Radiation transport modeling for the kilonova enthusiast

Abbott+2017, PRL 119

Radiation transport in context

stellar binary evolution:
component stars & masses

nuclear physics mass model & $\{Y_{\rm e}, s_{\rm B}, \tau\}$

GR(M)HD: dynamics NS EOS

image adapted from LSC

Radiation transport

Radiation transport: heating

Heating

- ~power law, due to many decay chains;
- β -decay, α -decay, fission

Thermalization

- not perfectly efficient
- depends on time, decay mode, decay spectrum

Part 1: the ingredients

- Bound-bound opacity dominates
- Energy levels and transition oscillator strengths for r-process elements

test case 1: Iron (Z=26)

SN la broadbands: Autostructure (—) Kurucz CD23 (- -)

Kasen, Badnel, & JB 2013

Part 1: the ingredients

- Bound-bound opacity dominates
- Energy levels and transition oscillator strengths for r-process elements

test case 1: Neodymium (Z=60)

charge state	N _{levels} (KBB13)	N _{levels} (F+17)	N _{lines} (KBB13)	N _{lines} (F+17)
	18,104	18,104	~2.46e7	~2.52e7
ll l	6,888	6,888	~3.87e6	~3.95e6
	1,650	1,650	~2.33e5	~2.33e5
IV	241	241	5.78e4	~5.78e4

Part 1: the ingredients

- Bound-bound opacity dominates
- Energy levels and transition oscillator strengths for r-process elements

test case 1: Neodymium (Z=60)

charge state	N _{levels} (KBB13)	N _{levels} (F+17)	N _{lines} (KBB13)	N _{lines} (F+17)
	18,104	18,104	~2.46e7	~2.52e7
II	6,888	6,888	~3.87e6	~3.95e6
	1,650	1,650	~2.33e5	~2.33e5
IV	241	241	5.78e4	~5.78e4
	charge state II III III	charge stateNlevels (KBB13)I18,104II6,888III1,650IV241	charge stateNlevels (KBB13)Nlevels (F+17)I18,10418,104II6,8886,888III1,6501,650IV241241	charge stateN _{levels} (KBB13)N _{levels} (F+17)N _{lines} (KBB13)I18,10418,104~2.46e7II6,8886,888~3.87e6III1,6501,650~2.33e5IV2412415.78e4

Part 1(b): the implications

Part 2: the method

challenge: an expanding medium enhances the effective opacity

Part 3: the results

atomic complexity

Pan-lanthanide opacities

Complexity arguments ------ Gd catastrophy?!

Pan-lanthanide opacities

Effect of opacity

sidebar: how red are they?

(Back to the algorithm)

Use of expansion opacity requires narrow, nonoverlapping lines. Otherwise, **SOBOLEV BREAKDOWN**

expansion opacity v. line-broadened opacity

sidebar: how red are they?

BUT: while line-broadening gives much higher opacities, the light curves it predicts are not so different.

e.g., Wollaeger+2017

(also: we now have observations to work with)

opacities and nucleosynthesis

opacities and nucleosynthesis

opacities and nucleosynthesis

light curves and spectra

light curves and spectra

spectral features + diagnostics

Kasen, Metzger, JB+17

lingering questions

0°

-30

1. Is there a case to be made for a single component kilonova model? * fine-tuned Ye? * mixing of r-processed ejecta? 2. How important are 2-D effects? viewing angle effects 30" windows/curtains DLT40 -20.5 d * reprocessing of radiation? 3. How can we improve spectral diagnostics?

-30°