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GW170817 nature of the
progenitor: binary neutron star?
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LIGO/Virgo GW detection of
GW170817

*s \Waveform model

* Point mass (black hole binary) — Post-Newtonian (PN) that include spin-spin
effects

* Finite size effects post-1PN [0(%)2] parametrized through the tidal
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LIGO/Virgo GW detection of
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*s \Waveform model

Point mass (black hole binary) — Post-Newtonian (PN) that include spin-spin
effects

Finite size effects post-1PN [0(5)2] parametrized through the tidal
2 .
deformabilities A} = (%) Ky i [(C—) (&)] , K7 j= tidal Love numbers

G m;j
For an external gravitational potential (tidal field) €;; = ﬁ, there is a
: 1
quadrupole moment indunced on a star Q;; = [ d3x §p(x) (x;x; — grzc?ij)
ith Q;; = — 2k, €
with Qi = — < k2&j

For neutron stars: k,~0.05 — 0.15,A~150 — 2000;
For black holes: k, = 0,A =0



GW170817: implications for
nuclear physics

* Tidal deformability: assuming a single EOS describes both neutron stars
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* Data favor more compact stars
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Hybrid compact stars

* For sufficiently high densities quark deconfinement can take place

* In 1968 Ulrich Gerlach considered equations of state which allow a first-order
transition between the hadronic phase and quark matter phase.

* For a sufficiently large “jump” in energy density over which the pressure
remains constant at the phase transition a third family of compact objects can
emerge

* Stars with a quark core surrounded by a hadronic shell with a first-order
phase transition in between are called hybrid compact stars



Hybrid compact stars

There exist two prescriptions for matching the low-density nucleonic EoS to the
qguark matter EoS; which one is realized in nature depends on the surface
tension between nuclear and quark matter (e.g. Glendenning 1997)

If the tension between these phases is low, a mixed phase of quark and
nucleonic matter is formed in-between purely nuclear and quark matter

phases.

If the tension is high, a sharp transition boundary is energetically favorable —
third family of compact object (usually referred to as the “third family”)
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Consider two sets of EOSs

Low-density regime

Set |: density functional theory with density-dependent couplings applied to
hadronic matter Colucci and Sedrakian 2013

Set IlI: either stiffest EOS of Hebeler, Lattimer, Pethick, and Schwenk (2013) or
the density-dependent relativistic meanfield EoS DD2-p30 Alvarez-Castillo,
Ayriyan, Benic, Blaschke, Grigorian, and Typel (2016)



Consider two sets of EOSs

High-density regime
Set I: Constant sound speed parametrization Alford, Han, and Prakash 2013

Set II: Piecewise polytropic representation (Read et al. 2009, Hebeler et al.
2013 etc.)

The parameterizations chosen can be reproduced by a relativistic density
functional approach
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Pressure vs density

10°F

P [dyn/cm ]

[
=
[
s
T

RES

10

ACS-1j=0.1

— ——— ACS-1j=0.27
..... ACS-1j=0.43
----- ACS-1j=0.6
— —— ACS-11j=0.8
ACS-TIj=1.0
------ ACB4
————— ACB5
— « — ACB6
— .+ ACB7

16



Mass - Radius & Mass - A
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A1l vs N2
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I-Love and I-Q
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GW170817 and GRB 170817A implications
for fundamental physics: nuclear physics

* What could the merger remnant and hence the sGRB engine be?
* NSNS merges -> Remnant collapse to BH -> BH + disk -> jet
* NSNS merges -> Remnant is a massive, ms mangetar + disk -> jet

* Observations cannot cleanly distinguish these scenarios, but constraints on
the nuclear equation of state (EOS) can be placed from either scenario
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* NS matter cannot support an arbitrary amount of baryonic mass

* For any given EOS there is a maximum baryonic mass Mg ,,4, that can be
supported

* It myp + Mmyp — My, > Mp 14y, the remnant will ultimately collapse and
form a BH

* It myp + myp — My, < Mg 14y, the remnant will not collapse
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