is fixed to an alu-

minum frame. For more details, one should consider [2]

and references therein. Independent ly of the loading con-

dit ions [2], the t ime of observat ion is small enough, so

that the average velocity of crack propagation in space

and t ime is constant during an experiment.
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FIG. 1. Right panel: Thespat io-temporal velocity field v(x, t)

during a fracture experiment . Left panel: The corresponding
spat ially averaged signal VL (t) = v(x, t) L . The average is in
this case taken over the full system size L. The solid red line
indicates the full space-t ime average velocity VL T = v̄.

The local velocity along the crack front h(x, t) is

computed from the wait ing t ime at a given posit ion

w(x, y) [1, 2], i.e the discrete number of t ime units the

front has spent at a given pixel. The local velocity of

the front is then obtained for each front at each time

step as: v(x, t) = a/ w[x, h(x, t)]δt, where a is the pixel

size and δt is the t ime resolut ion. This const itutes a

local velocity space-time map. We want to underline

the fact that our experiment and analysis gives access

to a local information of the crack growth, and thus ap-

pears as a model setup where the global velocity, Vl (t),

spat ially averaged over line segments of length l (pix-

els) in the x-direct ion, can be measured at any scale l:

Vl (t) = v(x, t) l ≡ 1
l

l
i = 1 v(x i , t) , with temporal mean

Vl T = 1
T

T
j = 1 Vl (t j ) , and est imated standard devia-

t ion σ2 ≡ (Vl − Vl T )2
T

, whereT is thetotal durat ion

of the signal.

We have shown that the local velocity fluctuat ions, in

space and time, along the crack front, for v > v̄, follow

a power-law distribut ion, P(v/ v̄) ∝ (v/ v̄)
− (α+ 1)

with

α = 1.6 ± 0.15, independent ly of the loading condit ions

and average crack front velocity [2]. Note that since the

mean, v̄ ≡
∞

0
vP(v)dv, iswell defined for α > 1 wehave:

v̄ = Vl T = V̄l ≡
∞

0
VlΨ(Vl )dVl for sufficient ly large T,

where Ψ(Vl ) is the PDF of Vl . Local fluctuat ions occur

over a very broad interval, asonecan observeon a typical

space-t ime map of the velocity field, v(x, t), as shown in

Fig. 1, and thus lead to a complex intermit tent dynamics

of the global crack growth Vl (t).

The variance of a sum of independent and iden-

t ically distributed random variables, equals the sum

of their individual variances [16, 20], i.e, (
l
i = 1 vi −

l
i = 1 vi T )2

T ∼ l (v − v̄)2
l T . Under such assump-

t ions and by mult iplying with 1/ l2, we obtain the rela-

t ionship between the global velocity Vl at scale l to the

local velocity v:

σ2 = Vl − V̄l
2

T
∼

1

l
(v − v̄)2

l T
. (1)

As explained in [24], for large T, the variance est imators

of v can be replaced with an integral over the underlying

PDF,

σ

v̄

2

∼
1

l

z∗

0

(z − 1)2G(z)z− (1+ α )dz , (2)

where z = v/ v̄ and G(z) = P(z) z1+ α is the lower cutoff

funct ion of P(z), ensuring the convergence in the lower

limit (becauseG(z) isfinitefor z 1). In theupper limit

(G(z) ∼ 1 for z 1), this integral will diverge if z∗ →∞

for α < 2. However, sinceσ is only est imated over a scale

l and sampled over a finite number of realizat ions T, z∗

must be finite, and given by the largest velocit ies that

are sampled from P(z) to generate the global velocity

Vl . Thus, as argued in [24], z∗ can be represented by the

average maximum velocity at scale l, i.e vl
m ax (t) T ≡

max{ v(x i , t); i = 1, ..., l } T . From extreme value theory,

it is clear that the PDF of vl
m ax should converge to the

so-called Fréchet dist ribut ion, with mean [16, 20, 24]:

vl
m ax T ∼ lγ , where γ = 1/ α . (3)

Thus, as in [24], we use z∗ = vl
m ax T as an upper limit

in Eq. (2) giving,

(σ/ v̄) ∼ l− ξ with ξ = 1−
1

α
. (4)

α = 1.7  ± 0.1 < 2 

 Generalized Central Limit Theorem

Alpha Stable Levy Distribution  

 Fat tail survives the upscaling

Tallakstad et al PRL (13)
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• Burst dynamics : spatial distribution of clusters

Clipped velocity map VC : 

Results
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Depinning Bursts Pinning Clusters

Creep expts

‹V› = 1.4 μm.s-1

Tallakstad et al, PRE (11)



For both Pinning / Depinning

Extremely robust 
wide range of exp. conditions
thresholds C

Depinning

Pinning

Results

Distributions independent of 

loading regime : creep or forced  

• Clusters size distribution
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Tallakstad et al, PRE (11)



Results

Propagation of an elastic line through a disordered landscape
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(Coll.: D. Bonamy, L. Ponson)

24

 Quasi-static limit

 Linear elastic material 
and weakly heterogeneous

 long-range elastic kernel 

Gao & Rice (89)
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Results

• Bursts size distribution / comparison with simulations
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Propagation of an elastic line through a disordered landscape

Quantitative agreement !! 

size, duration & shapes of the clusters

(Coll.: D. Bonamy, L. Ponson / L. Laurson, S. Zapperi)

τa ≈ 1.5

Bonamy, Santucci, Ponson, PRL (08),  Laurson, Santucci, Zapperi, PRE (10)
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Results
Crackling Noise 

Forced expts

‹V› ≈ 200 μm.s-1

Santucci et al, ICF (09), 
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Results
Crackling Noise 

Creep expts

‹V› ≈ 1 μm.s-1

Laurson, Illa, Santucci, Tallakstad, Maloy, Alava, Nat. Comm (2013) 
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Results
Crackling Noise 

γ ≈ 1.7

Laurson, Illa, Santucci, Tallakstad, Maloy, Alava, Nat. Comm (2013) 
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Crackling Noise 

Avalanche Statistics 

Results
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Results
Crackling Noise / Avalanche Shape 

Average Avalanche Shape 

Laurson, Illa, Santucci, Tallakstad, Maloy, Alava, Nat. Comm (2013) 

qEW,  γ -1 = 0.56 

α = 2, γ -1 = 0.74

α = 0, γ -1 = 1

γ ≈ 1.7
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A simple model with minimal ingredients : 

Linear Elastic Material, weak disorder, quasi-static limit

Langevin equation with non local elastic term,

Quasi-static crack growth appears as a “self-organized” dynamic phase transition

Reproduce the Crackling dynamics 

Quantitatively the scaling behavior at both local and global scales

Avalanches shape, size and duration distributions.

Summary

Propagation of an elastic crack line through a disordered landscape
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Interfacial depinning model
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Average Avalanche Shape 
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Broken Time symmetry 
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More details in  :



A.E.
( V )

Time (s)

‹V›(t)
(cm/s)

Front 

velocity

“Crackling Noise”

Expt ~ 5 s, front length = 1 cm. - acquisition rate : movie : 1000 fps, 

‹V› ~ 200 μm.s-1 ; resolution ~9μm sound : 1 MHz – (filtered at 10 kHz) 
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