Iutorial on nuclear EFr's

Related tutorials \& lecture notes

- general: EE, Nuclear forces from chiral EFT: A primer, arXiv:1001.3229
- renormalization:

Lepage, How to renormalize the Schrödinger equation, nucl/th:9706029

- RG analysis:

Birse, The renormalization group and nuclear forces, Phil. Trans. Roy. Soc. Lond. A369 (2011) 2662

- Uncertainty quantification:

Weselowski et al., Bayesian parameter estimation for effective field theories, J.Phys. G43 (2016) 074001

Grießhammer, Assessing Theory Uncertainties in EFT Power Countings from Residual Cutoff Dependence, arXiv:1511.00490

Why Err for nuclear physics?

Ultimate goal: predictive, systematically improvable and computationally efficient QCD-based theory for nuclei, nuclear reactions and nuclear matter

Notice: predictive requires for a theory to come with uncertainty estimates!

Why Err for nuclear physics?

Ultimate goal: predictive, systematically improvable and computationally efficient QCD-based theory for nuclei, nuclear reactions and nuclear matter

Notice: predictive requires for a theory to come with uncertainty estimates!

Why ErI for nuclear physics?

Ultimate goal: predictive, systematically improvable and computationally efficient QCD-based theory for nuclei, nuclear reactions and nuclear matter

Notice: predictive requires the theory to come with uncertainty estimates!

matching (validation)

How few is few (\& how many is many)?

$$
H|\Psi\rangle=E|\Psi\rangle
$$

Commonly used ab-initio few- and many-body methods:
Lippmann-Schwinger \& Faddeev-Yakubovski equations, No Core Shell Model, Quantum Monte Carlo, Lorentz Integral Transform, Coupled cluster, nuclear lattice simulations, self-consistent Gorkov Green's functions, many-body perturbation theory, hyperspherical harmonics, ...

The applicability range of many-body methods is typically restricted by the size of the model space (convergence). For A>~6, nuclear forces must be softened via appropriate UTs (induced many-body forces...)
$A=2$: trivial
A = 3: can be solved on a PC (both discrete \& continuum states)
$A=4$: requires supercomputing (scattering so far only at low energies...)
A > 4: so far, only discrete states (with very few exceptions)...
A ~ 50: some results available (converged?)

EFTs for nuclear physics

$A=0,1$: Chiral perturbation theory

A>1: Pionless EFT $\left(Q \ll M_{\pi}\right)$; chiral EFT $\left(Q \sim M_{\pi}\right)$

A >> 1: In-medium chiral EFT; EFTs using collective DOFs (e.g. to describe deformed nuclei)

Chiral perturbation theory

- Ideal world [$m_{u}=m_{d}=0$], zero-energy limit: non-interacting massless GBs (+ strongly interacting massive hadrons)
- Real world [$m_{u}, m_{d} \ll \Lambda_{Q C D}$], low energy: weakly interacting light GBs (+ strongly interacting massive hadrons)

Chiral Perturbation Theory

Chiral Perturbation Theory: expansion of the scattering amplitude in powers of
Weinberg, Gasser, Leutwyler, Meißner, ...

$$
Q=\frac{\text { momenta of pions and nucleons or } M_{\pi} \sim 140 \mathrm{MeV}}{\text { hard scales [at best } \left.\Lambda_{\chi}=4 \pi \mathrm{~F}_{\pi} \sim 1 \mathrm{GeV}\right] \text { Manohar, Georgi '84 }}
$$

Tool: Feynman calculus using the effective chiral Lagrangian

$$
\begin{aligned}
\mathcal{L}_{\pi} & =\mathcal{L}_{\pi}^{(2)}+\mathcal{L}_{\pi}^{(4)}+\ldots \\
\mathcal{L}_{\pi N} & =\underbrace{\bar{N}\left(i \gamma^{\mu} D_{\mu}[\pi]-m+\frac{g_{A}}{2} \gamma^{\mu} \gamma_{5} u_{\mu}[\pi]\right)}_{\mathcal{L}_{\pi N}^{(1)}} N
\end{aligned}+\underbrace{\sum_{i} c_{i} \overbrace{\bar{N} \hat{O}_{i}^{(2)}[\pi] N}+\underbrace{\sum_{i}^{d_{i} \bar{N} \hat{O}_{i}^{(3)}[\pi] N}+\ldots}_{\mathcal{L}_{\pi N}^{(3)}} .}_{\mathcal{L}_{\pi N}^{(2)}}
$$

Chiral Perturbation Theory

Chiral Perturbation Theory: expansion of the scattering amplitude in powers of Weinberg, Gasser, Leutwyler, Meißner, ...

$$
\mathrm{Q}=\frac{\text { momenta of pions and nucleons or } \mathrm{M}_{\pi} \sim 140 \mathrm{MeV}}{\text { hard scales [at best } \Lambda_{\chi}=4 \pi \mathrm{~F}_{\pi} \sim 1 \mathrm{GeV} \text {] Manohar, Georgi' 84 }}
$$

Tool: Feynman calculus using the effective chiral Lagrangian

$$
\begin{aligned}
\mathcal{L}_{\pi} & =\mathcal{L}_{\pi}^{(2)}+\mathcal{L}_{\pi}^{(4)}+\ldots \\
\mathcal{L}_{\pi N} & =\underbrace{\bar{N}\left(i \gamma^{\mu} D_{\mu}[\pi]-m+\frac{g_{A}}{2} \gamma^{\mu} \gamma_{5} u_{\mu}[\pi]\right) N}_{\mathcal{L}_{\pi N}^{(1)}}+\underbrace{\sum_{i} c_{i} \stackrel{\tilde{N} \hat{O}_{i}^{(2)}[\pi] N}{ }+\underbrace{\sum_{i}^{\boldsymbol{d}_{i} \bar{N} \hat{O}_{i}^{(3)}[\pi] N}+\ldots}_{\mathcal{L}_{\pi N}^{(3)}}}_{\mathcal{L}_{\pi N}^{(2)}} . l
\end{aligned}
$$

Pion-nucleon scattering up to \mathbf{Q}^{4} in heavy-baryon ChPT

Fettes, Meißner '00; Krebs, Gasparyan, EE '12

Order Q:
Order Q2:

Order Q3:

Order Q4:

Determination of the uN LECS

Pion-nucleon LECs can be reliably extracted from:

$-\pi \mathrm{N}$ PWA ${ }_{\text {[Fettes, Meißner, Alarcon, Camalich, Gasparyan, EE, Krebs, Deliang, ...], }}$

- Roy-Steiner analysis of $\pi \mathrm{N}$ scattering [Hoferichter, Ruiz de Elvira, Kubis, MeiBner, Yao, Gegelia, ...]
— or directly from $\pi \mathrm{N}$ scattering data [Wendt, Ekström, Siemens, Bernard, EE, Gasparyan, Krebs, Meißner, ...]

	c_{1}	c_{2}	c_{3}	c_{4}	$\bar{d}_{1}+\bar{d}_{2}$	\bar{d}_{3}	\bar{d}_{5}	$\bar{d}_{14}-\bar{d}_{15}$	\bar{e}_{14}	\bar{e}_{17}
$\left[Q^{4}\right]_{\mathrm{HB}, \mathrm{NN}}$, GW PWA	-1.13	3.69	-5.51	3.71	5.57	-5.35	0.02	-10.26	1.75	-0.58
$\left[Q^{4}\right]_{\mathrm{HB}, \mathrm{NN}}$, KH PWA	-0.75	3.49	-4.77	3.34	6.21	-6.83	0.78	-12.02	1.52	-0.37
$\left[Q^{4}\right]_{\text {covariant }}$, data	-0.82	3.56	-4.59	3.44	5.43	-4.58	-0.40	-9.94	-0.63	-0.90

Nuclear EFTs $(A>1)$

$\longleftarrow \quad$ Not suppressed by X symmetry...

Hierarchy of scales in nuclear physics

momenta of the
nucleons

Herarchy of scales in nuclear physics

momenta of the

 nucleons

A new, soft scale associated with nuclear binding
$Q \sim 1 / a_{S} \simeq 8.5 \mathrm{MeV}(36 \mathrm{MeV})$ in ${ }^{1} \mathrm{~S}_{0}\left({ }^{3} \mathrm{~S}_{1}\right)$ has to be generated dynamically (need resummations...)

Hierarchy of scales in nuclear physics

momenta of the nucleons

$Q \sim 1 / a_{S} \simeq 8.5 \mathrm{MeV}(36 \mathrm{MeV})$ in ${ }^{1} \mathrm{~S}_{0}\left({ }^{3} \mathrm{~S}_{1}\right)$ has to be generated dynamically (need resummations...)

Hierarchy of scales in nuclear physics

A new, soft scale associated with nuclear binding $Q \sim 1 / a_{S} \simeq 8.5 \mathrm{MeV}(36 \mathrm{MeV})$ in ${ }^{1} \mathrm{~S}_{0}\left({ }^{3} \mathrm{~S}_{1}\right)$ has to be generated dynamically (need resummations...)

Pionless Efi

Nonrelativistic nucleon-nucleon scattering (uncoupled case):

$$
S_{l}(k)=e^{2 i \delta_{l}(k)}=1+i \frac{m k}{2 \pi} T_{l}(k) \text { where } T_{l}(k)=\frac{4 \pi}{m} \frac{k^{2 l}}{F_{l}(k)-i k^{2 l+1}} \quad \text { and } \quad F_{l}(k) \equiv k^{2 l+1} \cot \delta_{l}(k)
$$

If $V(r)$ satisfies certain conditions, F_{l} is a meromorphic function of k^{2} near the origin

\rightarrow effective range expansion (ERE): $\quad F_{l}\left(k^{2}\right)=-\frac{1}{a}+\frac{1}{2} r k^{2}+v_{2} k^{4}+v_{3} k^{6}+v_{4} k^{8}+\ldots$
The analyticity domain depends on the range M^{-1} of $V(r)$ defined as $M=\min (\mu)$
such that $\int_{R>0}^{\infty}|V(r)| e^{\mu r} d r=\infty \quad$ (for strongly interacting nucleons $M=M_{\pi}$)

Pionless Efi

Nonrelativistic nucleon-nucleon scattering (uncoupled case):

$$
S_{l}(k)=e^{2 i \delta_{l}(k)}=1+i \frac{m k}{2 \pi} T_{l}(k) \text { where } T_{l}(k)=\frac{4 \pi}{m} \frac{k^{2 l}}{F_{l}(k)-i k^{2 l+1}} \quad \text { and } \quad F_{l}(k) \equiv k^{2 l+1} \cot \delta_{l}(k)
$$

If $V(r)$ satisfies certain conditions, F_{l} is a meromorphic function of k^{2} near the origin

\rightarrow effective range expansion (ERE): $\quad F_{l}\left(k^{2}\right)=-\frac{1}{a}+\frac{1}{2} r k^{2}+v_{2} k^{4}+v_{3} k^{6}+v_{4} k^{8}+\ldots$
The analyticity domain depends on the range M^{-1} of $V(r)$ defined as $M=\min (\mu)$
such that $\int_{R>0}^{\infty}|V(r)| e^{\mu r} d r=\infty \quad$ (for strongly interacting nucleons $M=M_{\pi}$)
Both ERE \& $\not k$-EFT provide an expansion of NN observables in powers of k / M_{π}, have the same validity range and are based on the same principles \longrightarrow ERE $\sim \not x$-EFT

Pionless Efi

Effective Lagrangian: for $Q \ll M_{\pi}$ only point-like interactions

$$
\mathcal{L}_{\text {eff }}=N^{\dagger}\left(i \partial_{0}+\frac{\vec{\nabla}^{2}}{2 m}\right) N-\frac{1}{2} C_{1}^{0}\left(N^{\dagger} N\right)^{2}-\frac{1}{2} C_{2}^{0}\left(N^{\dagger} \vec{\sigma} N\right)^{2}-\frac{1}{4} C_{1}^{2}\left(N^{\dagger} \vec{\nabla}^{2} N\right)\left(N^{\dagger} N\right)+\text { h.c. }+\ldots
$$

Scattering amplitude (S-waves):

$$
S=e^{2 i \delta}=1-i\left(\frac{k m}{2 \pi}\right) T, \quad T=-\frac{4 \pi}{m} \frac{1}{k \cot \delta-i k}=-\frac{4 \pi}{m} \frac{1}{\left(-\frac{1}{a}+\frac{1}{2} r_{0} k^{2}+v_{2} k^{4}+v_{3} k^{6}+\ldots\right)-i k}
$$

Pionless EFT

Effective Lagrangian: for $Q \ll M_{\pi}$ only point-like interactions

$$
\mathcal{L}_{\text {eff }}=N^{\dagger}\left(i \partial_{0}+\frac{\vec{\nabla}^{2}}{2 m}\right) N-\frac{1}{2} C_{1}^{0}\left(N^{\dagger} N\right)^{2}-\frac{1}{2} C_{2}^{0}\left(N^{\dagger} \vec{\sigma} N\right)^{2}-\frac{1}{4} C_{1}^{2}\left(N^{\dagger} \vec{\nabla}^{2} N\right)\left(N^{\dagger} N\right)+\text { h.c. }+\ldots
$$

Scattering amplitude (S-waves):

$$
S=e^{2 i \delta}=1-i\left(\frac{k m}{2 \pi}\right) T, \quad T=-\frac{4 \pi}{m} \frac{1}{k \cot \delta-i k}=-\frac{4 \pi}{m} \frac{1}{\left(-\frac{1}{a}+\frac{1}{2} r_{0} k^{2}+v_{2} k^{4}+v_{3} k^{6}+\ldots\right)-i k}
$$

- Natural case

$$
|a| \sim M_{\pi}^{-1},|r| \sim M_{\pi}^{-1}, \ldots \rightarrow T=T_{0}+T_{1}+T_{2}+\ldots=\frac{4 \pi a}{m}[\underset{\sim}{1} \underset{\sim Q^{0}}{1-i a k}+\underset{\sim \mathrm{Q}^{1}}{\left(\frac{a r_{0}}{2}-a^{2}\right)} \underbrace{2}_{\sim \mathrm{Q}^{2}}+\ldots]
$$

$$
T_{0}=
$$

The EFT expansion can be arranged to match the above expansion for T.

Using e.g. dimensional or subtractive ragularization yields:

- perturbative expansion for T;
- scaling of the LECs: $C^{i} \sim Q^{0}$

Pionless Eli

Effective Lagrangian: for $Q \ll M_{\pi}$ only point-like interactions

$$
\mathcal{L}_{\text {eff }}=N^{\dagger}\left(i \partial_{0}+\frac{\vec{\nabla}^{2}}{2 m}\right) N-\frac{1}{2} C_{1}^{0}\left(N^{\dagger} N\right)^{2}-\frac{1}{2} C_{2}^{0}\left(N^{\dagger} \vec{\sigma} N\right)^{2}-\frac{1}{4} C_{1}^{2}\left(N^{\dagger} \vec{\nabla}^{2} N\right)\left(N^{\dagger} N\right)+\text { h.c. }+\ldots
$$

Scattering amplitude (S-waves):

$$
S=e^{2 i \delta}=1-i\left(\frac{k m}{2 \pi}\right) T, \quad T=-\frac{4 \pi}{m} \frac{1}{k \cot \delta-i k}=-\frac{4 \pi}{m} \frac{1}{\left(-\frac{1}{a}+\frac{1}{2} r_{0} k^{2}+v_{2} k^{4}+v_{3} k^{6}+\ldots\right)-i k}
$$

- Natural case

$$
|a| \sim M_{\pi}^{-1},|r| \sim M_{\pi}^{-1}, \ldots \rightarrow T=T_{0}+T_{1}+T_{2}+\ldots=\frac{4 \pi a}{m}[\underset{\sim}{1} \underset{\sim Q^{0}}{1-i a k}+\underset{\sim \mathrm{Q}^{1}}{\left(\frac{a r_{0}}{2}-a^{2}\right)} \underbrace{2}_{\sim \mathrm{Q}^{2}}+\ldots]
$$

In reality: $\quad a_{1 S_{0}}=-23.741 \mathrm{fm}=-16.6 M_{\pi}^{-1} \quad a_{3 S_{1}}=-5.42 \mathrm{fm}=3.8 M_{\pi}^{-1}$

Pionless Efi

- Large scattering length: $|a| \gg M_{\pi}^{-1} \quad$ Kaplan, Savage, Wise '97

Keep $a k$ fixed, i.e. count $a \sim Q^{-1}$:

$$
T=-\frac{4 \pi}{m} \frac{1}{\left(-\frac{1}{a}+\frac{1}{2} r_{0} k^{2}+v_{2} k^{4}+v_{3} k^{6}+\ldots\right)-i k}=\frac{4 \pi}{m} \frac{1}{(1+i a k)}[\underset{\sim Q^{-1}}{a}+\underbrace{\frac{a r_{0}}{2\left(a^{-1}+i k\right)}}_{\sim \mathrm{Q}^{0}} k^{2}+\underset{\sim \mathrm{Q}^{1}}{\ldots}] .
$$

Notice: perturbation theory for T breaks down as it has a pole at $|k| \sim|a|^{-1} \ll M_{\pi}$

KSW expansion (DR+PDS or subtractive renormalization $C^{0} \sim 1 / Q, C^{2} \sim 1 / Q^{2}, \ldots$)

$$
T^{(0)}=
$$

Pionless EFIf (some) applications

- Astrophysical reactions Butler, Chen, Kong, Ravndal, Rupak, Savage,
- Efimov physics and universality in few-body systems with large 2-body scatt. length (e.g. Phillips/Tjon „lines") Braaten, Hammer, Meißner, Platter, von Stecher, Schmidt, Moroz,
- Halo-nuclei Bedaque, Bertulani, Hammer, Higa, van Kolck, Phillips, ...
- Parity violation schindler, Springer ... any many other topics...

Efimov effect (3-body spectrum)

Phillips line

How to go beyond ERE?

Goal: EFT for NN scattering at typical momenta $\mathbf{Q} \sim M_{\pi}$

Are pions perturbative?
How to test whether or not pion dynamics is treated properly?

Modified Effective Range Expansion (MERE)

Beyond π-less EFT: higher energies, low-energy theorems (LETs)...

What are low-energy theorems?
Two-range potential: $V(r)=V_{L}(r)+V_{S}(r)$

$$
\text { with } M_{L}^{-1} \gg M_{H}^{-1}
$$

- $F_{l}\left(k^{2}\right)$ is meromorphic in $|k|<M_{L} / 2$

$$
F_{l}^{M}\left(k^{2}\right) \equiv M_{l}^{L}(k)+\frac{k^{2 l+1}}{\left|f_{l}^{L}(k)\right|^{2}} \cot \left[\delta_{l}(k)-\delta_{l}^{L}(k)\right]
$$

$$
\underbrace{f_{l}^{L}(k)}=\lim _{r \rightarrow 0}(\frac{l!}{(2 l)!}(-2 i k r)^{l} \underbrace{f_{l}^{L}(k, r)})
$$

Jost function for $V_{L}(r) \quad$ Jost solution for $V_{L}(r)$

$$
M_{l}^{L}(k)=\operatorname{Re}\left[\frac{(-i k / 2)^{l}}{l!} \lim _{r \rightarrow 0}\left(\frac{d^{2 l+1}}{d r^{2 l+1}} \frac{r^{l} f_{l}^{L}(k, r)}{f_{l}^{L}(k)}\right)\right]
$$

Per construction, F_{l}^{M} reduces to F_{l} for $V_{L}=0$ and is meromorphic in $|k|<M_{H} / 2$
\leftarrow modified effective range function Haeringen, Kok '82

MERE and low-energy theorems

Example: proton-proton scattering

$$
\begin{gathered}
F_{C}\left(k^{2}\right)=C_{0}^{2}(\eta) k \cot \left[\delta(k)-\delta^{C}(k)\right]+2 k \eta h(\eta)=-\frac{1}{a^{M}}+\frac{1}{2} r^{M} k^{2}+v_{2}^{M} k^{4}+\ldots \\
\text { where } \underbrace{\delta^{C} \equiv \arg \Gamma(1+i \eta),}_{\text {Coulomb phase shift }} \eta=\frac{m}{2 k} \alpha, \underbrace{C_{0}^{2}(\eta)=\frac{2 \pi \eta}{e^{2 \pi \eta}-1}}_{\text {Sommerfeld factor }}, h(\eta)=\operatorname{Re}[\underbrace{\Psi(i \eta)]}_{\text {Digamma function } \Psi(z) \equiv \Gamma^{\prime}(z) / \Gamma(z)}-\ln (\eta)
\end{gathered}
$$

MERE and low-energy theorems

Example: proton-proton scattering

$$
\begin{gathered}
F_{C}\left(k^{2}\right)=C_{0}^{2}(\eta) k \cot \left[\delta(k)-\delta^{C}(k)\right]+2 k \eta h(\eta)=-\frac{1}{a^{M}}+\frac{1}{2} r^{M} k^{2}+v_{2}^{M} k^{4}+\ldots \\
\text { where } \underbrace{\delta^{C} \equiv \arg \Gamma(1+i \eta),}_{\text {Coulomb phase shift }} \eta=\frac{m}{2 k} \alpha, \underbrace{C_{0}^{2}(\eta)=\frac{2 \pi \eta}{e^{2 \pi \eta}-1}}_{\text {Sommerfeld factor }}, h(\eta)=\operatorname{Re}[\underbrace{[(i \eta)}_{\text {Digamma function }} \Psi-\ln (\eta) \equiv \Gamma^{\prime}(z) / \Gamma(z)
\end{gathered}
$$

MERE and low-energy theorems

Long-range forces impose correlations between the ER coefficients (low-energy theorems) Cohen, Hansen '99; Steele, Furnstahl '00

The emergence of the LETs can be understood in the framework of MERE:

$$
\underbrace{F_{l}^{M}\left(k^{2}\right)}_{\substack{\text { meromorphic for } \\ k^{2}<\left(M_{H} / 2\right)^{2}}} \equiv M_{l}^{L}(k)+\frac{k^{2 l+1}}{\left|f_{l}^{L}(k)\right|^{2}} \cot \left[\delta_{l}(k)-\delta_{l}^{L}(k)\right]
$$

- approximate $F_{l}^{M}\left(k^{2}\right)$ by first $1,2,3, \ldots$ terms in the Taylor expansion in k^{2}
- calculate all "light" quantities
- reconstruct $\delta_{l}^{L}(k)$ and predict all coefficients in the ERE

Letrs for NN S-waves

${ }^{1} S_{0}$ partial wave	$a[\mathrm{fm}]$	$r[\mathrm{fm}]$	$v_{2}\left[\mathrm{fm}^{3}\right]$	$v_{3}\left[\mathrm{fm}^{5}\right]$	$v_{4}\left[\mathrm{fm}^{7}\right]$
NLO KSW Cohen, Hansen '99	fit	fit	-3.3	18	-108
LO Weinberg	fit	1.50	-1.9	$8.6(8)$	$-37(10)$
Nijmegen PWA	-23.7	2.67	-0.5	4.0	-20

${ }^{3} S_{1}$ partial wave	$a[\mathrm{fm}]$	$r[\mathrm{fm}]$	$v_{2}\left[\mathrm{fm}^{3}\right]$	$v_{3}\left[\mathrm{fm}^{5}\right]$	$v_{4}\left[\mathrm{fm}^{7}\right]$
NLO KSW Cohen, Hansen '99	fit	fit	-0.95	4.6	-25
LO Weinberg	fit	1.60	-0.05	$0.8(1)$	$-4(1)$
Nijmegen PWA	5.42	1.75	0.04	0.67	-4.0

see also: Birse, Phys. Rev. C74 (2006) 014003
\longrightarrow pion exchange seems to require a non-perturbative treatment!

Chiral EFT for nuclei

How to include pions non-perturbatively?

For $p \sim M_{\pi} \ll m_{N}$, nucleons are non-relativistic \rightarrow nuclear dynamics can be efficiently treated within the conventional Schrödinger theory (QM) Weinberg'90

$$
[\left(\sum_{i=1}^{A} \frac{-\vec{\nabla}_{i}^{2}}{2 m_{N}}+\mathcal{O}\left(m_{N}^{-3}\right)\right)+\underbrace{V_{2 N}+V_{3 N}+V_{4 N}+\ldots}_{\text {derived in ChPT }}]|\Psi\rangle=E|\Psi\rangle
$$

\rightarrow coupled with ab-initio few-body methods, provides access to nuclei

Chiral EFT for nuclei

How to include pions non-perturbatively?

For $p \sim M_{\pi} \ll m_{N}$, nucleons are non-relativistic \rightarrow nuclear dynamics can be efficiently treated within the conventional Schrödinger theory (QM) Weinberg'90

$$
[\left(\sum_{i=1}^{A} \frac{-\vec{\nabla}_{i}^{2}}{2 m_{N}}+\mathcal{O}\left(m_{N}^{-3}\right)\right)+\underbrace{V_{2 N}+V_{3 N}+V_{4 N}+\ldots}_{\text {derived in ChPT }}]|\Psi\rangle=E|\Psi\rangle
$$

\rightarrow coupled with ab-initio few-body methods, provides access to nuclei

What is the applicability range of the potential approach?

Strictly speaking, below π production threshold, i.e. $p \sim \sqrt{M_{\pi} m_{N}} \sim 400 \mathrm{MeV}$ (if desired, radiative pions can be included perturbatively...)

Chiral Err for nuclei

How to include pions non-perturbatively?

For $p \sim M_{\pi} \ll m_{N}$, nucleons are non-relativistic \rightarrow nuclear dynamics can be efficiently treated within the conventional Schrödinger theory (QM) Weinberg'90

$$
[\left(\sum_{i=1}^{A} \frac{-\vec{\nabla}_{i}^{2}}{2 m_{N}}+\mathcal{O}\left(m_{N}^{-3}\right)\right)+\underbrace{V_{2 N}+V_{3 N}+V_{4 N}+\ldots}_{\text {derived in ChPT }}]|\Psi\rangle=E|\Psi\rangle
$$

\rightarrow coupled with ab-initio few-body methods, provides access to nuclei

What is the applicability range of the potential approach?

Strictly speaking, below π production threshold, i.e. $p \sim \sqrt{M_{\pi} m_{N}} \sim 400 \mathrm{MeV}$ (if desired, radiative pions can be included perturbatively...)

How to derive nuclear forces from the effective chiral Lagrangian?

- Irreducible time-ordered diagrams Weinberg '90; van Kolck et al. '93; Pastori, Piarulli et al. 07-16
- Decouple pion states via a suitable UT in the Fock space Ee, Glöckle, Krebs, Meißner

Chiral Efl for nuclei

- Matching to the amplitude Kaiser et al.

Chiral EPT for nuclei

- Matching to the amplitude Kaiser et al.

$$
\begin{gathered}
\text { ChPT } \rightarrow \text { 竍 }
\end{gathered}
$$

Chiral EFT for nuclei

- Matching to the amplitude Kaiser et al.

Are nuclear forces directly observable?
No. Contrary to the on-shell amplitude, nuclear forces are scheme-dependent.

Chiral Efr for nuclei

- Matching to the amplitude Kaiser et al.

Are nuclear forces directly observable?
No. Contrary to the on-shell amplitude, nuclear forces are scheme-dependent.

Are nuclear potentials well-defined (i.e. finite)?

So far, it was always possible to renormalize nuclear forces by systematically exploiting their unitary ambiguity...

Chiral Erf for nuclei

How about current operators?

Include coupling to external sources (local χ-symmetry) $H[a, v, s, p]$, eliminate pion fields and read off the current operators [see Krebs, EE, Meißner, to appear]

Can one combine currents calculated by the JLab-Pisa group with Bochum-Bonn nuclear forces?

This would be inconsistent (currents \& forces correspond to different choices of the basis states)

Where does chiral physics come into play?
The potential is expected to converge at large distances ($r \sim M_{\pi}$ and beyond). The long-range tail of the force controls the energy behavior of the amplitude in the near-threshold region.

What is the breakdown distance of the chiral expansion of the long-range potential?

Naively (just NDA): $\mathrm{r} \sim\left(4 \pi \mathrm{~F}_{\pi}\right)^{-1} \sim 0.2 \mathrm{fm}$ However, this seems too optimistic...

Chiral EPT for nuclei

Pion loops in multiple-scattering-like diagrams are enhanced by one power of π !

$$
\begin{aligned}
& c_{1} M_{\pi}^{2} \left\lvert\, \begin{array}{c}
\frac{q}{2}+l \\
\left.\frac{q}{2}+l \right\rvert\,
\end{array}\right. \\
& V_{2 \pi}^{(3)}=\frac{3 g_{A}^{2}}{2 F_{\pi}^{4}} c_{1} M_{\pi}^{2} \int \frac{d^{3} l}{(2 \pi)^{3}} \frac{l^{2}-\vec{q}^{2}}{\omega_{+}^{2} \omega_{-}^{2}} \quad \text { with } \quad \omega_{ \pm} \equiv \sqrt{(\vec{l} \pm \vec{q})^{2}+4 M_{\pi}^{2}}
\end{aligned}
$$

Chiral EFT for nuclei

Pion loops in multiple-scattering-like diagrams are enhanced by one power of π !

$$
\begin{aligned}
c_{1} M_{\pi}^{2} \left\lvert\, \begin{array}{c}
\frac{q}{2}+l \\
\left.\frac{q}{2}+l \right\rvert\,
\end{array}\right. & =\frac{1}{2 \omega_{1} 2 \omega_{2}}\left[\frac{1}{\omega_{1}\left(\omega_{1}+\omega_{2}\right)}+\frac{1}{\omega_{1} \omega_{2}}+\frac{1}{\omega_{2}\left(\omega_{1}+\omega_{2}\right)}\right]=\frac{1}{2 \omega_{1}^{2} \omega_{2}^{2}} \\
V_{2 \pi}^{(3)} & =\frac{3 g_{A}^{2}}{2 F_{\pi}^{4}} c_{1} M_{\pi}^{2} \int \frac{d^{3} l}{(2 \pi)^{3}} \frac{l^{2}-\vec{q}^{2}}{\omega_{+}^{2} \omega_{-}^{2}} \quad \text { with } \quad \omega_{ \pm} \equiv \sqrt{(\vec{l} \pm \vec{q})^{2}+4 M_{\pi}^{2}}
\end{aligned}
$$

Fourier transformation:

$$
\left.\begin{array}{rl}
V_{2 \pi}^{(3)}(\vec{r}) & =\int \frac{d^{3} q}{(2 \pi)^{3}} e^{i \vec{q} \cdot \vec{r}} V_{2 \pi}^{(3)}(\vec{q}) \\
& =\frac{3 g_{A}^{2}}{2 F_{\pi}^{4}} c_{1} M_{\pi}^{2} \int \frac{d^{3} q}{(2 \pi)^{3}} e^{i \vec{q} \cdot \vec{r}} \int \frac{d^{3} l_{1}}{(2 \pi)^{3}} \frac{d^{3} l_{2}}{(2 \pi)^{3}}(2 \pi)^{3} \delta\left(\vec{l}_{1}+\overrightarrow{l_{2}}-\vec{q}\right) \frac{\left(-2 \overrightarrow{l_{1}} \cdot \overrightarrow{l_{2}}\right)}{\left[\vec{l}_{1}^{2}+M_{\pi}^{2}\right]\left[\vec{l}_{2}^{2}+M_{\pi}^{2}\right]} \\
& =-\frac{3 g_{A}^{2}}{F_{\pi}^{4}} c_{1} M_{\pi}^{2}\left[\int \frac{d^{3} l}{(2 \pi)^{3}} e^{i \vec{l} \cdot \vec{r}} \frac{\vec{l}}{\vec{l}^{2}+M_{\pi}^{2}}\right]^{2} \\
& \longrightarrow-\frac{3 g_{A}^{2}}{F_{\pi}^{4}} c_{1} M_{\pi}^{2}\left[-i \vec{\nabla}\left(\frac{1}{4 \pi} \frac{e^{-M_{\pi} r}}{r}\right)\right]^{2}=\underbrace{\frac{3 g_{A}^{2}}{16 \pi^{2} F_{\pi}^{4}} c_{1} M_{\pi}^{2} \frac{e^{-2 x}}{r^{4}}(1+x)^{2}} \\
\quad \text { only } c_{1} M_{\pi}^{3} /\left(4 \pi F_{\pi}^{2}\right) \text { times suppressed compared to } V_{1 \pi}^{(0)}
\end{array} \text { at } x \sim 1\right)
$$

Chiral Efr for nuclei

Same arguments apply to all MS-like graphs: enhanced \& analytically calculable (in the static approximation), e.g.:

$$
V_{\text {resummed }}^{c_{3}}(r)=\frac{3 g_{A}^{2} c_{3}}{32 \pi^{2} F_{\pi}^{4}} \frac{e^{-2 x}}{r^{6}}\left[\frac{\left(2+2 x+x^{2}\right)^{2}}{1-\frac{c_{3}^{2}}{\left(4 \pi F_{\pi}^{2}\right)^{2}} \frac{e^{-2 x}}{r^{6}}\left(2+2 x+x^{2}\right)^{2}}+\frac{2(1+x)^{2}}{1-\frac{c_{3}^{2}}{\left(4 \pi F_{\pi}^{2}\right)^{2}} \frac{e^{-2 x}}{r^{6}}(1+x)^{2}}\right]
$$

Chiral Erf for nuclei

Same arguments apply to all MS-like graphs: enhanced \& analytically calculable (in the static approximation), e.g.:

$V_{\text {resummed }}^{c_{3}}(r)=\frac{3 g_{A}^{2} c_{3}}{32 \pi^{2} F_{\pi}^{4}} \frac{e^{-2 x}}{r^{6}}\left[\frac{\left(2+2 x+x^{2}\right)^{2}}{1-\frac{c_{3}^{2}}{\left(4 \pi F_{\pi}^{2}\right)^{2}} \frac{e^{-2 x}}{r^{6}}\left(2+2 x+x^{2}\right)^{2}}+\frac{2(1+x)^{2}}{1-\frac{c_{3}^{2}}{\left(4 \pi F_{\pi}^{2}\right)^{2}} \frac{e^{-2 x}}{r^{6}}(1+x)^{2}}\right]$

Chiral Efl for nuclei

Same arguments apply to all MS-like graphs: enhanced \& analytically calculable (in the static approximation), e.g.:

$V_{\text {resummed }}^{c_{3}}(r)=\frac{3 g_{A}^{2} c_{3}}{32 \pi^{2} F_{\pi}^{4}} \frac{e^{-2 x}}{r^{6}}\left[\frac{\left(2+2 x+x^{2}\right)^{2}}{1-\frac{c_{3}^{2}}{\left(4 \pi F_{\pi}^{2}\right)^{2}} \frac{e^{-2 x}}{r^{6}}\left(2+2 x+x^{2}\right)^{2}}+\frac{2(1+x)^{2}}{1-\frac{c_{3}^{2}}{\left(4 \pi F_{\pi}^{2}\right)^{2}} \frac{e^{-2 x}}{r^{6}}(1+x)^{2}}\right]$

Chiral EFT for nuclei

Same arguments apply to all MS-like graphs: enhanced \& analytically calculable (in the static approximation), e.g.:

$V_{\text {resummed }}^{c_{3}}(r)=\frac{3 g_{A}^{2} c_{3}}{32 \pi^{2} F_{\pi}^{4}} \frac{e^{-2 x}}{r^{6}}\left[\frac{\left(2+2 x+x^{2}\right)^{2}}{1-\frac{c_{3}^{2}}{\left(4 \pi F_{\pi}^{2}\right)^{2}} \frac{e^{-2 x}}{r^{6}}\left(2+2 x+x^{2}\right)^{2}}+\frac{2(1+x)^{2}}{1-\frac{c_{3}^{2}}{\left(4 \pi F_{\pi}^{2}\right)^{2}} \frac{e^{-2 x}}{r^{6}}(1+x)^{2}}\right]$

$\longrightarrow \mathrm{R}_{\mathrm{b}} \sim 0.8 \mathrm{fm}$ (but good convergence of the χ expansion for $r>1 \mathrm{fm}$)

Chiral Err for nuclei

How to renormalize the Schrödinger equation?

Lepage, Kaplan, Savage, Wise, Fleming, Mehen, Stewart, Phillips, Beane, Cohen, Frederico, Timoteo, Tomio, Birse, Beane, Bedaque, van Kolck, Pavon Valderrama, Ruiz Arriola, Nogga, Timmermanns, EE, Meißner, Entem, Machleidt, Yang, Elster, Long, Gegelia, ...
$T\left(\vec{p}^{\prime}, \vec{p}\right)=V_{2 \mathrm{~N}}\left(\vec{p}^{\prime}, \vec{p}\right)+m \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{V_{2 \mathrm{~N}}\left(\vec{p}^{\prime}, \vec{k}\right) T(\vec{k}, \vec{p})}{p^{2}-k^{2}+i \epsilon} \quad$ with $\quad V_{2 \mathrm{~N}}=\alpha \frac{\vec{\sigma}_{1} \cdot \vec{q} \vec{\sigma}_{2} \cdot \vec{q}}{\vec{q}^{2}+M_{\pi}^{2}} \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}+\ldots$
\rightarrow Lippmann-Schwinger eq. is linearly divergent, need infinitely many CTs to absorb UV divergences from iterations!

Chiral Err for nuclei

How to renormalize the Schrödinger equation?

Lepage, Kaplan, Savage, Wise, Fleming, Mehen, Stewart, Phillips, Beane, Cohen, Frederico, Timoteo, Tomio, Birse, Beane, Bedaque, van Kolck, Pavon Valderrama, Ruiz Arriola, Nogga, Timmermanns, EE, Meißner, Entem, Machleidt, Yang, Elster, Long, Gegelia, ...
$T\left(\vec{p}^{\prime}, \vec{p}\right)=V_{2 \mathrm{~N}}\left(\vec{p}^{\prime}, \vec{p}\right)+m \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{V_{2 \mathrm{~N}}\left(\vec{p}^{\prime}, \vec{k}\right) T(\vec{k}, \vec{p})}{p^{2}-k^{2}+i \epsilon} \quad$ with $\quad V_{2 \mathrm{~N}}=\alpha \frac{\vec{\sigma}_{1} \cdot \vec{q} \vec{\sigma}_{2} \cdot \vec{q}}{\vec{q}^{2}+M_{\pi}^{2}} \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}+\ldots$
\rightarrow Lippmann-Schwinger eq. is linearly divergent, need infinitely many CTs to absorb UV divergences from iterations!

Commonly used approach EGM, EM, EKM, Gezerlis et al.'14, Piarulli et al.' ${ }^{15}$, Carlsson et al.'16, ...

- Include short-range operators in the potential according to NDA
- Introduce a finite UV regulator R ~ $\mathrm{Rb}_{\mathrm{b}}(\Lambda \sim 500 \mathrm{MeV}$)
- Solve the LS equation \& tune the bare LECs $\mathrm{C}_{\mathrm{i}}(\mathrm{R})$ to NN data (implicit renormalization)
- (Numerical) self-consistency checks via error analysis and R_{b} variation

See: Lepage, „How to renormalize the Schrödinger equation", nucl-th/9607029 and talk@INT in 2000

Chiral ErT for nuclej

How to renormalize the Schrödinger equation?

Lepage, Kaplan, Savage, Wise, Fleming, Mehen, Stewart, Phillips, Beane, Cohen, Frederico, Timoteo, Tomio, Birse, Beane, Bedaque, van Kolck, Pavon Valderrama, Ruiz Arriola, Nogga, Timmermanns, EE, Meißner, Entem, Machleidt, Yang, Elster, Long, Gegelia, ...

$$
T\left(\vec{p}^{\prime}, \vec{p}\right)=V_{2 \mathrm{~N}}\left(\vec{p}^{\prime}, \vec{p}\right)+m \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{V_{2 \mathrm{~N}}\left(\vec{p}^{\prime}, \vec{k}\right) T(\vec{k}, \vec{p})}{p^{2}-k^{2}+i \epsilon} \quad \text { with } \quad V_{2 \mathrm{~N}}=\alpha \frac{\vec{\sigma}_{1} \cdot \vec{q} \vec{\sigma}_{2} \cdot \vec{q}}{\vec{q}^{2}+M_{\pi}^{2}} \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}+\ldots
$$

\rightarrow Lippmann-Schwinger eq. is linearly divergent, need infinitely many CTs to absorb UV divergences from iterations!

Commonly used approach EGM, EM, EKM, Gezerlis et al.'14, Piarulli et al.'15, Carlsson et al.'16, ...

- Include short-range operators in the potential according to NDA
- Introduce a finite UV regulator $\mathrm{R} \sim \mathrm{R}_{\mathrm{b}}(\Lambda \sim 500 \mathrm{MeV}$)
- Solve the LS equation \& tune the bare LECs $\mathrm{C}_{\mathrm{i}}(\mathrm{R})$ to NN data (implicit renormalization)
- (Numerical) self-consistency checks via error analysis and R_{b} variation

See: Lepage, „How to renormalize the Schrödinger equation", nucl-th/9607029 and talk@INT in 2000

Do calculated observables show residual regulator dependence?

Yes, this is an unavoidable feature of this approach. The residual cutoff dependence measures the impact of (neglected) higher-order contact terms and can be systematically eliminated by going to higher orders.

Chiral ErT for nuclej

Chiral Err for nuclel

What expansion of the amplitude does this approach correspond to?

For π-less case/theory with known long-range forces, the expansion corresponds to ERE/MERE (regardless of the size of the scattering length). More generally, RG analysis? [see: Birse, Phil. Trans. Roy. Soc. Lond. A369 (2011) 2662]

Are there alternative approaches?
Yes! In particular, the RG analysis by Birse, studies by Pavon-Valderrama and Yang/Long suggest different specific pattern for contact operators...

Can these scenarios be tested/discriminated?
Yes, possibly by looking at the convergence pattern (requires high orders + uncertainty estimation) [for a related discussion, see: Grießhammer, arxiv:1511.0490]

How to assess the theoretical uncertainty?

- Simple estimation of truncation errors via cutoff variation (not reliable...) or based on the available lower-order contributions [EE, Kreess, MeiBner, EPJA 51 (2015) 53]. More rigorous treatment within a Bayesian approach [Furnstanl et al., PRC 92 (15) 024005].
- Statistical uncertainties in $\mathrm{C}_{\mathrm{i}}(\mathrm{R})$ have little impact [Ekström et al., J. Phys. G42 (15) 034003].
- Systematic error due to uncertainties in $\pi \mathrm{N}$ LECs needs to be analyzed

Chiral Ell for nuclei

Predictive power?

Long-range interactions are completely determined by the chiral symmetry \& experimental information on $\pi \mathrm{N}$ scattering

Chiral Efl for nuclei

Predictive power?

Long-range interactions are completely determined by the chiral symmetry \& experimental information on $\pi \mathrm{N}$ scattering

Energy bin	LO	NLO	$\mathrm{N}^{\mathbf{2}} \mathrm{LO}$	$\mathrm{N}^{3} \mathrm{LO}$	$\mathrm{N}^{4} \mathrm{LO}$
neutron-proton data					
$\mathbf{0}$ - $\mathbf{1 0 0} \mathrm{MeV}$	130.11	3.79	1.46	1.08	1.08
0-200 MeV	104.71	19.88	3.21	1.14	1.09
$\mathbf{0}-\mathbf{3 0 0} \mathrm{MeV}$	111.24	52.03	8.78	1.51	1.15
proton-proton data					
0-100 MeV	2046.58	33.68	6.67	0.86	0.84
0-200 MeV	1649.58	115.60	81.11	1.95	1.34
$\mathbf{0}-\mathbf{3 0 0} \mathrm{MeV}$	1301.41	104.38	84.24	2.73	1.46
	2 LECs	+ 2 IB LE		+ 15 LECs	+ 1 IB LEC

Chiral Erl for nuclei

Predictive power?

Long-range interactions are completely determined by the chiral symmetry \& experimental information on $\pi \mathrm{N}$ scattering

Energy bin	LO	NLO	$\mathrm{N}^{2} \mathrm{LO}$	$\mathrm{N}^{3} \mathrm{LO}$	$\mathrm{N}^{4} \mathrm{LO}$
neutron-proton data					
0-100 MeV	130.11	3.79 no new	1.46	1.08 +1 LEC	1.08
0-200 MeV	104.71	$19.88 \xrightarrow{\text { LECs }}$	3.21	$1.14 \xrightarrow{\left({ }^{\text {S }}{ }_{0}\right)}$	1.09
$\mathbf{0}-\mathbf{3 0 0} \mathrm{MeV}$	111.24	52.03	8.78	1.51	1.15
proton-proton data					
0-100 MeV	2046.58	33.68	6.67	0.86 no new	0.84
$\mathbf{0}-200 \mathrm{MeV}$	1649.58	115.60	81.11	$1.95 \xrightarrow{\text { LECs }}$	1.34
$\mathbf{0}-\mathbf{3 0 0} \mathrm{MeV}$	1301.41	104.38	84.24	2.73	1.46
	2 LECs	+ 2 IB LECs		+ 15 LECs	1 IB LE

Clear evidence of the (parameter-free) chiral 2π-exchange!

Chiral Erl for nuclei

What is the currently achievable accuracy?
In the 2 N system, the results at $\mathrm{N}^{4} \mathrm{LO}$ (order Q^{5}, two loops!) are available.

Scattering lengths and effective range parameters extracted from the data

	predictions at $\mathrm{N}^{4} \mathrm{LO}$	Experimental/Empirical values
neutron-proton		
$\boldsymbol{a}_{1 \mathbf{S}_{0}}[\mathrm{fm}]$	-23.733(6)	-23.740(20)
$\boldsymbol{r}_{\mathbf{1}_{\mathbf{S}}}$ [fm]	2.677(7)	2.77(5)
$\boldsymbol{a}_{3} \mathbf{S}_{1}[\mathrm{fm}]$	5.419(1)	5.419(7)
$\boldsymbol{r}_{3} \mathbf{S}_{1}[\mathrm{fm}]$	1.752(0)	1.753(8)
proton-proton		
$\boldsymbol{a}_{1 \mathrm{~S}_{0}}[\mathrm{fm}]$	-7.816(1)	-7.817(4)
$\boldsymbol{r}_{\boldsymbol{1}_{\mathbf{S}}}[\mathrm{fm}]$	2.773(2)	2.78(2)

Chiral Err for nucle

3NF so far only up to N2LO (N3LO in progress by the LENPIC Collaboration...)
nd scattering lengths $[\mathrm{R}=1.0 \mathrm{fm}]$

nd $\sigma_{\text {tot }}$ at $70 \mathrm{MeV}_{[R=1.0 \mathrm{fm}]}$

Is chiral EFT always more efficient than pionless EFT?
Not necessarily... For low enough momenta p, the expansion in p / M_{π} is expected to converge faster than the chiral expansion in $\max \left(\mathrm{p} / \mathrm{M}_{\pi}, \mathrm{M}_{\pi} / \mathrm{m}_{N}\right)$.

Chiral EFT for hyper-nuclei?
Yes, see Meißner, Haidenbauer, arXiv:1603.06429 for a review. Need input from lattice QCD!

The future

What are the frontiers/challenges for the near future?

Precision physics beyond the 2 N system: challenge the theory

- Lots of predictive power (${ }^{3}$ LO contributions to the 3NF and 4NF are parameter-free, ${ }^{3} \mathrm{H} \beta$-decay \& μ-capture reactions are parameter-free up to $\mathrm{N}^{3} \mathrm{LO}$ once the short-range 3NF@N2LO is fixed, ...)
- 3NF \& long-standing puzzles in 3N continuum
- Push theory to heavier nuclei (underbinding? radii?)
- More reliable error analysis
- Test different power counting schemes

Chiral EFT as a tool to deal with nuclear effects when looking at physics of/beyond the SM (parity violation, EDM, $0 v \beta \beta$, proton charge radius,...)

EFT for lattice QCD (extrapolations), lattice QCD for EFT (quark mass dependence, „data", ...)

```
EFT for DFT
```

