Exotic spin-dependent interactions of electrons
(and a bit about neutrons)

E. G. Adelberger
University of Washington

will discuss motivations, principles and results:
 polarized-electron test-body technology
 Plank-scale preferred-frame experiments
* non-commutative geometries
e spin-spin interactions of exotic bosons
 pseudo-Goldstone bosons and new global symmetries
e ultra-low-mass axion-like dark matter
e ultra-low-mass vector dark matter




A bit of history

In 1986 Blayne Heckel and |, motivated by Fischbach’s “discovery’ of a 5t force,
formed a small group and began developing instruments to probe
sub-gravitational forces.

It was unexpectedly easy for us to demonstrate that Fischbach’s 5t force did

not exist, and the experience suggested that excellent sensitivity to ultra-feeble
interactions provided a way to probe lots of interesting issues. So, with NSF support,
we continued to upgrade our torsion balance instruments and attained a powerful
hammer we used for equivalence principle tests. We are grateful to our theory
colleagues who continue to provide interesting nails for our hammers.

In the mid-nineties, motivated by the naive idea of testing the symmetry
properties of gravity we began developing electron-polarized test bodies.
I’'ve been asked to discuss the results of the work based on that technology.
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our spin experiments exploit the properties of 2 different magnetic materials:

— a soft ferromagnet with high spin density:
magnetization comes from pairs of aligned electron spins

SmCo. — a hard ferromagnet with low spin density:
Sm magnetization has large spin and orbital angular contributions that essentially cancel

Simplified explanation for remarkable properties of SmCox:

The Sm in SmCo. crystal exists in a 3+ ionic state with 5 valence f electrons.
The repulsive e-e interaction forces the space function to be maximally antisymmetric.
mL = (+3) + (+2) + (+1) + (0) + (-1) =5 i.e. L=5

The spin function must be maximally symmetric i.e. S=5/2 .
Therefore the spin and orbital contributions to the SmCo. are equal.
Hund’s Rule says that at beginning of a shell the two contributions cancel.

Hence the magnetic moment of SmCo, comes almost entirely from the 10 polarized Co electrons, but the
total spin of SmCo. is only S=10-5=5, i.e. roughly % of that in a typical ferromagnet



arrows denote spins
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arrows denote B

the EOt-Wash spin pendulum

2%

9.8 x 1022 polarized electrons
negligible mass asymmetry
negligible composition asymmetry
flux of B confined within octagons
negligible external B field

SmCo;: Sm 3* ion spin points along total B and its
spin B field is nearly canceled by its orbital B field-
-so B of SmCo; comes almost entirely from the
Co’s electron spins

therefore the spins of Alnico and Co form a closed
loop and pendulum’s net spin comes from the Sm.
Because B, x 2Sg,, + Lg,, ® 0 we find

‘]Sm:_ SSm



measuring the stray magnetic field of the spin pendulum

B inside =9.6+0.2 kG B outside = few mG
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power spectrum of the spin-pendulum twist
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nail #1: cosmic preferred frames?

We all were taught that there are no preferred frames. But the
Universe defines a frame in which the CMB is essentially
isotropic. Could there be other preferred frame effects defined
by the Universe?

Kostelecky et al. developed a scenario where vector and axial-
vector fields were spontaneously generated in the early
universe and then inflated to enormous extents;

Particles couple to these preferred-frame fields in Lorentz-
invariant manners.

This “Standard Model Extension” predicts lots of new
observables many of which violate CPT. One such observable is
E = ge- be Where be is fixed in inertial space - its benchmark
value is me2/ Mpjanck = 2 X 1017 eV



spin-pendulum data span a period of 36 months
a 113 hour stretch is shown below

8, x 1020 [eV]

B x 1020 [eV]

12 | 16 | 20
local sidereal time [h]

definition of B:

Epend: _Np B-o
2[=energy needed
to flip a spin

simulated signal
from assumed
b,=2.5%x1020 eV

best fit out-of-phase sine
waves--corresponds to
preferred-frame signal:
b,=(-0.20+0.76)x10%! eV
b,=(-0.23£0.76)x10*! eV




The gyrocompass

Anschutz’s gyrocompass.
Anschuetz-Kaempfe and Sperry separately
patented gyrocompasses in UK and US. In 1915
Einstein ruled that Anschiitz’s patent was valid.

conventional gyrocompass

angular momentum J of a spinning
flywheel in a lossy gimbal will
eventually point true North where
the gimbals do not dissipate energy

our gyrocompass.

Earth’s rotation Q acting on J of
pendulum produces a steady
torque along suspension fiber

| QxJ-n| where nis unit vector
along local vertical. Because S =-J
this is equivalent to B, = — 1.616 X
1020 eV



lab-fixed spin pendulum signal
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gyrocompass effect:

The vertical bar shows
expected effect based on
2 previous discordant
measurements of SmCo,
spin density

The ellipse shows our
result when we use the
Coriolis effect to calibrate
the spin density



Lorentz-symmetry violating rotation parameters
is there a preferred direction in space?

E=Ge' Ee

TABLE IX: 1o constraints on the Lorentz-symmetry violating
h® parameters. Units are 10722 eV,

parameter electron proton neutron
our work i
E;X —0.67 £ 1.31 < 2 X 10* 0.22 £ 0.79
By —0.18 4+ 1.32 < 2 X 10* 0.80 £ 0.95
bz —4 444 Pl /
t — 7 i
‘ Cane et al, PRL 93(2004) 230801 Phillips et al, PRD 63(2001) 111101

These should be compared to the benchmark value
2 /1, _ —17 v



Lorentz-symmetry violating boost parameter
Is there a preferred helicity in space?

V=-Bo-v/c,

where v 1s the velocity of the spin with respect to the CMB rest-frame.

Our 1 sigma spin-pendulum result

B=(+050+1.13) x 107 eV



an amusing number

e our upper limit on the energy required to invert
an electron spin about an arbitrary axis fixed in
inertial space is ~¥1022 eV

* this is comparable to the electrostatic energy of
two electrons separated by ~ 90 astronomical
units



nail #2: non-commutative space-time geometry?

string theorists have suggested that the space-time
coordinates may not commute, i.e. that

T, Ty =10,

where Oj; has units of area and represents the
mimimum observable patch of area, just as the
commutator of x and px represents the minimum
observable product of Ax Apy

“Review of the Phenomenology of Noncommutative
Geometry”
l. Hinchliffe, N Kersting and Y.L. Ma
hep-ph/0205040



effect of non-commutative geometry on a point-like spin

non-commutative geometry is
equivalent to a “pseudo-magnetic” field
and thus couples to spins

3 e? .
Leff = Em/‘i (16??2) OV 1oy

Anisimov, Dine, Banks and Graesser

Phys Rev D 65, 085032 (2002)

A\ is a cutoff which is assumed to be 1TeV
for electrons



effect of non-commutative
geometry on spin

-3 . __1'_.. .- _ |
Le ff = 1 m ”1 (1 = ) GHY DO

A IS a cutoff assumed to be 1TeV
Anisimov, Dine, Banks and Graesser
hep-ph/2010039
A
minimum elbservable patechr of area
Implied by our results




6 x 10—°% m? seems very small
and indeed it Is

but in another sense it Is also quite large
6 X 108 m? ~ (10° L,)?

where L, Is the Planck Length

V(h G/c®)=1.6 x 1035 m

or ~ (103 L)?
where L Is the Grand Unification length
L, = hc /10'° GeV

but 1013 GeV is pretty good for a table-top
result



nail #3: spin-spin exchange potentials
mediated by ultra-low mass vector bosons?
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Princeton study of V1, V2 & V, interactions of neutrons (actually *He)

using spin exchange with optically pumped alkalis
G. Vasilakis et al. PRL 103,261801 (2009)
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We probed V1, V2 and V3 interactions by surrounding the

rotating spin pendulum with stationary spin sources

T

| -

Shaded bars are SmCo5, return yokes are iron
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TABLE II.  68.5% confidence bounds on coupling to electrons
of bosons with m, = 0.1 ueV.

Value
Potential Coupling e (this work) n (Ref. |9])
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FIG. 5 (color online). Constraints on axial and vector cou-
plings g% and gj of spin-1 bosons with mass less than
0.1 peV. The solid and dashed contours correspond to 68.5%
and 95.3% confidence levels determined from 10000 simulated
data sets.



nail #4: new spontaneously-broken symmetries?

Spontaneously broken global symmetries always generate
massless pseudoscalar Goldstone bosons that couple to
fermions with gp=mf/F where F is the symmetry-breaking
energy scale.

If the symmetry is explicitly broken as well the resulting
. A?
pseudo Goldstone bosons acquire a mass my=—".

Sensitive searches for the fermionic interactions of these bosons
can probe for new hidden symmetries broken at very high scales.



familiar example of a pseudo-Goldstone boson (pGb):
the pion from spontaneous breaking of chiral symmetry

Speculations about additional pGb’s:
axions
familons
majorons
closed-string axions
accidental pGb’s

see A. Ringwald, arXiv:1407.0546 for a nice review



forces mediated by pseudoscalar boson exchange
are purely spin-dependent

V h2 [("‘ 5 )(1 +r)
dd = 010 -
]6:«‘?”12 2P / A=h/(mye).

rZ
~3(6, )6, )(”ﬁwﬂ /A

If the boson also has a scalar coupling g, (cf axion or axion-like particle ALP)
a CP-violating interaction is also generated

ng.q [ ]
AL VPN B | B
" ¢ [(G ) (rﬂ ' rz)} ‘




E6t-Wash pseudo-Goldstone boson detector
developed by Will Terrano (PhD 2015)

unpolarized mass attractor

- stationary pendulum- rotating attractor
%&%@ instrument with 20-pole azimuthal symmetry
O "' compact setup with sophisticated magnetic
shielding

”\:;& probes |
%-- \ @ monopole-dipole &

%O% «— dipole-dipole interactions

&

polarized spin attractor






unprecedented aN m
torque sensitivity

TABLE I.  Observed 4w and 10w torques. Amplitudes A are in
units of aN m, phases ¢ are in degrees, and separations s are in
millimeters. The lo uncertainties do not include systematic
effects. If V4 = 0, we expect Ap = ¢y, = Py = =9.0°.

Attractor Ta[[/ T{) A4m Al{)m (f) 100 — (f)4m

Spin: s = 4.12 7 285+5 074£29 +3+25
Spin: s = 4.12 6 2863+4 29428 -7.94+355
Spin: s =412 6+7 2860+3 13+20 -6.1+86
Mass: s =198 7 5611+£8 344+4 -9474+0.08
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95% confidence exclusion limits from the
pseudo-Goldstone boson detector

2
10° —
5 E thisTwnrk Edt-Wash 2013 E
0 “f ALPS 2010 i
2k e ¥ ]
04k \ | \\§
Gammey 2008
5F ! :
2 -
1G3 |

10 "5 Wineland
042_
043_

— Mi

07 Est-wash 2013

1
1
10714
1
1

045_

this work

107"

100

10!

my, [eV]

102

1 U—?#

1 G—?E_

TUQﬁ_

107

9,79,/ the)

Ham%oﬂd

TUQH_

=X

I

-y M

“r‘uu?din

th|j wark

5

100 2 5

3 5

10 2 102 2 10°

my, [ueV]

ALPS and GammeV are light shining thru wall expts

At DESY and FermilLab

W.A. Terrano et al., PRL 115, 201801 (2015)



nail #5 “Axion Wind” Effect (Axion and ALPs)

[Flambaum, Patras Workshop, 2013], [Stadnik, Flambaum, PRD 89, 043522 (2014)]
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“Axion Wind” Effect (Axion and ALPs)

[Flambaum, Patras Workshop, 2013], [Stadnik, Flambaum, PRD 89, 043522 (2014)]
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Analysis procedure (collaboration with Will Terrano)

analyse data cuts (typically containing exactly 2 turntable revolutions
and lasting about 3000 s) to extract lab-fixed signals B, and B, where
Epend: _Np B-o

convert these signals to equatorial frame B, and B,
pick an assumed Compton frequency w.and make a linear fit
of the B, and B,, time series in terms of 4 parameters:
X_cos (w¢t) X_sin (wct) Y_cos (wct) Y_ (wet) where Xand Y are
equatorial coordinates

repeat this last step over a dense scan of logarithmically spaced w,

deduce uncertainty from spread in the results



basis function for file k:\batdata‘\spgrpl.bsi
assurmed Compton frequency = 2.00000E-07
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1 of the 4 fit amplitudes
extracted from roughly %2 of our data

results from the other 3 amplitudes o1
are very similar
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X_cosiwt) from file k:\batdata“spgroupl.out
file has 5976 cuts & spans 483.0 days from 1692.4 to 2175.4
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Histogram of 1 of the 4 fit amplitudes summed over Compton frequencies
between 3x10° Hz to 2.5x10* Hz (this is only part of our data)

X_cos(wt) from fitting 60000 Compton fregs to file k:\batdata\spgroup!.out

file has 5976 cuts & spans 483.0 days from 1692.4 to 2175.4
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nail #6: ultra-low mass vector dark matter coupled to B-L?

Our newest project: stationary torsion balance with a Be/Al
pendulum (good sensitivity to B-L)

replaced our usual tungsten fiber (Q’s around 5000)

by fused silica suspension fiber (Q’s around 500,000) for much
better thermal noise

more sensitive twist-angle readout

do analysis like that in nail #5

hope to get decent results in 0.01 mHz to 10 mHz regime



B-L torsion pendulum of the recent WEP test

T. A. Wagner et al., Class. Quant. Grav. 29, 184002 (2012)

4 Be & 4 Al

twist

free osc freq:
quality factor:
machining tolerance:
total mass :

20 um diameter tungsten fiber

eight 4.84 g test bodies

4 mirrors for measuring pendulum

symmetrical design suppresses false
effects from gravity gradients, etc.

1.261 mHz
4000
S um
70 g



Erik Shaw’s excellent fused silica torsion fibers

10713
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| —External Torque
S Thermal noise for fused silica fiber, Q=500,000
' Thermal noise for equivalent Tungsten fiber
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