Lattice Calculation of Neutron and Proton EDMs

Sergey N. Syritsyn
Jefferson Lab,
Stony Brook University, RIKEN / BNL Research Center

Jefferson Lab

Symmetry Tests in Nuclei and Atoms
Kavli Institute for Theoretical Physics, Santa Barbara, Sep 19-23, 2016

Outline

Lattice basics
nEDM induced by θ-term

- nEDM induced by quark chromo-EDM

EDM in Background Electric Field

Neutron and Proton EDMs from quark-gluon CPv

$$
\begin{aligned}
\vec{d}_{N} & =d_{N} \frac{\vec{S}}{S} \\
\mathcal{H} & =-\vec{d}_{N} \cdot \vec{E}
\end{aligned}
$$

Motivations to search for new CP-odd interactions

- Extensions of SM
- Required for baryogenesis
- Strong CP problem

Lattice QCD : connect quark/gluon-level effective operators to hadron/nuclei matrix elements and interactions

$$
\begin{aligned}
& \mathcal{L}_{e f f}=\sum_{n} \frac{c_{n}}{\Lambda^{d_{n}-4}} \mathcal{O}_{n}^{\left(d_{n}\right)} \\
& \left\{\begin{array}{l}
\mathcal{L}^{(4)}=\theta \frac{g^{2}}{322^{2}} G \tilde{G} \\
\mathcal{L}^{(5)}=\sum_{q}\left[d_{q} \bar{q}(F \cdot \sigma) \gamma_{5} q+\tilde{d}_{q} \bar{q}(G \cdot \sigma) \gamma_{5} q\right] \\
\cdots
\end{array}\right.
\end{aligned}
$$

$$
\begin{gathered}
d_{n, p} \\
F_{3}^{n, p}\left(Q^{2}\right)
\end{gathered}
$$

Hadron Structure in Lattice QCD

Lattice Field Theory \Leftrightarrow Numerical evaluation of the Path Integral

$$
\begin{aligned}
& \begin{aligned}
\left\langle q_{x} \bar{q}_{y} \ldots\right\rangle & =\int \mathcal{D}(\text { Glue }) \int \mathcal{D}(\text { Quarks }) \underset{\begin{array}{c}
\text { Grassmann } \\
\text { integration }
\end{array}}{e^{-S_{\text {Glue }}-\bar{q}(\not D+m) q}\left[q_{x} \bar{q}_{y} \ldots\right]} \underbrace{}_{\begin{array}{c}
(\not D+m) \cdot q=0 \\
\text { quark motion in } \\
\text { qluon background }
\end{array}}
\end{aligned} \\
& \text { Hybrid Monte Carlo }
\end{aligned}
$$

Hadron Matrix Elements:
$C_{3 \mathrm{pt}}^{\mathcal{O}}(T)=\langle N(T) \mathcal{O}(\tau) \bar{N}(0)\rangle=$

"connected"

$$
\begin{aligned}
& \langle N(T) \mathcal{O}(\tau) N(0)\rangle=\sum_{n, m} Z_{n} \\
& \underset{T \rightarrow \infty}{\longrightarrow} Z_{00} e^{-M_{N} T}\left[\left\langle P^{\prime}\right| \mathcal{O}|P\rangle\right.
\end{aligned}
$$

Ground state form factors

$$
\langle N(T) \mathcal{O}(\tau) N(0)\rangle=\sum_{n, m} Z_{m} e^{-E_{n}(T-\tau)}\langle n| \mathcal{O}|m\rangle e^{-E_{m} \tau} Z_{n}^{*}
$$

$$
\underset{T \rightarrow \infty}{\longrightarrow} Z_{00} e^{-M_{N} T}[\left\langle P^{\prime}\right| \mathcal{O}|P\rangle+\mathcal{O}(\underbrace{e^{-\Delta E_{10} T}, e^{-\Delta E_{10} \tau}, e^{-\Delta E_{10}(T-\tau)}})]
$$

"disconnected"
excited states

Excited states contribute to correlators and may (and do) bias results

CP-odd Interaction on a Lattice

- Linearizing in CP-odd interaction, e.g. with θ-term

$$
\begin{aligned}
& e^{-S_{Q C D}-i \theta Q}=e^{-S_{Q C D}}\left[1-i \theta Q+O\left(\theta^{2}\right)\right] \\
& \langle\mathcal{O} \ldots\rangle_{C P}=\langle\mathcal{O} \ldots\rangle_{C P-\text { even }}-i \theta\langle Q \cdot \mathcal{O} \ldots\rangle_{C P-\text { even }}+O\left(\theta^{2}\right)
\end{aligned}
$$

Simulating with CP-odd term(s)

$$
\langle\mathcal{O} \ldots\rangle_{\theta} \sim \int \mathcal{D} U e^{-S-\theta^{I} Q}(\mathcal{O} \ldots)
$$

continued to Imag. θ to avoid sign problem
[T.Izubuchi et al (2007); R.Horsley et al (2008) ; F.K.Guo et al (2015)]

+ better sampling of $\mathrm{Q} \neq 0$
- linearity needs check
- need new ensemble

- Reweighing with CP-odd term(s)

$$
\bar{q}\left[\not D+m_{q}+i \epsilon(G \cdot \sigma) \gamma_{5}\right] q
$$

quark operator with cEDM [T.Bhattacharya et al(LANL)]

EDM from Spectrum vs. Form Factors

- Nucleon spectrum in the background electric field [S.Aoki et al '89 ; E.Shintani et al '06]

$$
\begin{aligned}
&\langle N(t) \bar{N}(0)\rangle_{\theta, \vec{E}} \sim e^{-\left(E \pm \vec{d}_{N} \cdot \vec{E}\right) t} \\
& \frac{\left\langle N_{\uparrow}(t) \bar{N}_{\uparrow}(0)\right\rangle_{\theta, E_{z}}}{\left\langle N_{\downarrow}(t) \bar{N}_{\downarrow}(0)\right\rangle_{\theta, E_{z}}} \sim e^{2 d_{N} E_{z} t} \approx 1+2 d_{N} E_{z} t
\end{aligned}
$$

Wick rotation: $\quad \vec{E} \rightarrow i \vec{E}$
$\mathrm{SU}(3)$ g.f. link $\quad U_{z} \rightarrow U_{z} e^{i E_{z} t} \sim e^{-E_{z} t}$ non-periodic with real(Minkowski) E_{z}

[E.Shintani et al, PRD75, 034507(2007)]

- P,T-odd Form Factor $d_{N}=F_{3}(0) / 2 m$
[E.Shintani et al '05, '15 ; F.Berruto et al '05 ; A.Shindler et al '15 ; C.Alexandrou et al'15]
$\begin{aligned} &\langle N| J^{\mu}|\bar{N}\rangle_{C P}=\bar{u} \Gamma_{C P-e v e n}^{\mu} u+\bar{u} \Gamma_{C P-o d d}^{\mu} u \\ & F_{1} \gamma^{\mu}+F_{2} \frac{i \sigma^{\mu \nu} q_{\nu}}{2 m} \hat{F}_{3} \frac{\gamma_{5} \sigma^{\mu \nu} q_{\nu}}{2 m}\end{aligned}$
Need either extrapolation $F_{3}\left(Q^{2} \rightarrow 0\right)$, or smart tricks [C.Alexandrou's talk]

Nucleon spinors are parity-mixed
$\langle N(t) \bar{N}(0)\rangle_{C P} \sim \frac{-i \not p+m e^{2 i \alpha_{N} \gamma_{5}}}{2 m_{N}} e^{-E_{N} t}$
CP-odd matrix elements require subtraction of $\mathrm{F}_{1,2}$ contributions:
$\left\langle Q \cdot N J^{\mu} \bar{N}\right\rangle \sim \mathcal{K}_{3}^{\mu} F_{3}+\alpha\left(\mathcal{K}_{1}^{\mu} F_{1}+\mathcal{K}_{2}^{\mu} F_{2}\right)$

Calculation with Chirally-Symmetric Quarks

[E.Shintani, T.Blum, T.Izubuchi,
A.Soni, PRD93, 094503(2015)]

- $1 / \mathrm{a}=1.73 \mathrm{GeV}$
- $V=(2.7 \mathrm{fm})^{3}$
- Mpi = 330, 400 MeV
- 750 configurations

- $1 / \mathrm{a}=1.37 \mathrm{GeV}$
- $V=(4.6 \mathrm{fm})^{3}$
- $\mathrm{Mpi}=170 \mathrm{MeV}$
- 39 configurations

Electric and Magnetic Form Factors

CP-odd Form Factors

[E.Shintani, T.Blum, T.Izubuchi, A.Soni, PRD93, 094503(2015)]

- $(2.7 \mathrm{fm})^{3} \mathrm{x}(7.3 \mathrm{fm})$ box
- $\mathrm{m} \pi=330 \mathrm{MeV}$

$$
F_{3}=\underset{\substack{\text { Lattice }}}{F_{Q}}+\underset{\substack{\text { CP-mixing } \\ \text { CP-odd f.f. }}}{F_{\alpha}}
$$

Q^{2-} Dependence of F_{3}

- $(2.7 \mathrm{fm})^{3} \times(7.3 \mathrm{fm})$ box
- $\mathrm{m} \pi=330 \mathrm{MeV}$

$$
S_{p}^{\prime}=-11(21) \cdot 10^{-4} e \cdot \mathrm{fm}^{3}
$$

$$
S_{n}^{\prime}=24(14) \cdot 10^{-4} e \cdot \mathrm{fm}^{3}
$$

- Schiff moments from linear fit
- (4.6 fm $)^{3} \times(9.2 \mathrm{fm})$ box
- $\mathrm{m} \pi=170 \mathrm{MeV}$

$$
\begin{array}{r}
S_{p}^{\prime}=-170(150) \cdot 10^{-4} e \cdot \mathrm{fm}^{3} \\
S_{n}^{\prime}=87(94) \cdot 10^{-4} e \cdot \mathrm{fm}^{3}
\end{array}
$$

$$
\frac{1}{2 m_{N}} F_{3}\left(Q^{2}\right)=d_{N}+S^{\prime} Q^{2}+O\left(Q^{4}\right)
$$

[E.Shintani, T.Blum, T.Izubuchi,
A.Soni, PRD93, 094503(2015)]

EDM vs. Pion Mass

- Substantial MC noise due to extensive nature of top.charge
[E.Shintani, T.Blum, T.Izubuchi, A.Soni, PRD93, 094503(2015)]

Localized Sampling of $Q=\tilde{F} F$

$$
\langle\tilde{F} F(x) \tilde{F} F(0)\rangle \sim e^{-m_{\eta^{\prime}}|x|}
$$

- Overcome noise from top.charge fluctuations: sample F̃F locally

- $(2.7 \mathrm{fm})^{3} \mathrm{x}(7.3 \mathrm{fm})$ box
- $\mathrm{m} \pi=330 \mathrm{MeV}$
[E.Shintani, T.Blum, T.Izubuchi, A.Soni, PRD93, 094503(2015)]

$$
Q_{\text {local }}\left(\tau, l_{Q}\right) \sim \int_{\tau-l_{Q} / 2}^{\tau+l_{Q} / 2} d t d V \tilde{F} F
$$

Quark Chromo-EDM

$$
\begin{aligned}
& \mathcal{L}^{(5)}=\sum_{q} \tilde{d}_{q} \bar{q}(G \cdot \sigma) \gamma_{5} q \longrightarrow\left\langle N(y) \bar{N}(0) \int d^{4} x(\tilde{G} \cdot \sigma)\right\rangle \\
&\left\langle N(y)\left[\bar{q} \gamma^{\mu} q\right](z) \bar{N}(0) \int d^{4} x(\tilde{G} \cdot \sigma)\right\rangle
\end{aligned}
$$

Quark-Gluon EDM: Insertions of dim-5 Operators

$$
\mathcal{L}^{(5)}=\sum_{q} \tilde{d}_{q} \bar{q}(G \cdot \sigma) \gamma_{5} q \longrightarrow \begin{aligned}
& \left\langle N(y) \bar{N}(0) \int d^{4} x(\tilde{G} \cdot \sigma)\right\rangle \\
& \left\langle N(y)\left[\bar{q} \gamma^{\mu} q\right](z) \bar{N}(0) \int d^{4} x(\tilde{G} \cdot \sigma)\right\rangle
\end{aligned}
$$

Now: Only quark-connected insertions

Quark-Gluon EDM: Insertions of dim-5 Operators

$$
\begin{array}{ll}
\mathcal{L}^{(5)}=\sum_{q} \tilde{d}_{q} \bar{q}(G \cdot \sigma) \gamma_{5} q \longrightarrow
\end{array} \begin{aligned}
& \left\langle N(y) \bar{N}(0) \int d^{4} x(\tilde{G} \cdot \sigma)\right\rangle \\
& \left\langle N(y)\left[\bar{q} \gamma^{\mu} q\right](z) \bar{N}(0) \int d^{4} x(\tilde{G} \cdot \sigma)\right\rangle
\end{aligned}
$$

Now: Only quark-connected insertions

Some day: Single- and double-disconnected diagrams (contribute to isosinglet cEDM, mix with θ-term)

Parity Mixing (Proton)

Proton \& Neutron EDFF Form Factors

Proton \& Neutron EDFF Form Factors

Background Electric Field

Accessing magnetic and electric moments at $\mathrm{Q}^{2}=0$ Imag.Minkowski/Real Euc. electric field on a lattice
[W.Detmold et al (2009)] : calculation of hadron polarizabilities

Full flux through the

$$
=q \Phi=2 \pi
$$

"side" of the periodic box
$\begin{gathered}\text { Constant Electric field } \\ \text { has to be quantized, }\end{gathered} \quad \mathcal{E}_{\min }=\frac{1}{\left|q_{d}\right|} \frac{2 \pi}{L_{x} L_{t}}$
$U_{\mu} \rightarrow e^{i q A_{\mu}} U_{\mu}$

$$
A_{z}(z, t)=n \mathcal{E}_{\min } \cdot t
$$

$$
A_{t}\left(z, t=L_{t}-1\right)=-n \mathcal{E}_{\min } \cdot L_{t} z
$$

CP-odd Neutron Energy Shift

$$
\begin{aligned}
&\left\langle N(t) \bar{N}(0) \mathcal{O}_{\overline{C P}}\right\rangle_{\mathcal{E}} \sim e^{-E_{N} t}\left[A-d_{N} \mathcal{E}_{z} \Sigma_{z} t\right] \bullet(1.9 \mathrm{fm})^{3} \times(3.8 \mathrm{fm}) \\
& f(t, \mathcal{E})=\frac{\operatorname{Re} \operatorname{Tr}\left[\Sigma_{z} \cdot\left\langle N(t) \bar{N}(0) \mathcal{O}_{\overline{C P}}\right\rangle_{\mathcal{E}}\right]}{\operatorname{ReTr}\left[\langle N(t) \bar{N}(0)\rangle_{\mathcal{E}}\right]} \sim A+d_{N} \mathcal{E} t \bullet \mathcal{E}_{\min }=0.0960 \mathrm{MeV} \\
& \mathrm{GeV}^{2}=490 \mathrm{MeV} / \mathrm{fm}
\end{aligned}
$$

- Linearity in $\tilde{d}_{q} / d_{N}, t$, and \mathcal{E}
- No renormalization yet

Electric field $\quad \mathcal{E}=\frac{6 \pi}{L_{x} L_{t}} \approx 0.1 \mathrm{GeV}^{2}$ on $16^{3} \times 32$ lattice $\quad{ }^{2} \quad \approx 500 \mathrm{M}(\mathrm{e}) \mathrm{V} / \mathrm{fm}$

Summary

Calculations of θ-induced NEDM are very noisy close to the physical pion mass

- Additional techniques may be necessary
local sampling of topology?
- Initial results for quark-connected cEDM-induced EDFF look promising
- Preliminary study with background field methods shows expected qualitative behavior
- Challenges in computing NEDM from cEDM
subtraction of lower-dimension operators disconnected diagrams mixing with θ-term in the isoscalar channel

F3 Plateaus (16c32, 400 MeV)

F3 Plateaus (32c64, 170 MeV)

