Hybrid Discretization

of
 4D N=4 Supersymmetric YM Theory

So Matsuura

Keio University, Physics Department Hiyoshi
based on work with
M. Hanada, F. Sugino, H. Suzuki arXiv:1004.5513, 1109.6807

§ 0. Introduction

 and motivation Holography\(\underset{\substack{4D \mathrm{N}=4 \mathrm{SYM}

(\mathrm{SU}(\mathrm{N}), \lambda)}}{ }\)\begin{tabular}{c}

supergravity
(or superstring)
on $A d S_{5} \times S^{5}$

\end{tabular}

the gauge theory as a candidate of quantum gravity?

$$
\text { So far: } \begin{aligned}
& \checkmark \text { BPS operators } \\
& \checkmark \text { Wilson loops } \\
& \checkmark \text { integrability } \\
& \checkmark \text { etc... }
\end{aligned}
$$

What we need next?

- deeper understanding of the theory mathematically.
- EXPERIMENT!

method to numerically simulate the 4D N=4 SYM

WVblattio geeatwegearmetry?

lattice gauge theory

$>$ lattice: a network of discrete objects
$>$ flat space-time appears in the "continuum limit".
$>$ not merely a technique to compute something
$>$ a definition of the field theory (up to sign-problem)

Is lattice only way to create space-time?

 NO!$>$ tachyon condensation from non-BPS D-instantons to Dp-branes
$>$ Matrix (appears in my talk soon)
$>$ other smart ways in the future

Hybrid discretization of 4d N=4 SYM (Plan of Today's Talk)

Lattice formulation of 2d $N=(8,8)$ SYM with plane-wave like deformation
\square lattice continuum limit
Continuum
2d $N=(8,8)$ SYM with plane-wave like deformation

§ 1. lattice formulation for $2 \mathrm{~d} N=(8,8)$
 SYM with plane-wave like deformation

Euclidean 2d $N=(8,8)$ SYM (dimensional reduction of 10D $N=1$ SYM)

$$
\begin{aligned}
S_{0}=\frac{2}{g_{2 d}^{2}} \int & d^{2} x \operatorname{Tr}\left(\frac{1}{2} F_{12}^{2}+\frac{1}{2}\left(D_{\mu} X^{I}\right)^{2}-\frac{1}{4}\left[X^{I}, X^{J}\right]^{2}\right. \\
& \left.+\frac{1}{2} \Psi^{T}\left(D_{1}+\gamma_{2} D_{2}\right) \Psi+\frac{\mathrm{i}}{2} \Psi^{T} \gamma_{I}\left[X^{I}, \Psi\right]\right)
\end{aligned}
$$

where $\mu=1,2, \quad I, J=3,4, \cdots, 10$.

to be manifest

Field redefinition (BTFT form)

$$
X^{I} \Rightarrow\left\{\begin{array}{lr}
X_{i} & (i=3,4) \\
B_{A} & (A=1,2,3) \\
C, \phi_{+}, \phi_{-}
\end{array}\right.
$$

$$
\Psi \Rightarrow\left\{\begin{array}{l}
\psi_{+\mu}, \rho_{+i}, \chi_{+A}, \eta_{+} \\
\psi_{-\mu}, \rho_{-i}, \chi_{-A}, \eta_{-}
\end{array}\right.
$$

$\binom{\psi_{+\mu}}{\psi_{-\mu}}, \quad\binom{\chi_{+A}}{\chi_{-A}}, \quad\binom{\eta_{+}}{-\eta_{-}}, \quad\binom{Q_{+}}{Q_{-}}: \operatorname{SU}(2)$ doublets $\quad\left(\begin{array}{c}\phi_{+} \\ C \\ -\phi_{-}\end{array}\right): S U(2)$ triplet

$$
\left.\left.\begin{array}{rl}
Q_{ \pm} A_{\mu} & =\psi_{ \pm \mu}, \quad Q_{ \pm} \psi_{ \pm \mu}= \pm i D_{\mu} \phi_{ \pm}, \quad Q_{\mp} \psi_{ \pm \mu}=\frac{i}{2} D_{\mu} C \mp \tilde{H}_{\mu}, \\
Q_{ \pm} \tilde{H}_{\mu} & =\left[\phi_{ \pm}, \psi_{\mp \mu}\right] \mp \frac{1}{2}\left[C, \psi_{ \pm \mu}\right] \mp \frac{i}{2} D_{\mu} \eta_{ \pm}, \\
Q_{ \pm} X_{i} & =\rho_{ \pm i}, \quad Q_{ \pm} \rho_{ \pm i}=\mp\left[X_{i}, \phi_{ \pm}\right], \quad Q_{\mp} \rho_{ \pm i}=-\frac{1}{2}\left[X_{i}, C\right] \mp \tilde{h}_{i}, \\
Q_{ \pm} \tilde{h}_{i} & =\left[\phi_{ \pm}, \rho_{\mp i}\right] \mp \frac{1}{2}\left[C, \rho_{ \pm i}\right] \pm \frac{1}{2}\left[X_{i}, \eta_{ \pm}\right], \\
Q_{ \pm} B_{A} & =\chi_{ \pm A}, \quad Q_{ \pm} \chi_{ \pm A}= \pm\left[\phi_{ \pm}, B_{A}\right], \quad Q_{\mp} \chi_{ \pm A}=-\frac{1}{2}\left[B_{A}, C\right] \mp H_{A}, \\
Q_{ \pm} H_{A} & =\left[\phi_{ \pm}, \chi_{\mp A}\right] \pm \frac{1}{2}\left[B_{A}, \eta_{ \pm}\right] \mp \frac{1}{2}\left[C, \chi_{ \pm A}\right], \\
Q_{ \pm} C & =\eta_{ \pm}, \quad Q_{ \pm} \eta_{ \pm}= \pm\left[\phi_{ \pm}, C\right], \quad Q_{\mp} \eta_{ \pm}=\mp\left[\phi_{+}, \phi_{-}\right], \\
Q_{ \pm} \phi_{ \pm} & =0, \quad Q_{\mp} \phi_{ \pm}=\mp \eta_{ \pm} .
\end{array}\right] \begin{array}{c}
Q_{ \pm}^{2}=\left\{Q_{+}, Q_{-}\right\}=0 \\
\text { up to gauge trans. }
\end{array}\right]
$$

Action in $Q_{+} Q_{-}$-exact form

$$
\begin{gathered}
S_{0}=Q_{+} Q_{-\mathcal{F}}(0) \\
\mathcal{F}^{(0)}=\frac{1}{g_{2 d}^{2}} \int d^{2} x \operatorname{Tr}\left\{-i B_{A} \Phi_{A}-\frac{1}{3} \epsilon_{A B C} B_{A}\left[B_{B}, B_{C}\right]\right. \\
\left.-\psi_{+\mu} \psi_{-\mu}-\rho_{+i} \rho_{-i}-\chi_{+A} \chi_{-A}-\frac{1}{4} \eta_{+} \eta_{-}\right\}, \\
\left\{\begin{array}{l}
\Phi_{1}=2\left(-D_{1} X_{3}-D_{2} X_{4}\right), \quad \Phi_{2}=2\left(-D_{1} X_{4}+D_{2} X_{3}\right), \\
\Phi_{3}=2\left(-F_{12}+i\left[X_{3}, X_{4}\right]\right)
\end{array}\right.
\end{gathered}
$$

manifestly invariant under $Q_{ \pm}$-transformation

deformation of $Q_{ \pm}$(to obtain plane-wave like deformation)

(A) $\left\{\begin{array}{l}Q_{ \pm} A_{\mu}=\psi_{ \pm \mu}, \quad Q_{ \pm} \psi_{ \pm \mu}= \pm i D_{\mu} \phi_{ \pm}, \quad Q_{\mp} \psi_{ \pm \mu}=\frac{i}{2} D_{\mu} C \mp \tilde{H}_{\mu}, \\ Q_{ \pm} \tilde{H}_{\mu}=\left[\phi_{ \pm}, \psi_{\mp \mu}\right] \mp \frac{1}{2}\left[C, \psi_{ \pm \mu}\right] \mp \frac{i}{2} D_{\mu} \eta_{ \pm}+\frac{M}{3} \psi_{ \pm \mu},\end{array}\right.$
$(\mathrm{X})\left\{\begin{array}{l}Q_{ \pm} X_{i}=\rho_{ \pm i}, \quad Q_{ \pm} \rho_{ \pm i}=\mp\left[X_{i}, \phi_{ \pm}\right], \quad Q_{\mp} \rho_{ \pm i}=-\frac{1}{2}\left[X_{i}, C\right] \mp \tilde{h}_{i}, \\ Q_{ \pm} \tilde{h}_{i}=\left[\phi_{ \pm}, \rho_{\mp i}\right] \mp \frac{1}{2}\left[C, \rho_{ \pm i}\right] \pm \frac{1}{2}\left[X_{i}, \eta_{ \pm}\right]+\frac{M}{3} \rho_{ \pm i},\end{array}\right.$
(B) $\left\{\begin{array}{l}Q_{ \pm} B_{A}=\chi_{ \pm A}, \quad Q_{ \pm} \chi_{ \pm A}= \pm\left[\phi_{ \pm}, B_{A}\right], \quad Q_{\mp} \chi_{ \pm A}=-\frac{1}{2}\left[B_{A}, C\right] \mp H_{A}, \\ Q_{ \pm} H_{A}=\left[\phi_{ \pm}, \chi_{\mp A}\right] \pm \frac{1}{2}\left[B_{A}, \eta_{ \pm}\right] \mp \frac{1}{2}\left[C, \chi_{ \pm A}\right],+\frac{M}{3} \chi_{ \pm A}\end{array}\right.$
(C) $\left\{\begin{aligned} Q_{ \pm} C & =\eta_{ \pm}, \quad Q_{ \pm} \eta_{ \pm}= \pm\left[\phi_{ \pm}, C\right]+\frac{2 M}{3} \phi_{ \pm}, \\ Q_{\mp} \eta_{ \pm} & =\mp\left[\phi_{+}, \phi_{-}\right] \pm \frac{M}{3} C, \quad Q_{ \pm} \phi_{ \pm}=0, \quad Q_{\mp} \phi_{ \pm}=\mp \eta_{ \pm}\end{aligned}\right.$

Nilpotency
generators of $S U(2)_{R}$
$Q_{ \pm}^{2}=$ (infinitisimal gauge transformation by $\left.\pm \phi_{ \pm}\right) \pm \frac{M}{3} J_{ \pm \pm}$,
$\left\{Q_{+}, Q_{-}\right\}=$(infinitisimal gauge transformation by C) $-\frac{M}{3} J_{0}$.

corresponding deformation of the action

$$
\begin{aligned}
& S=\left(Q_{+} Q_{-}-\frac{M}{3}\right)\left(\mathcal{F}_{0}+\Delta \mathcal{F}\right)=S_{0}+\Delta S \\
& \begin{aligned}
& \Delta \mathcal{F}=-\frac{1}{g_{2 \mathrm{~d}}^{2}} \int d^{2} x \operatorname{Tr}\left[\sum_{A=1}^{3} \frac{M}{9} B_{A}^{2}+\sum_{i=3}^{4} \frac{2 M}{9} X_{i}^{2}\right] \\
& \Delta S=\frac{1}{g_{2 d}^{2}} \int d^{2} x \operatorname{Tr}\{ \frac{2 M^{2}}{81}\left(B_{A}^{2}+X_{i}^{2}\right)-\frac{M}{2} \epsilon_{a b c} X_{a}\left[X_{b}, X_{c}\right]+\frac{M^{2}}{9}\left(X_{a}^{2}\right) \\
&+\frac{2 M}{3} \psi_{+\mu} \psi_{-\mu}+\frac{2 M}{9} \rho_{+i} \rho_{-i}+\frac{4 M}{9} \chi_{+A} \chi_{-A}-\frac{M}{6} \eta_{+} \eta_{-} \\
&\left.-\frac{4 i M}{9} B_{3}\left(F_{12}+i\left[X_{3}, X_{4}\right]\right)\right\} .
\end{aligned}
\end{aligned}
$$

※ This action is not exact w.r.t $Q_{ \pm}$but invariant by the $Q_{ \pm}$-transformation.

explicit form of the action

$$
\begin{aligned}
& S_{B}=\frac{2}{g^{2}} \int d^{2} y \operatorname{Tr}\left\{\frac{1}{2} F_{12}^{2}+\frac{1}{2}\left(\mathcal{D}_{\mu} X_{a}\right)^{2}+\frac{1}{2}\left(\mathcal{D}_{\mu} X_{i}\right)^{2}-\frac{1}{4}\left[X_{i}, X_{j}\right]^{2}\right. \\
& -\frac{1}{2}\left[X_{a}, X_{i}\right]^{2}+\frac{1}{2}\left(\frac{M}{3} X_{a}+\frac{i}{2} \epsilon_{a b c}\left[X_{b}, X_{c}\right]\right)^{2} \\
& \left.+\frac{M^{2}}{81} X_{i}^{2}-i \frac{2 M}{9} X_{7}\left(F_{12}+i\left[X_{3}, X_{4}\right]\right)\right\}, \\
& S_{F}=\frac{2}{g^{2}} \int d^{2} y \operatorname{Tr}\left\{\frac{i}{2} \bar{\psi}_{r \alpha}\left(\hat{\gamma}_{\mu}\right)_{r s} \mathcal{D}_{\mu} \psi_{s \alpha}-\frac{1}{2} \bar{\psi}_{r \alpha}\left(\sigma_{a}\right)_{\alpha \beta}\left[X_{a}, \psi_{r \beta}\right]\right. \\
& \left.-\frac{1}{2} \bar{\psi}_{r \alpha}\left(\hat{\gamma}_{i}\right)_{r s}\left[X_{i}, \psi_{s \alpha}\right]-\frac{1}{2} m_{r} \bar{\psi}_{r \alpha} \psi_{r \alpha},\right\} \\
& S_{\text {g.f. }}=\frac{2}{g^{2}} \int d^{2} y \operatorname{Tr} \frac{1}{2}\left(\partial_{\mu} A_{\mu}+i\left[X_{a}^{(0)}, X_{a}\right]\right)^{2}, \\
& S_{\mathrm{gh}}=\frac{2}{g^{2}} \int d^{2} y \operatorname{Tr}\left\{-\partial_{\mu} \bar{c} \mathcal{D}_{\mu} c+\left[X_{a}^{(0)}, \bar{c}\right]\left[X_{a}, c\right]\right\}, \begin{array}{l}
\begin{array}{l}
\text { fuzzy sphere configura } \\
\text { is a classical solution. }
\end{array}
\end{array} \\
& \binom{\left\{\hat{\gamma}_{I}, \hat{\gamma}_{J}\right\}=-2 \delta_{I J} .}{m_{r}=\left(\frac{M}{9}, \frac{M}{9}, \frac{M}{3}, \frac{M}{3}, \frac{2 M}{9}, \frac{2 M}{9}, \frac{2 M}{9}, \frac{M}{3}\right),}
\end{aligned}
$$

Lattice formulation of this theory (Sugino's formulation)

continuum
theory $S_{\text {cont }}=\left(Q_{+} Q_{-}-\frac{M}{3}\right) \mathcal{F}_{\text {cont }_{X_{i}(x), \mathrm{B}_{\mathrm{A}}(\mathrm{x}), \psi_{ \pm \mu}(x) \text { etc... }}}$

- $A_{\mu} \rightarrow U_{\mu}$ (link variables)
- others are site variables
- $Q_{ \pm}$transformation to the lattice variables.

lattice theory

$$
S_{\mathrm{lat}}=\left(Q_{+}^{\mathrm{lat}} Q_{-}^{\text {lat }}-\frac{M}{3}\right) \mathcal{F}_{\mathrm{lat}}
$$

Important properties

(1) The lattice theory preserves 2 supercharges $Q_{ \pm}$.
(2) fuzzy S^{2} is still $Q_{ \pm}$-invariant solution
(3) All the scalar flat directions are lifted up by the mass deformation, that is, the fuzzy sphere solution is an isolated solution.
(4) We do not need any fine tuning in taking the lattice continuum limit.

We can take this limit safely!

Lattice formulation of mass deformed 2d $N=(8,8)$ SYM

lattice continuum limit

§ 1.5 From matrix to fuzzy sphere (preparation to the next step)

Let us consider a matrix model with the action,

$$
S=\frac{1}{g_{0}^{2}} \operatorname{Tr}\left[\frac{1}{4}\left(i\left[X_{i}, X_{j}\right]+\mu \epsilon_{i j k} X_{k}\right)^{2}\right] \quad X_{i}: n k \times n k \text { hermitian matrix }
$$

Expanding the matrix X_{i} around a classical solution as

$$
X_{i}=\mu \hat{L}_{i}+A_{i}, \quad\left[\hat{L}_{i}, \hat{L}_{j}\right]=i \epsilon_{i j k} \hat{L}_{k}
$$

we obtain

$$
S=\frac{1}{g_{0}^{2}} \operatorname{Tr}\left[\frac{1}{4}\left(i \mu\left[\hat{L}_{i}, A_{j}\right]-i \mu\left[\hat{L}_{j}, A_{i}\right]+\mu \epsilon_{i j k} A_{k}+i\left[A_{i}, A_{j}\right]\right)^{2}\right]
$$

specific solution

$$
X_{i}=\mu \widehat{L}_{i}+A_{i}
$$

$$
\begin{gathered}
\hat{\boldsymbol{L}}_{\boldsymbol{i}}=\mathbf{1}_{\boldsymbol{k}} \otimes \boldsymbol{L}_{\boldsymbol{i}}^{(j)}, \quad L_{i}^{(j)}: \operatorname{spin} j \text { representation of su(2) } \\
{\left[L_{i}^{(j)}, L_{j}^{(j)}\right]=i \epsilon_{i j k} L_{k}^{(j)}} \\
L_{ \pm}^{(j)}|j, r>=\sqrt{(j \mp 1)(j \pm 1+1)}| j, r \pm 1> \\
L_{3}^{(j)}|j, r>=r| j, r>
\end{gathered}\left(\begin{array}{lll}
\boldsymbol{L}_{\boldsymbol{i}}^{(j)} & & \\
& \ddots & \\
& & \boldsymbol{L}_{\boldsymbol{i}}^{(j)}
\end{array}\right)
$$

expand A_{i} by fuzzy spherical harmonics

$$
\begin{gathered}
\boldsymbol{A}_{\boldsymbol{i}}=\sum_{\boldsymbol{J}=\mathbf{0}}^{2 \boldsymbol{j}} \sum_{m=-\boldsymbol{J}}^{\boldsymbol{J}} \boldsymbol{a}_{\boldsymbol{J m}, \boldsymbol{i}} \otimes \widehat{\boldsymbol{Y}}_{J m}^{(j j)} \\
\hat{Y}_{J m}^{(j j)}=\sqrt{n} \sum_{r, r^{\prime}=-j}^{j}(-1)^{-j+r^{\prime}} C_{j r, j-r}^{J m}\left|j r><j r^{\prime}\right|
\end{gathered}
$$

satisfying

$$
\begin{aligned}
& {\left[L_{ \pm}^{(j)}, \hat{Y}_{J m}^{(j j)}\right]=\sqrt{(J \mp m)(J \pm m+1)} \hat{Y}_{J m \pm 1}^{(j j)}} \\
& {\left[L^{(j) 2}, \hat{Y}_{J m}^{(j j)}\right]=J(J+1) \hat{Y}_{J m}^{(j j)}} \\
& \left(\widehat{Y}_{J m}^{(j j)}\right)^{\dagger}=(-1)^{m} \widehat{Y}_{J-m}^{(j j)}
\end{aligned}
$$

fuzzy spherical harmonic

$$
\widehat{Y}_{J m}^{(j j)}
$$

VS
spherical harmonics

$$
Y_{J m}(\Omega)
$$

angular momentum operators

$$
\mathcal{L}_{ \pm} Y_{J m}(\Omega)=\sqrt{(J \mp m)(J \pm m+1)} Y_{J m \pm 1}(\Omega)
$$

$$
\mathcal{L}_{3} Y_{J m}(\Omega)=m Y_{J m}(\Omega)
$$

$$
\mathcal{L}^{2} Y_{J m}(\Omega)=J(J+1) Y_{J m}(\Omega)
$$

$$
\int d \Omega\left[\left(Y_{J m}(\Omega)\right)^{\dagger} Y_{J^{\prime} m^{\prime}}(\Omega)\right]=\delta_{J J^{\prime}} \delta_{m m^{\prime}}
$$

mapping rule

different point

$$
\begin{aligned}
& \frac{1}{n} \operatorname{tr}_{n}\left\{\left(\widehat{Y}_{J_{1} m_{1}}^{(j j)}\right)^{\dagger} \widehat{Y}_{J_{2} m_{2}}^{(j)} \widehat{Y}_{J_{3} m_{3}}^{(j j)}\right\} \\
&=(-1)^{J_{1}+2 j} \sqrt{n\left(2 J_{2}+1\right)\left(2 J_{3}+1\right)} \\
& \times C_{J_{2} m_{2}, J_{3} m_{3}}^{J_{1} m_{1}}\left\{\begin{array}{ccc}
J_{1} & J_{2} & J_{3} \\
j & j & j
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
\int d \Omega & \left\{\left(Y_{J_{1} m_{1}}(\Omega)\right)^{\dagger} Y_{J_{2} m_{2}}(\Omega) Y_{J_{3} m_{3}}(\Omega)\right\} \\
= & \sqrt{\frac{\left(2 J_{2}+1\right)\left(2 J_{3}+1\right)}{2 J_{1}+1}} \\
& \times C_{J_{2} m_{2}, J_{3} m_{3}}^{J_{1} C_{J_{2} 0, J_{3} 0}^{J_{1} 0}}
\end{aligned}
$$

$$
\left\{\begin{array}{ccc}
J_{1} & J_{2} & J_{3} \\
j & j & j
\end{array}\right\} \sim(-1)^{-J_{1}+2 j} \sqrt{\frac{1}{n\left(2 J_{1}+1\right)}} C_{J_{2} 0, J_{3} 0}^{J_{1} 0}
$$

$\widehat{Y}_{J m}^{(j j)}$ gives a matrix regularization of $Y_{J m}(\Omega)$

claim

$$
S=\frac{1}{g_{0}^{2}} \operatorname{Tr}\left[\frac{1}{4}\left(i \mu\left[\hat{L}_{i}, A_{j}\right]-i \mu\left[\hat{L}_{j}, A_{i}\right]+\mu \epsilon_{i j k} A_{k}+i\left[A_{i}, A_{j}\right]\right)^{2}\right]
$$

defines a theory on fuzzy S^{2} with radius $1 / \mu$, which is a matrix regularization of a theory on S^{2} defined by the action,

$$
S=\frac{1}{g^{2}} \int d \Omega\left[\frac{1}{4}\left(i \mu \mathcal{L}_{i} A_{j}(\Omega)-i \mu \mathcal{L}_{j} A_{i}(\Omega)+\mu \epsilon_{i j k} A_{k}(\Omega)+i\left[A_{i}(\Omega), A_{j}(\Omega)\right]\right)^{2}\right]
$$

Continuum limit of matrix regularization

Let us consider the case $j \gg O(1)$ and look around the north pole;

$$
|j, j-s>\equiv| s \gg \quad(s \ll j)
$$

Around this region,

$$
\begin{aligned}
L_{+} \mid j, j-s> & \sim \sqrt{(2 j+1) s} \mid j, j-s+1> \\
L_{-} \mid j, j-s> & \sim \sqrt{(2 j+1)(s+1)} \mid j, j-s-1>
\end{aligned}
$$

We can regard $L_{ \pm}$as the anihilation/creation operator of harmonic oscillator on $\mid s \gg$;

$$
a \equiv \frac{L_{+}}{\sqrt{2 j+1}} \quad a^{\dagger} \equiv \frac{L_{-}}{\sqrt{2 j+1}} \quad \begin{aligned}
& a|s \gg=\sqrt{s}| s-1 \gg \\
& a^{\dagger}|s \gg=\sqrt{s+1}| s+1 \gg
\end{aligned}
$$

In fact,

$$
\begin{aligned}
{\left[a, a^{\dagger}\right] \mid s \gg=} & \left.\frac{2 L_{3}}{2 j+1}\left|j, j-s>=\frac{2 j-2 s}{2 j+1}\right| s \gg \sim \right\rvert\, s \gg \\
& \longmapsto \\
& {\left[a, a^{\dagger}\right]=1 }
\end{aligned}
$$

Mapping to Moyal plane

a and a^{\dagger} can be regarded as the coordinate of Moyal plane as

$$
\left[\sqrt{2 \Theta} a^{\dagger} \equiv \widehat{\xi}-i \widehat{\eta} \equiv \widehat{\zeta}^{\dagger}\right.
$$

Fuzzy spherical harmonics around the north pole

$$
\begin{aligned}
\widehat{Y}_{J m}^{(j j)} & =\sqrt{2 J+1} \sum_{s, s^{\prime}=0}^{2 j} C_{j j-s^{\prime}, J m}^{j j-s}\left|s \gg<s^{\prime}\right| \\
& \cong \sqrt{4 \pi} \sum_{s=0}^{\infty} Y_{J m}(\theta, 0)|s \ggg \ll m| \quad\left(\theta \cong 2 \sqrt{\frac{s+1 / 2}{2 j+1}}\right)
\end{aligned}
$$

Stereographic transformation
For small θ,

$$
\zeta=R \theta e^{i \varphi}, \zeta^{\dagger}=R \theta e^{-i \varphi}
$$

Combining it with $*$ and $*$, the non-commutativity becomes

$$
\Theta=\frac{2}{(2 j+1) R^{2}}=\frac{2}{n}\left(\frac{3}{M}\right)^{2} \quad\left(n \equiv 2 j+1, R \equiv \frac{3}{M}\right)
$$

Continuum limit

$$
j \rightarrow \infty, M \rightarrow 0, \text { with fixing } \Theta=\frac{2}{n}\left(\frac{3}{M}\right)^{2}
$$

In this limit, the Hilbert space becomes the Moyal plane with noncommutativity Θ, and the fuzzy spherical harmonics can be expanded by plane wave;

$$
\hat{x}=(\hat{\xi}, \hat{\eta})
$$

$\widehat{Y}_{J m}^{(j j)} \cong \begin{cases}\delta_{m, 0} \sqrt{2 J+1} \int \frac{d^{2} \tilde{q}}{(2 \pi)^{2}} \delta^{2}(\tilde{q}) e^{i \tilde{q} \cdot \widehat{x}} & \text { for } J \leq{ }^{\exists} J_{\epsilon} \\ 2 \pi \Theta \sqrt{2 J} \int \frac{d^{2} \tilde{q}}{(2 \pi)^{2}} \frac{(-i)^{m}}{|\tilde{q}|} \delta\left(|\tilde{q}|-\frac{M J}{3}\right) e^{i m \phi_{\tilde{q}}} e^{i \tilde{q} \cdot \hat{x}} & \text { for } J \geq J_{\epsilon}\end{cases}$

As a result, a matrix ϕ can be regarded as a field on $\mathbb{R}_{\boldsymbol{\Theta}}^{\mathbf{2}}$:

$$
\begin{aligned}
\phi= & \sum_{J, m} \phi_{J m} \otimes Y_{J m}^{(j j)} \rightarrow \int \frac{d^{2} \tilde{q}}{(2 \pi)^{2}} \widetilde{\phi}(\tilde{q}) e^{i \tilde{q} \cdot \widehat{x}} \\
\tilde{\phi}(\tilde{q})= & (2 \pi)^{2} \delta^{2}(\tilde{q}) \sum_{J=0}^{J_{\epsilon}} \sqrt{2 J+1} \phi_{J 0} \\
& +2 \pi \frac{3}{M} \sqrt{\frac{6}{M}} \sum_{m \in \mathbf{Z}} \frac{(-i)^{m}}{\sqrt{|\tilde{q}|}} e^{i m \phi_{\tilde{q}}} \phi_{\left.J=\frac{3}{M} \right\rvert\, \tilde{q}, m}
\end{aligned}
$$

§ $34 \mathrm{D} N=4 \mathrm{U}(\mathrm{k}) \mathrm{SYM}$ on $\mathrm{R}^{\wedge} 2 \mathrm{x}$ fuzzy $\mathrm{S}^{\wedge} 2$

We repeat the same procedure done in the toy model.
Consider the following specific fuzzy sphere solution:

$$
\begin{gathered}
X_{a}^{(\mathrm{cl})}(y)=\frac{M}{3} 1_{k} \otimes L_{a}^{(j)}, \quad(N=k(2 j+1) \equiv \\
S_{B}=\frac{2}{g^{2}} \int d^{2} y \operatorname{Tr}\left\{\frac{1}{2} F_{12}^{2}+\frac{1}{2}\left(\mathcal{D}_{\mu} X_{a}\right)^{2}+\frac{1}{2}\left(\mathcal{D}_{\mu} X_{i}\right)^{2}-\frac{1}{4}\left[X_{i}, X_{j}\right]^{2}\right. \\
-\frac{1}{2}\left[X_{a}, X_{i}\right]^{2}+\frac{1}{2}\left(\frac{M}{3} X_{a}+\frac{i}{2} \epsilon_{a b c}\left[X_{b}, X_{c}\right]\right)^{2} \\
\left.\quad+\frac{M^{2}}{81} X_{i}^{2}-i \frac{2 M}{9} X_{7}\left(F_{12}+i\left[X_{3}, X_{4}\right]\right)\right\}, \\
S_{F}=\frac{2}{g^{2}} \int d^{2} y \operatorname{Tr}\left\{\frac{i}{2} \bar{\psi}_{r \alpha}\left(\hat{\gamma}_{\mu}\right)_{r s} \mathcal{D}_{\mu} \psi_{s \alpha}-\frac{1}{2} \bar{\psi}_{r \alpha}\left(\sigma_{a}\right)_{\alpha \beta}\left[X_{a}, \psi_{r \beta}\right]\right. \\
\left.-\frac{1}{2} \bar{\psi}_{r \alpha}\left(\hat{\gamma}_{i}\right)_{r s}\left[X_{i}, \psi_{s \alpha}\right]-\frac{1}{2} m_{r} \bar{\psi}_{r a} \psi_{r \alpha}\right\} .
\end{gathered}
$$

Expand the fields by fuzzy spherical harmonics

$$
\begin{aligned}
& A_{\mu}(y)=\int \frac{d^{2} p}{(2 \pi)^{2}} A_{\mu}(p) e^{i p \cdot y}=\sum_{J m} \int \frac{d^{2} p}{(2 \pi)^{2}} \tilde{A}_{\mu, J m}(p) \otimes \hat{Y}_{J m}^{(j j)} e^{i p \cdot y} \\
& X_{a}(y)= \frac{M}{3} \mathbf{1}_{k} \otimes L_{a}^{(j)}+\int \frac{d^{2} p}{(2 \pi)^{2}} V_{a}(p) e^{i p \cdot y} \\
&=\frac{M}{3} \mathbf{1}_{k} \otimes L_{a}^{(j)}+\sum_{\rho J m} \int \frac{d^{2} p}{(2 \pi)^{2}} \tilde{V}_{\rho, J m}(p) \otimes \hat{Y}_{J m, a}^{\rho(j j)} e^{i p \cdot y}, \\
& X_{i}(y)=\int \frac{d^{2} p}{(2 \pi)^{2}} X_{i}(p) e^{i p \cdot y}=\sum_{J m} \int \frac{d^{2} p}{(2 \pi)^{2}} \widetilde{X}_{i, J m}(p) \otimes \hat{Y}_{J m}^{(j j)} e^{i p \cdot y} \\
& \psi_{r \alpha}(y)=\int \frac{d^{2} p}{(2 \pi)^{2}} \psi_{r \alpha}(p) e^{i p \cdot y}=\sum_{\kappa J m} \int \frac{d^{2} p}{(2 \pi)^{2}} \tilde{\psi}_{\alpha \kappa, J m}(p) \otimes \hat{Y}_{J m, \alpha}^{\kappa(j j)} e^{i p \cdot y}, \\
& c(y)=\int \frac{d^{2} p}{(2 \pi)^{2}} c(p) e^{i p \cdot y}=\sum_{J m} \int \frac{d^{2} p}{(2 \pi)^{2}} \tilde{c}_{J m}(p) \otimes \hat{Y}_{J m}^{(j j)} e^{i p \cdot y} \\
& \bar{c}(y)=\int \frac{d^{2} p}{(2 \pi)^{2}} \bar{c}(p) e^{i p \cdot y}=\sum_{J m} \int \frac{d^{2} p}{(2 \pi)^{2}} \tilde{c}_{J m}(p) \otimes \hat{Y}_{J m}^{(j j)} e^{i p \cdot y} \quad \text { spherical harmonics }
\end{aligned}
$$

Repeating the discussion for the toy model, we obtain the action of (matrix regularized) 4d $N=4 \mathrm{SYM}$ on $\mathbb{R}^{2} \times S_{\Theta}^{2}$ by inserting this expansion in the action.

Toward explicit expression

(1) action of $\boldsymbol{L}_{i}^{(j)}$ to the fuzzy spherical harmonics $\left(\partial_{a} \equiv i\left[L_{i}^{(j)}, \cdot\right]\right)$

$$
\begin{aligned}
& \partial_{a} \widehat{Y}_{J m}^{(j j)}=i \sqrt{J(J+1)} \widehat{Y}_{J m(j j) a}^{\rho=0}, \\
& \partial_{a} \widehat{Y}_{J m(j j) a}^{\rho}=i \sqrt{(J(J+1))} \delta_{\rho 0} \widehat{Y}_{J m}^{(j j)}, \\
& \partial_{a}^{2} \widehat{Y}_{J m}^{(j j)}=-J(J+1) \widehat{Y}_{J m}^{(j j)}, \\
& \left(\vec{\partial} \times \vec{Y}_{J m}^{\rho}+\vec{Y}_{J m}^{\rho}\right)_{a}=\rho(J+1) \widehat{Y}_{J m(j j) a}^{\rho}, \\
& \left(-i\left(\sigma_{a}\right)_{\alpha \beta} \partial_{a}+\frac{3}{4} \delta_{\alpha \beta}\right) \hat{Y}_{J m(j j) \beta}^{\kappa}=\kappa\left(J+\frac{3}{4}\right) \hat{Y}_{J m(j j) \alpha}^{\kappa} .
\end{aligned}
$$

(2) vertex coefficients

$$
\begin{aligned}
& \hat{C}_{J_{2} m_{2}(j j) ; J_{3} m_{3}(j j)}^{J_{1} m_{1}(j j)} \equiv \frac{1}{n} \operatorname{tr} \operatorname{tr}_{n}\left\{\left(\hat{Y}_{J_{1} m_{1}}^{(j j)}\right)^{\dagger} \hat{Y}_{J_{2} m_{2}}^{(j j)} \hat{Y}_{J_{3} m_{3}}^{(j j)}\right\}, \\
& \widehat{\mathcal{D}}_{J_{2} m_{2}(j j) \rho_{2} ; J_{3} m_{3}(j j) \rho_{3}}^{J_{1} m_{1}(j j)} \equiv \sum_{a=1}^{3} \frac{1}{n} \operatorname{tr} n\left\{\left(\hat{Y}_{J_{1} m_{1}}^{(j j)}\right)^{\dagger} \hat{Y}_{J_{2} m_{2}(j j) a}^{\rho_{2}} \hat{Y}_{J_{3} m_{3}(j j) a}^{\rho_{3}}\right\}, \\
& \widehat{\mathcal{E}}_{J_{1} m_{1}(j j) \rho_{1} ; J_{2} m_{2}(j j) \rho_{2} ; J_{3} m_{3}(j j) \rho_{3}} \equiv \sum_{a, b, c=1}^{3} \epsilon_{a b c} \frac{1}{n} \operatorname{tr} n_{n}\left\{\hat{Y}_{J_{1} m_{1}(j j) a}^{\rho_{1}} \hat{Y}_{J_{2} m_{2}(j j) b}^{\rho_{2}} \hat{Y}_{J_{3} m_{3}(j j) c}^{\rho_{3}}\right\}, \\
& \hat{\mathcal{F}}_{J_{2} m_{2}(j j) \kappa_{2} ; J_{3} m_{3}(j j)}^{J_{1} m_{1}(j j) \kappa_{1}} \equiv \sum_{\alpha= \pm \frac{1}{2}} \frac{1}{n} \operatorname{tr} n\left\{\left(\hat{Y}_{J_{1} m_{1}(j j) \alpha}^{\kappa_{1}}\right)^{\dagger} \hat{Y}_{J_{2} m_{2}(j j) \alpha}^{\kappa_{2}} \hat{Y}_{J_{3} m_{3}}^{(j j)}\right\}, \\
& \hat{\mathcal{G}}_{J_{2} m_{2}(j j) \kappa_{2} ; J_{3} m_{3}(j j) \rho_{3}}^{J_{1} m_{1}(j j) \kappa_{1}} \equiv \sum_{\alpha, \beta= \pm \frac{1}{2}} \sum_{a=1}^{3} \sigma_{\alpha \beta}^{a} \frac{1}{n} \operatorname{tr} n_{n}\left\{\left(\hat{Y}_{J_{1} m_{1}(j j) \alpha}^{\kappa_{1}}\right)^{\dagger} \hat{Y}_{J_{2} m_{2}(j j) \beta}^{\kappa_{2}} \hat{Y}_{J_{3} m_{3}(j j) a}^{\rho_{3}}\right\}
\end{aligned}
$$

explicit form of the action of the modes (1)

The kinetic part

$$
\begin{aligned}
S_{B}^{\text {kin }}= & \frac{2 n}{g^{2}} \operatorname{tr}_{k} \int \frac{d^{2} p}{(2 \pi)^{2}} \sum_{J, m} \\
& \times\left\{\frac{(-1)^{m}}{2}\left(p^{2}+\left(\frac{M}{3}\right)^{2} J(J+1)\right) \tilde{A}_{\mu, J-m}(-p) \tilde{A}_{\mu, J m}(p)\right. \\
& +\frac{(-1)^{m+1}}{2} \sum_{\rho}\left(p^{2}+\left(\frac{M}{3}\right)^{2}\left(J+\rho^{2}\right)(J+1)\right) \tilde{V}_{J-m}^{\rho}(-p) \tilde{V}_{J m}^{\rho}(p) \\
& +\frac{(-1)^{m}}{2}\left(p^{2}+\left(\frac{M}{3}\right)^{2} J(J+1)+\frac{2 M^{2}}{81}\right) \widetilde{X}_{i, J-m}(-p) \widetilde{X}_{i, J m}(p) \\
& \left.+\frac{2 M}{9}(-1)^{m} p_{1} X_{7, J-m}(-p) A_{2, J m}(p)-\frac{2 M}{9}(-1)^{m} p_{2} X_{7, J-m}(-p) A_{1, J m}(p)\right\} \\
S_{F}^{\text {kin }=} & \frac{2 n}{g^{2}} \operatorname{tr}_{k} \int \frac{d^{2} p}{(2 \pi)^{2}} \sum_{J, m, \kappa} \\
& \times\left\{\frac{i \kappa(-1)^{m-1}}{2}\left(p_{\mu}\left(\hat{\gamma}_{\mu}\right)_{r s}+\frac{M}{3}\left(\kappa\left(J+\frac{3}{4}\right)+\widetilde{m}_{r}-\frac{3}{4}\right) \delta_{r s}\right) \tilde{\psi}_{r, J-m}^{\kappa}(-p) \tilde{\psi}_{s, J m}^{\kappa}(p)\right\} \\
S_{\mathrm{gh}}^{\mathrm{kin}}= & \frac{2 n}{g^{2}} \operatorname{tr}_{k} \int \frac{d^{2} p}{(2 \pi)^{2}} \sum_{J, m}\left\{(-1)^{m}\left(-p^{2}-\left(\frac{M}{3}\right)^{2} J(J+1)\right) \tilde{\bar{c}}_{J-m}(-p) \tilde{c}_{J m}(p)\right\}
\end{aligned}
$$

explicit form of the action of the modes (2)

bosonic 3-point interactions

$$
\begin{aligned}
& S_{B}^{3}=\frac{2 n}{g^{2}} \operatorname{tr}_{k} \int \frac{d^{2} p}{(2 \pi)^{2}} \frac{d^{2} q}{(2 \pi)^{2}} \frac{d^{2} r}{(2 \pi)^{2}}(2 \pi)^{2} \delta^{2}(p+q+r) \sum_{J_{1} m_{2} J_{2} m_{2} J_{3} m_{3}} \\
& \times\left\{(-1)^{m_{1}} \widehat{C}_{J_{2} m_{2}(j j) ; J_{3} m_{3}(j j)}^{J_{1}-m_{1}(j)} \sum_{\mu \neq \nu}\left(q_{\mu}-r_{\mu}\right) \tilde{A}_{\mu, J_{1} m_{1}}(p) \tilde{A}_{\nu, J_{2} m_{2}}(q) \tilde{A}_{\nu, J_{3} m_{3}}(r)\right. \\
& +\sum_{\rho_{2}, \rho_{3}}(-1)^{m_{1}} \hat{\mathcal{D}}_{J_{2} m_{2}(j j) \rho_{2} ; J_{3} m_{3}(j j) \rho_{3}}^{J_{1}-m_{1}(j j)}\left(q_{\mu}-r_{\mu}\right) \tilde{A}_{\mu, J_{1} m_{1}}(p) \tilde{V}_{J_{2} m_{2}}^{\rho_{2}}(q) \tilde{V}_{J_{3} m_{3}}^{\rho_{3}}(r) \\
& +(-1)^{m_{1}} \widehat{C}_{J_{2} m_{2}(j j) ; J_{3} m_{3}(j j)}^{J_{1}-m_{1}(j j)}\left(q_{\mu}-r_{\mu}\right) \tilde{A}_{\mu, J_{1} m_{1}}(p) \widetilde{X}_{i, J_{2} m_{2}}(q) \widetilde{X}_{i, J_{3} m_{3}}(r) \\
& +\frac{M}{3} \sum_{\rho_{1}}(-1)^{m_{3}} \sqrt{J_{2}\left(J_{2}+1\right)} \hat{\mathcal{D}}_{J_{1} m_{1}(j j) \rho_{1} ; J_{2} m_{2}(j j) \rho_{2}=0}^{J_{3}-m_{3}(j j)} \tilde{V}_{J_{1} m_{1}}^{\rho_{1}}(p) \tilde{A}_{\mu, J_{2} m_{2}}(q) \tilde{A}_{\mu, J_{3} m_{3}}(r) \\
& -\frac{M}{3} \sum_{\rho_{1}}(-1)^{m_{2}} \sqrt{J_{3}\left(J_{3}+1\right)} \hat{\mathcal{D}}_{J_{3} m_{3}(j j) \rho_{3}=0 ; J_{1} m_{1}(j j) \rho_{1}}^{J_{2}-m_{2}(j j)} \tilde{V}_{J_{1} m_{1}}^{\rho_{1}}(p) \tilde{A}_{\mu, J_{2} m_{2}}(q) \tilde{A}_{\mu, J_{3} m_{3}}(r) \\
& +\frac{M}{3} \sum_{\rho_{1}}(-1)^{m_{3}} \sqrt{J_{2}\left(J_{2}+1\right)} \widehat{\mathcal{D}}_{J_{1} m_{1}(j j) \rho_{1} ; J_{2} m_{2}(j j) \rho_{2}=0}^{J_{3}-m_{3}(j j)} \widetilde{V}_{J_{1} m_{1}}^{\rho_{1}}(p) \widetilde{X}_{i, J_{2} m_{2}}(q) \widetilde{X}_{i, J_{3} m_{3}}(r) \\
& -\frac{M}{3} \sum_{\rho_{1}}(-1)^{m_{2}} \sqrt{J_{3}\left(J_{3}+1\right)} \hat{\mathcal{D}}_{J_{3} m_{3}(j j) \rho_{3}=0 ; J_{1} m_{1}(j j) \rho_{1}}^{J_{2}-m_{2}(j j)} \tilde{V}_{J_{1} m_{1}}^{\rho_{1}}(p) \widetilde{X}_{i, J_{2} m_{2}}(q) \widetilde{X}_{i, J_{3} m_{3}}(r) \\
& +i \frac{M}{3} \sum_{\rho_{1}, \rho_{2}, \rho_{3}} \rho_{1}\left(J_{1}+1\right) \widehat{\mathcal{E}}_{J_{1} m_{1}(j j) \rho_{1} ; J_{2} m_{2}(j j) \rho_{2} ; J_{3} m_{3}(j j) \rho_{3}} \tilde{V}_{J_{1} m_{1}}^{\rho_{1}}(p) \tilde{V}_{J_{2} m_{2}}^{\rho_{2}}(q) \tilde{V}_{J_{3} m_{3}}^{\rho_{3}}(r) \\
& +\frac{2 M}{9}(-1)^{m_{1}} \widehat{C}_{J_{2} m_{2}(j j) ; J_{3} m_{3}(j j)}^{J_{1}-m_{1}(j j)} \widetilde{X}_{7, J_{1} m_{1}}(p) \tilde{A}_{1, J_{2} m_{2}}(q) \tilde{A}_{2, J_{3} m_{3}}(r) \\
& -\frac{2 M}{9}(-1)^{m_{1}} \widehat{C}_{J_{2} m_{2}(j j) ; J_{3} m_{3}(j j)}^{J_{1}-m_{1}(j j)} \widetilde{X}_{7, J_{1} m_{1}}(p) \tilde{A}_{2, J_{2} m_{2}}(q) \tilde{A}_{1, J_{3} m_{3}}(r) \\
& +\frac{2 M}{9}(-1)^{m_{1}} \widehat{C}_{J_{2} m_{2}(j j) ; J_{3} m_{3}(j j)}^{J_{1}-m_{1}(j j)} \widetilde{X}_{7, J_{1} m_{1}}(p) \widetilde{X}_{3, J_{2} m_{2}}(q) \widetilde{X}_{4, J_{3} m_{3}}(r) \\
& \left.-\frac{2 M}{9}(-1)^{m_{1}} \widehat{C}_{J_{2} m_{2}(j j) ; J_{3} m_{3}(j j)}^{J_{1}-m_{1}(j j)} \widetilde{X}_{7, J_{1} m_{1}}(p) \widetilde{X}_{4, J_{2} m_{2}}(q) \widetilde{X}_{3, J_{3} m_{3}}(r)\right\},
\end{aligned}
$$

explicit form of the action of the modes (3)

fremionic 3-point interactions

$$
\begin{aligned}
S_{F}^{3}= & \frac{2 n}{g^{2}} \operatorname{tr}_{k} \int \frac{d^{2} p}{(2 \pi)^{2}} \frac{d^{2} q}{(2 \pi)^{2}} \frac{d^{2} r}{(2 \pi)^{2}}(2 \pi)^{2} \delta^{2}(p+q+r) \sum_{J_{1} m_{1} \kappa_{1} J_{2} m_{2} \kappa_{2} J_{3} m_{3}} \\
& \times\left\{i \kappa_{1}(-1)^{m_{1}-1} \sum_{\mu, r, s} \hat{\mathcal{F}}_{J_{2} m_{2}(j j) \kappa_{2} ; J_{3} m_{3}(j j)}^{J_{1}-m_{1}(j j) \kappa_{1}}\left(\hat{\gamma}_{\mu}\right)_{r s} \tilde{\psi}_{r J_{1} m_{1}}^{\kappa_{1}}(p) \tilde{\psi}_{s J_{2} m_{2}}^{\kappa_{2}}(q) \tilde{A}_{\mu, J_{3} m_{3}}(r)\right. \\
& +i \kappa_{1}(-1)^{m_{1}-1} \sum_{i, r, s} \hat{\mathcal{F}}_{J_{2} m_{2}(j j) \kappa_{2} ; J_{3} m_{3}(j j)}^{J_{1}-m_{1}(j j) \kappa_{1}}\left(\hat{\gamma}_{i}\right)_{r s} \tilde{\psi}_{r J_{1} m_{1}}^{\kappa_{1}}(p) \tilde{\psi}_{s J_{2} m_{2}}^{\kappa_{2}}(q) \widetilde{X}_{i, J_{3} m_{3}}(r) \\
& \quad+i \kappa_{1}(-1)^{m_{1}-1} \sum_{\rho_{3}, r} \mathcal{G}_{J_{2} m_{2}(j j) \kappa_{2} ; J_{3} m_{3}(j j) \rho_{3}}^{J_{1}-m_{1}(j j) \kappa_{1}} \tilde{\psi}_{r J_{1} m_{1}}^{\kappa_{1}}(p) \tilde{\psi}_{r J_{2} m_{2}}^{\kappa_{2}}(q) \tilde{V}_{J_{3} m_{3}}^{\rho_{3}}(r)
\end{aligned}
$$

ghost 3-point interactions

$$
\begin{aligned}
S_{\mathrm{gh}}^{3}=\frac{2 n}{g^{2}} & \operatorname{tr}_{k} \int \frac{d^{2} p}{(2 \pi)^{2}} \frac{d^{2} q}{(2 \pi)^{2}} \frac{d^{2} r}{(2 \pi)^{2}}(2 \pi)^{2} \delta^{2}(p+q+r) \sum_{J_{1} m_{1} J_{2} m_{2} J_{3} m_{3}} \\
& \times\left\{(-1)^{m_{1}} p_{\mu} \widehat{C}_{J_{2} m_{2}(j j) ; J_{3} m_{3}(j j)^{J_{1}-m_{1}(j j)} \tilde{\bar{c}}_{J_{1} m_{1}}(p) \tilde{A}_{\mu, J_{2} m_{2}}(q) \tilde{c}_{J_{3} m_{3}}(r)}\right. \\
& -(-1)^{m_{1} p_{\mu} \widehat{C}_{J_{2} m_{2}(j j) ; J_{3} m_{3}(j j)}^{J_{1}-m_{1}(j j)} \tilde{\bar{c}}_{J_{1} m_{1}}(p) \tilde{c}_{J_{2} m_{2}}(q) \tilde{A}_{\mu, J_{3} m_{3}}(r)} \\
& +\frac{M}{3} \sqrt{J_{1}\left(J_{1}+1\right)(-1)^{m_{3}} \hat{\mathcal{D}}_{J_{3} m_{1}(j j) \rho_{1}=0 ; J_{2} m_{2}(j j) \rho_{2}}^{J_{3}-m_{3}(j j)} \widetilde{\bar{c}}_{J_{1} m_{1}}(p) \tilde{V}_{J_{2} m_{2}}^{\rho_{2}}(q) \tilde{c}_{J_{3} m_{3}}(r)} \\
& \left.-\frac{M}{3} \sqrt{J_{s}\left(J_{s}+1\right)}(-1)^{m_{3}} \hat{\mathcal{D}}_{J_{1} m_{1}(j j) \rho_{1} ; J_{2} m_{2}(j j) \rho_{2}=0}^{J_{3}-m_{3}(j j)} \tilde{V}_{J_{1} m_{1}}^{\rho_{1}}(r) \tilde{\bar{c}}_{J_{2} m_{2}}(p) \tilde{c}_{J_{3} m_{3}}(q)\right\}
\end{aligned}
$$

explicit form of the action of the modes (4)

bosonic 4-point interactions

$$
\begin{aligned}
& S_{B}^{4}=\frac{2 n}{g^{2}} \operatorname{tr}_{k} \int \frac{d^{2} p}{(2 \pi)^{2}} \frac{d^{2} q}{(2 \pi)^{2}} \frac{d^{2} r}{(2 \pi)^{2}} \frac{d^{2} s}{(2 \pi)^{2}}(2 \pi)^{2} \delta^{2}(p+q+r+s) \sum_{J_{1} m_{2} J_{2} m_{2} J_{3} m_{3} J_{4} m_{4}} \\
& \times\left\{\sum_{J m}(-1)^{m} \hat{C}_{J_{1} m_{1}(j j) ; J_{2} m_{2}(j j)}^{J m(j j)} \hat{C}_{J_{3} m_{3}(j j) ; J_{4} m_{4}(j j)}^{J-m(j j)}\right. \\
& \times\left(-\tilde{A}_{1, J_{1} m_{1}}(p) \tilde{A}_{2, J_{2} m_{2}}(q) \tilde{A}_{1, J_{3} m_{3}}(r) \tilde{A}_{2, J_{4} m_{4}}(s)\right. \\
& +\tilde{A}_{1, J_{1} m_{1}}(p) \tilde{A}_{2, J_{2} m_{2}}(q) \tilde{A}_{2, J_{3} m_{3}}(r) \tilde{A}_{1, J_{4} m_{4}}(s) \\
& -\widetilde{A}_{\mu, J_{1} m_{1}}(p) \widetilde{X}_{i, J_{2} m_{2}}(q) \tilde{A}_{\mu, J_{3} m_{3}}(r) \widetilde{X}_{i, J_{4} m_{4}}(s) \\
& +\widetilde{A}_{\mu, J_{1} m_{1}}(p) \widetilde{X}_{i, J_{2} m_{2}}(q) \widetilde{X}_{i, J_{3} m_{3}}(r) \widetilde{A}_{\mu, J_{4} m_{4}}(s) \\
& -\frac{1}{2} \widetilde{X}_{i, J_{1} m_{1}}(p) \widetilde{X}_{j, J_{2} m_{2}}(q) \widetilde{X}_{i, J_{3} m_{3}}(r) \widetilde{X}_{j, J_{4} m_{4}}(s) \\
& \left.+\frac{1}{2} \widetilde{X}_{i, J_{1} m_{1}}(p) \widetilde{X}_{j, J_{2} m_{2}}(q) \widetilde{X}_{j, J_{3} m_{3}}(r) \widetilde{X}_{i, J_{4} m_{4}}(s)\right) \\
& +\sum_{\rho_{2} \rho_{4}} \sum_{J m \rho}(-1)^{m_{1}+m_{3}+m+1} \hat{\mathcal{D}}_{J_{2} m_{2}(j j) \rho_{2} ; J-m(j j) \rho}^{J_{1}-m_{1}(j j)} \hat{\mathcal{D}}_{J_{4} m_{4}(j j) \rho_{4} ; J m(j j) \rho}^{J_{3}-m_{3}(j j)} \\
& \times\left(-\tilde{A}_{\mu, J_{1} m_{1}}(p) \tilde{V}_{J_{2} m_{2}}^{\rho_{2}}(q) \tilde{A}_{\mu, J_{3} m_{3}}(r) \tilde{V}_{J_{4} m_{4}}^{\rho_{4}}(s)\right) \\
& +\sum_{\rho_{2} \rho_{4}} \sum_{J m \rho}(-1)^{m_{1}+m_{3}+m+1} \hat{\mathcal{D}}_{J_{2} m_{2}(j j) \rho_{2} ; J-m(j j) \rho}^{J_{1}-m_{1}(j j)} \hat{\mathcal{D}}_{J m(j j) \rho ; J_{4} m_{4}(j j) \rho_{4}}^{J_{3}-m_{3}(j j)} \\
& \left.\times\left(+\tilde{A}_{\mu, J_{1} m_{1}}(p) \tilde{V}_{J_{2} m_{2}}^{\rho_{2}}(q) \tilde{V}_{J_{4} m_{4}}^{\rho_{4}}(r) \tilde{A}_{\mu, J_{3} m_{3}}(s)\right)\right\} \\
& +\sum_{\rho_{2} \rho_{4}} \sum_{J m \rho}(-1)^{m_{1}+m_{3}+m+1} \hat{\mathcal{D}}_{J_{2} m_{2}(j j) \rho_{2} ; J-m(j j) \rho^{\prime}}^{J_{1}-m_{1}(j j)} \hat{\mathcal{D}}_{J_{4} m_{4}(j j) \rho_{4} ; J m(j j) \rho}^{J_{3}-m_{3}(j j)} \\
& \times\left(-\widetilde{X}_{i, J_{1} m_{1}}(p) \tilde{V}_{J_{2} m_{2}}^{\rho_{2}}(q) \widetilde{X}_{i, J_{3} m_{3}}(r) \tilde{V}_{J_{4} m_{4}}^{\rho_{4}}(s)\right) \\
& +\sum_{\rho_{2} \rho_{4}} \sum_{J m \rho}(-1)^{m_{1}+m_{3}+m+1} \hat{\mathcal{D}}_{J_{2} m_{2}(j j) \rho_{2} ; J-m(j j) \rho}^{J_{1}-m_{1}(j j)} \hat{\mathcal{D}}_{J m(j j) \rho ; J_{4} m_{4}(j j) \rho_{4}}^{J_{3}-m_{3}(j j)} \\
& \times\left(+\widetilde{X}_{i, J_{1} m_{1}}(p) \tilde{V}_{J_{2} m_{2}}^{\rho_{2}}(q) \tilde{V}_{J_{4} m_{4}}^{\rho_{4}}(r) \widetilde{X}_{i, J_{3} m_{3}}(s)\right) \\
& +\sum_{\rho_{1} \rho_{2} \rho_{3} \rho_{4}} \sum_{J m \rho}(-1)^{-m+1} \widehat{\mathcal{E}}_{J_{1} m_{1}(j j) \rho_{1} ; J_{2} m_{2}(j j) \rho_{2} ; J m(j j) \rho} \widehat{\mathcal{E}}_{J_{3} m_{3}(j j) \rho_{3} ; J_{4} m_{4}(j j) \rho_{4} ; J-m(j j) \rho} \\
& \left.\times\left(-\frac{1}{2} \tilde{V}_{J_{1} m_{1}}^{\rho_{1}}(p) \tilde{V}_{J_{2} m_{2}}^{\rho_{2}}(q) \tilde{V}_{J_{3} m_{3}}^{\rho_{3}}(r) \tilde{V}_{J_{4} m_{4}}^{\rho_{4}}(s)\right)\right\}
\end{aligned}
$$

§ 4. Matrix continuum limit

$$
j \rightarrow \infty, M \rightarrow 0, \text { with fixing } \Theta=\frac{2}{n}\left(\frac{3}{M}\right)^{2}
$$

Can we take this limit safely?
 (1) Tree level: OK.
 (2) Quantum mechanically: NON-TRIVIAL

If the deformation by the mass parameter M causes soft breaking of 16 supersymmetry, there is no problem:

Superficial degrees of divergence of a graph

$$
D=4-E_{B}-\frac{3}{2} E_{F}
$$

$E_{B} \cdots \#$ of bosonic external lines
$E_{F} \cdots$ \# of fermionic external lines

The most severe UV divergences come from $E_{B}=2\left(\Lambda^{2}\right)$
possible structure of the divergent terms:

$$
A \cdot \Lambda^{2}+O\left(M^{p}\left(\log \frac{\Lambda}{M}\right)^{q}\right) \quad(p, q=1,2, \cdots)
$$

- The leading term is canceled because of the original 16 SUSY.
- The next leading terms vanish in the continuum limit:

$$
M^{p}\left(\log \frac{\Lambda}{M}\right)^{q} \sim M^{p}(\log n)^{q} \rightarrow 0 \quad \text { since } M \propto n^{-\frac{1}{2}} \rightarrow 0
$$

Unfortunately, the situation is not so simple:

- The parameter M is indeed a soft mass in $2 d$ theory but is it really soft in $4 d$ theory?
- The 4d theory is non-commutative gauge theory. UV/IR mixing?
- The remaining SUSY is only two.
- Is the continuous theory really a theory on $R^{2} \times R_{\theta}^{2}$?

Result of perturbative comuutation

Effective action of X_{i}^{2} at the 1-loop level

$$
\begin{aligned}
& g_{4 d}^{2} \sum_{J, m} \int \frac{d^{2} p}{(2 \pi)^{2}}(-1)^{m} \sum_{i=5,6}\left[k \operatorname{tr}_{k}\left(X_{i, J m}(p) X_{i, J-m}(-p)\right)-\operatorname{tr}_{k}\left(X_{i, J m}(p)\right) \operatorname{tr}_{k}\left(X_{i, J-m}(-p)\right)\right] \\
& \quad \times \frac{1}{8 \pi^{2}}\left[\ln (\tilde{\Lambda}+0.0510)\left(p^{2}+u^{2}\right)-\frac{1}{2}\left(p^{2}+u^{2}\right) \ln \left(p^{2}+u^{2}\right)+\left(p^{2}+u^{2}\right)+0.854\right]
\end{aligned}
$$

1-loop correction to the effective action of scalar^2 in 4d N=4 SYM

$$
\begin{aligned}
g_{4 d}^{2} \int \frac{d^{4} p}{(2 \pi)^{2}} & {\left[k \operatorname{tr}_{k}\left(\phi(-p)^{\dagger} \phi(p)\right)-\operatorname{tr}_{k}\left(\phi(-p)^{\dagger}\right) \operatorname{tr}_{k}(\phi(p))\right] } \\
& \times \frac{1}{8 \pi^{2}}\left[\ln (\Lambda) p^{2}-\frac{1}{2} p^{2} \ln \left(p^{2}\right)+p^{2}\right]
\end{aligned}
$$

There is no additional divergence
to the two-point function at least in the 1-loop level. We can strongly expect to obtain 4d N=4 SYM!!

Comments

- We also calculated the other 2-point functions and confirmed that the situation is the same.
- Honestly speaking, we should confirm that we need only wave function renormalization in the continuum limit, but it is quite hard task even at the 1 -loop level.
- It would be better to check it numerically.
- It is believed that we can take the limit of © $\rightarrow \mathbf{0}$ smoothly for 4d N=4 SYM.

\longrightarrow We can take the commutative limit safely. (the final step is OK !)

This sequence is complete!

Lattice formulation of mass deformed 2d $N=(8,8)$ SYM
\square lattice continuum limit

Continuum mass deformed 2d $N=(8,8)$ SYM

expand around fuzzy sphere solution

4d $N=4 S Y M$ on $\mathbb{R}^{2} \times S_{\Theta}^{2}$

expand around
fuzzy sphere solution
 4d $N=4$ SYM on $\mathbb{R}^{2} \times \mathbb{R}_{\Theta}^{2}$
 \otimes

© $\rightarrow 0$ limit

$$
4 \mathrm{~d} N=4 \mathrm{SYM} \text { on } \mathbb{R}^{4}
$$

Future works

1. Check if this sequence really work.
2. We can (hopefully) carry out numerical simulation of $4 \mathrm{~d} N=4$ SYM with finite rank gauge group.
3. $3 / 4$-problem
4. AdS/CFT correspondence
5. $4 \mathrm{~d} N=4 \mathrm{SYM}$ as a quantum gravity
6. We can formulate other theories using the same method.
7. Connection to Ω-background? (The deformation is quite similar to that introduced by Nekrasov to discretize the instanton moduli space of 4d N=2 SYM.)

1-loop correction to the effective action of $X_{i, J m}(p)$:

planar graphs
non-planar graphs
$\frac{g_{2 d}^{2}\left(\frac{3}{M}\right)^{2} \sum_{J, m} \int \frac{d^{2} p}{(2 \pi)^{2}} \frac{(-1)^{m}}{4 \pi} \sum_{i=5,6}\left[k \operatorname{tr}_{k}\left(X_{i, J m}(p) X_{i, J-m}(-p)\right)-\operatorname{tr}_{k}\left(X_{i, J m}(p)\right) \operatorname{tr}_{k}\left(X_{i, J-m}(-p)\right)\right.}{}$
$=\frac{\Theta g_{2 d}}{4}=\frac{g_{4 d}^{2}}{8 \pi}$

$$
\left.\times\left(\mathcal{A}_{J, \tilde{p}}+\sum_{J_{1}=0}^{2 j} \sum_{J_{2}=1}^{2 j} \mathcal{B}_{J, \tilde{p}}\left(J_{1}, J_{2}\right)\right)\right]
$$

Notation

$$
\begin{aligned}
& A(J) \equiv\left(\frac{M}{3}\right)^{2} \widetilde{A}(J) \equiv\left(\frac{M}{3}\right)^{2}\left(J+\frac{1}{3}\right)\left(J+\frac{2}{3}\right), \quad B(J) \equiv\left(\frac{M}{3}\right)^{2} \widetilde{B}(J) \equiv\left(\frac{M}{3}\right)^{2} J\left(J+\frac{1}{3}\right) \\
& C(J) \equiv\left(\frac{M}{3}\right)^{2} \widetilde{C}(J) \equiv\left(\frac{M}{3}\right)^{2}(J+1)\left(J+\frac{2}{3}\right), \quad D(J) \equiv\left(\frac{M}{3}\right)^{2} \widetilde{D}(J) \equiv\left(\frac{M}{3}\right)^{2} J(J+1) \\
& E(J) \equiv\left(\frac{M}{3}\right)^{2} \tilde{E}(J) \equiv\left(\frac{M}{3}\right)^{2}(J+1)^{2}, \quad F(J) \equiv\left(\frac{M}{3}\right)^{2} \tilde{F}(J) \equiv\left(\frac{M}{3}\right)^{2} J^{2}, \quad p^{2} \equiv\left(\frac{M}{3}\right)^{2} \tilde{p}^{2}, \\
& L(A, B ; p) \equiv \frac{1}{\sqrt{\left(p^{2}\right)^{2}+2(A+B) p^{2}+(A-B)^{2}}} \\
& \quad \times \log \left(\frac{p^{2}+A+B-\sqrt{\left(p^{2}\right)^{2}+2(A+B) p^{2}+(A-B)^{2}}}{p^{2}+A+B+\sqrt{\left(p^{2}\right)^{2}+2(A+B) p^{2}+(A-B)^{2}}}\right)
\end{aligned}
$$

IR part

$$
\begin{aligned}
& \mathcal{A}_{J, \tilde{p}}=\left(\frac{M}{3}\right)^{2}\left\{-\frac{4}{3} \frac{\tilde{p}^{2}-\tilde{A}(J)}{\tilde{p}^{2}+\tilde{A}(J)} \ln \left(\frac{\tilde{A}(J) \delta}{\left(\tilde{p}^{2}+\tilde{A}(J)\right)}\right)+\frac{1}{3} \frac{\tilde{p}^{2}-\tilde{A}(J)}{\tilde{p}^{2}+\tilde{A}(J)} \ln (3)+\left(\tilde{p}^{2}+\tilde{A}(J)-1\right) \ln \frac{2}{3}\right. \\
& +\left(\tilde{p}^{2}+\tilde{A}(J)\right) \ln \frac{\tilde{A}(J)}{\left(\tilde{p}^{2}+A(J)\right)^{2}}-\frac{4}{3} \frac{\tilde{p}^{2}}{\tilde{p}^{2}+\tilde{A}(J)} \\
& -\frac{\left(\tilde{p}^{2}+\widetilde{A}(J)\right)^{2}-\frac{2}{3} \tilde{p}^{2}-\frac{10}{3} J(J+1)-\frac{2}{3}}{\sqrt{\left(\tilde{p}^{2}+\widetilde{A}(J)\right)^{2}+\frac{4}{3} \tilde{p}^{2}-\frac{4}{3} \widetilde{A}(J)+\frac{4}{9}}} \ln \left(\frac{\tilde{p}^{2}+\tilde{A}(J)+\frac{2}{3}-\sqrt{\left(\tilde{p}^{2}+\widetilde{A}(J)\right)^{2}+\frac{4}{3} \tilde{p}^{2}-\frac{4}{3} \tilde{A}(J)+\frac{4}{9}}}{\tilde{p}^{2}+\widetilde{A}(J)+\frac{2}{3}+\sqrt{\left(\widetilde{p}^{2}+\widetilde{A}(J)\right)^{2}+\frac{4}{3} \tilde{p}^{2}-\frac{4}{3} \widetilde{A}(J)+\frac{4}{9}}}\right) \\
& \left.+\frac{2 \widetilde{p}^{2}-2 J(J+1)+\frac{4}{9}}{\sqrt{\left(\tilde{p}^{2}+\widetilde{A}(J)\right)^{2}+2 \widetilde{p}^{2}-2 \widetilde{A}(J)+1}} \ln \left(\frac{\tilde{p}^{2}+\widetilde{A}(J)+1-\sqrt{\left(\tilde{p}^{2}+\widetilde{A}(J)\right)^{2}+2 \tilde{p}^{2}-2 \widetilde{A}(J)+1}}{\tilde{p}^{2}+\widetilde{A}(J)+1+\sqrt{\left(\tilde{p}^{2}+\widetilde{A}(J)\right)^{2}+2 \tilde{p}^{2}-2 \widetilde{A}(J)+1}}\right)\right\} \\
& \llbracket \frac{M}{3} \cdot \tilde{p}_{\mu}=\underset{M \rightarrow 0}{p_{\mu},} \frac{\mathrm{M}}{3} \cdot J=u \\
& \left(p^{2}+u^{2}\right)\left\{\ln \left(\frac{2}{3}\right)+\ln \frac{u^{2}\left(\frac{M}{3}\right)^{2}}{\left(p^{2}+u^{2}\right)^{2}}-\ln \left(\frac{2}{3}\right)-\ln \frac{u^{2}\left(\frac{M}{3}\right)^{2}}{\left(p^{2}+u^{2}\right)^{2}}\right\}=0
\end{aligned}
$$

Main part We like to evaluate the following expression in the limit of

$$
j \rightarrow \infty, M \rightarrow 0 \text { with fixing } u=\frac{M J}{3}, p_{\mu}=\frac{M \tilde{p}_{\mu}}{3}
$$

$$
\sum_{J_{1}=0}^{2 j} \sum_{J_{2}=1}^{2 j} \mathcal{B}_{J, \tilde{p}}\left(J_{1}, J_{2}\right)=\left(\frac{M}{3}\right)^{2} \sum_{J_{1}=0}^{2 j} \sum_{J_{2}=1}^{2 j}(2 j+1)\left(2 J_{1}+1\right)\left(2 J_{2}+1\right)\left\{\begin{array}{ccc}
J_{1} & J_{2} & J \\
j & j & j
\end{array}\right\}^{2}
$$

$$
\left\{\left\{\left[\frac{\tilde{p}^{2}+\tilde{A}\left(J_{1}\right)}{J_{2}\left(2 J_{2}+1\right)}-\frac{J_{2}}{2 J_{2}+1}\right] \ln \tilde{B}\left(J_{2}\right)+\left[\frac{\tilde{p}^{2}+\tilde{A}\left(J_{1}\right)}{\left(J_{2}+1\right)\left(2 J_{2}+1\right)}-\frac{J_{2}+1}{2 J_{2}+1}\right] \ln \tilde{C}\left(J_{2}\right)\right.\right.
$$

$$
+\left[-\frac{\tilde{p}^{2}+\tilde{A}\left(J_{1}\right)}{J_{2}\left(J_{2}+1\right)}+\frac{J_{2}+\left(J_{2}+1\right)}{2 J_{2}+1}\right] \ln \widetilde{D}\left(J_{2}\right)+\frac{1}{2 J_{2}+1} \ln \tilde{E}\left(J_{2}\right)-\frac{1}{2 J_{2}+1} \ln \tilde{F}\left(J_{2}\right)
$$

$$
+\left(\frac{M}{3}\right)^{2} L\left(A\left(J_{1}\right), B\left(J_{2}\right) ; p\right)
$$

$$
\times\left[-\frac{\left(\tilde{p}^{2}+\tilde{A}\left(J_{1}\right)\right)^{2}}{J_{2}\left(2 J_{2}+1\right)}+\frac{1}{2 J_{2}+1}\left(-\frac{2}{3} \tilde{p}^{2}+2\left(J_{1}+\frac{1}{3}\right)\left(J_{1}+\frac{2}{3}\right)\left(J_{2}+\frac{1}{3}\right)-J_{2}\left(J_{2}+\frac{1}{3}\right)^{2}\right.\right.
$$

$$
\left.\left.+\left(\frac{M}{3}\right)^{2} L\left(A\left(J_{1}\right), C\left(J_{2}\right) ; p\right) \quad+2 J(J+1)\left(J_{2}+\frac{1}{6}\right)-\frac{1}{3} J_{1}\left(J_{1}+1\right)+\frac{1}{3} J_{2}\left(J_{2}+\frac{5}{3}\right)\right)\right]
$$

$$
\times\left[-\frac{\left(\tilde{p}^{2}+\tilde{A}\left(J_{1}\right)\right)^{2}}{\left(J_{2}+1\right)\left(2 J_{2}+1\right)}+\frac{1}{2 J_{2}+1}\left(\frac{2}{3} \tilde{p}^{2}+2\left(J_{1}+\frac{1}{3}\right)\left(J_{1}+\frac{2}{3}\right)\left(J_{2}+\frac{2}{3}\right)-\left(J_{2}+1\right)\left(J_{2}+\frac{2}{3}\right)^{2}\right.\right.
$$

$$
\left.\left.+2 J(J+1)\left(J_{2}+\frac{5}{6}\right)+\frac{1}{3} J_{1}\left(J_{1}+1\right)-\frac{1}{3}\left(J_{2}+1\right)\left(J_{2}-\frac{2}{3}\right)\right)\right]
$$

$$
+\left(\frac{M}{3}\right)^{2} L\left(A\left(J_{1}\right), D\left(J_{2}\right) ; p\right)
$$

$$
\times\left[\frac{\left(\tilde{p}^{2}+\tilde{A}\left(J_{1}\right)\right)^{2}}{J_{2}\left(J_{2}+1\right)}-\frac{1}{J_{2}\left(J_{2}+1\right)}\left(J(J+1)-J_{1}\left(J_{1}+1\right)\right)^{2}\right]
$$

$$
+\left(\frac{M}{3}\right)^{2} L\left(A\left(J_{1}\right), E\left(J_{2}\right) ; p\right)
$$

$$
\times\left[\frac{2\left(J_{2}+1\right)}{2 J_{2}+1}\left(\tilde{p}^{2}+\tilde{A}(J)\right)-\frac{\left(J_{1}+J_{2}+J+2\right)\left(J_{1}-J_{2}+J\right)\left(-J_{1}+J_{2}+J+1\right)\left(J_{1}+J_{2}-J+1\right)}{\left(J_{2}+1\right)\left(2 J_{2}+1\right)}\right]
$$

$$
+\left(\frac{M}{3}\right)^{2} L\left(A\left(J_{1}\right), F\left(J_{2}\right) ; p\right)
$$

$$
\left.\times\left[\frac{2 J_{2}}{2 J_{2}+1}\left(\tilde{p}^{2}+\tilde{A}(J)\right)-\frac{\left(J_{1}+J_{2}+J+1\right)\left(J_{1}-J_{2}+J+1\right)\left(-J_{1}+J_{2}+J\right)\left(J_{1}+J_{2}-J\right)}{J_{2}\left(2 J_{2}+1\right)}\right]\right\} .
$$

[1] log part

$$
\begin{aligned}
& \left(\frac{M}{3}\right)^{2} \sum_{J_{1}=0}^{2 j} \sum_{J_{2}=1}^{2 j}(2 j+1)\left(2 J_{1}+1\right)\left\{\begin{array}{ccc}
J_{1} & J_{2} & J \\
j & j & j
\end{array}\right\}^{2} \\
& \times\left\{\left(\tilde{p}^{2}+\tilde{A}\left(J_{1}\right)\right)\left[\frac{1}{J_{2}} \ln \frac{J_{2}+1}{J_{2}+1 / 3}-\frac{1}{J_{2}+1} \ln \frac{J_{2}+2 / 3}{J_{2}}\right]-J_{2} \ln \frac{J_{2}+1}{J_{2}+1 / 3}+\left(J_{2}+1\right) \ln \frac{J_{2}+2 / 3}{J_{2}}-2 \ln \frac{J_{2}+1}{J_{2}}\right\} \\
& \text { formulae } \\
& g\left(J_{2}\right) \\
& \sum \sum_{J_{1}=0}^{2 j}(2 j+1)\left(2 J_{1}+1\right)\left\{\begin{array}{ccc}
J_{1} & J_{2} & J \\
j & j & j
\end{array}\right\}^{2}=1 \\
& f_{j}(J) \equiv \sum_{J_{1}=0}^{2 j} \sum_{J_{2}=1}^{2 j}(2 j+1)\left(2 J_{1}+1\right)\left\{\begin{array}{ccc}
J_{1} & J_{2} & J \\
j & j & j
\end{array}\right\}^{2} \tilde{A}\left(J_{1}\right) g\left(J_{2}\right) \\
& \longrightarrow f_{j}(J)=f_{j}(0)+\left[\sum_{J_{2}=1}^{2 j}\left(2-\frac{J_{2}\left(J_{2}+1\right)}{j(j+1)}\right) g\left(J_{2}\right)\right] \frac{J(J+1)}{2} \\
& =p^{2}\left(\sum_{J_{2}=1}^{2 j} g\left(J_{2}\right)\right)+u^{2} \sum_{J_{2}=1}^{2 j}\left(1-\frac{J_{2}\left(J_{2}+1\right)}{2 j(j+1)}\right) g\left(J_{2}\right)+\left(\frac{M}{3}\right)^{2} \sum_{J_{2}=1}^{2 j} g\left(J_{2}\right) \tilde{A}\left(J_{2}\right)+\left(\frac{M}{3}\right)^{2} \sum_{J_{2}=1}^{2 j} h\left(J_{2}\right) \\
& \rightarrow\left(p^{2}+u^{2}\right) \underbrace{\left(\sum_{J_{2}=1}^{\infty} g\left(J_{2}\right)\right)}_{\cong 0.2042}+\underbrace{\sum_{J_{2}=1}^{\infty} g\left(J_{2}\right) \tilde{A}\left(J_{2}\right)}_{\cong 3.413}
\end{aligned}
$$

[2] L-part We separate the region of $\left(J_{1}, J_{2}\right)$ into
Region I: $J \leq J_{1}+J_{2} \leq J_{B},-J \leq J_{1}-J_{2} \leq J$
Region II: $J_{B} \leq J_{1}+J_{2} \leq 4 j,-J \leq J_{1}-J_{2} \leq J$

$$
\left.U_{B}=O\left(j^{\epsilon}\right)(0<\epsilon<1 / 2)\right)
$$

Region I

In this region, Wigner 6j-symbol can be approximated as

$$
\left\{\begin{array}{ccc}
J_{1} & J_{2} & J \\
j & j & j
\end{array}\right\}^{2} \cong \frac{2}{\pi} \frac{1}{2 j+1} \frac{1}{\left(J_{1}+J_{2}+J\right)\left(-J_{1}+J_{2}+J\right)\left(J_{1}-J_{2}+J\right)\left(J_{1}+J_{2}-J\right)}
$$

We can estimate the summation by the integral,

$$
\begin{aligned}
& {[\text { L }- \text { part }]_{\text {region } \mathrm{I}} \sim \frac{2}{\pi}\left(p^{2}+u^{2}\right) \int_{u \leq u_{1}+u_{2} \leq u_{B},-u \leq u_{1}-u_{2} \leq u} d u_{1} d u_{2}} \\
& \times \frac{\sqrt{u_{1} u_{2}}}{\sqrt{\left(p^{2}+\left(u_{1}+u_{2}\right)^{2}\right)\left(p^{2}+\left(u_{1}-u_{2}\right)^{2}\right)\left(\left(u_{1}+u_{2}\right)^{2}-u^{2}\right)\left(u^{2}-\left(u_{1}-u_{2}\right)^{2}\right)}} \\
& \times \ln \left(\frac{p^{2}+u_{1}^{2}+u_{2}^{2}-\sqrt{\left(p^{2}+\left(u_{1}+u_{2}\right)^{2}\right)\left(p^{2}+\left(u_{1}-u_{2}\right)^{2}\right)}}{p^{2}+u_{1}^{2}+u_{2}^{2}+\sqrt{\left(p^{2}+\left(u_{1}+u_{2}\right)^{2}\right)\left(p^{2}+\left(u_{1}-u_{2}\right)^{2}\right)}}\right) \\
& =4\left(p^{2}+u^{2}\right)\left(\ln u_{B}-\frac{1}{2} \ln \left(p^{2}+u^{2}\right)+1-\ln (2)\right) \quad\left(u_{B}=\left(\frac{M}{3}\right) J_{B}\right)
\end{aligned}
$$

Region II

In this region, Wigner 6 j -symbol can be approximated as
$\left\{\begin{array}{ccc}J_{1} & J_{2} & J \\ j & j & j\end{array}\right\}^{2} \cong \frac{1}{(2 j+1)\left(2 J_{2}+1\right)} \frac{1}{2^{2 J}} \frac{J!}{(J+\Delta)!(J-\Delta)!}\left[(1+X)^{\frac{\Delta}{2}}(1-X)^{\frac{\Delta}{2}} \sum_{r}(-1)^{2}\binom{J-\Delta}{r}\binom{J+\Delta}{J-r}\binom{1+X}{1-X}^{r}\right]^{2}$

By using

$$
\left(\Delta=J_{1}-J_{2}, X=\frac{1}{2} \sqrt{\frac{J_{2}\left(J_{2}+1\right)}{j(j+1)}} \cong \frac{J_{1}+J_{2}}{4 j}\right)
$$

1. $L\left(\tilde{A}\left(J_{1}\right), \tilde{B}\left(J_{2}\right)\right) \cong-\frac{4}{\left(J_{1}+J_{2}\right)^{2}}, \cdots$
2. $X<1$
3. $\quad \sum_{\Delta} \frac{1}{2^{2 J}} \frac{(J!)^{2}}{(J+\Delta)!(J-\Delta)!} \sum_{r}(-1)^{r}\binom{J-\Delta}{r}\binom{J+\Delta}{J-r}=1$

We see the most singular part of the summation is

$$
\begin{aligned}
{[L-\text { part }]_{\text {Region II }}^{\text {most singular }} } & =4\left(p^{2}+u^{2}\right) \sum_{n=J_{B} / 2}^{2 j} \frac{1}{n} \widetilde{\Lambda} \\
& =4\left(p^{2}+u^{2}\right)\left(\ln \left(\frac{2 j M}{3}\right)^{\prime \prime \prime}-\ln \left(u_{B}\right)+\ln (2)\right)
\end{aligned}
$$

(We can show the other contributions vanish in the continuum limit.)

