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Key question #2:
Can successful, but model dependent, many-body methods,
such as density functional approaches, be transformed into
predictive EFTs, allowing for model-independent investigations
of the limits of nuclear stability?
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Explosion of many-body methods using microscopic input

Ab initio (new and enhanced
methods; microscopic NN+3NF)

Stochastic: GFMC/AFDMC;
lattice EFT
Diagonalization: IT-NCSM
Non-linear eqs: coupled cluster
Flow equations: IM-SRG
Self-consistent Green’s function
Many-body perturbation theory

Shell model (usual: empirical inputs)

Effective SM interactions from
coupled cluster, IM-SRG

Density functional theory

Microscopic input, e.g., DME
Bottom-up EFT?
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“The limits of the nuclear landscape” −→ full mass table
J. Erler et al., Nature 486, 509 (2012)

application of modern optimization and statistical methods, together
with high-performance computing, has revolutionized nuclear DFT
during recent years.
In our study, we use quasi-local Skyrme functionals15 in the

particle–hole channel augmented by the density-dependent, zero-
range pairing term. The commonly used Skyrme EDFs reproduce total
binding energies with a root mean square error of the order of
1–4MeV (refs 15, 16), and the agreement with the data can be signifi-
cantly improved by adding phenomenological correction terms17. The
Skyrme DFT approach has been successfully tested over the entire
chart of nuclides on a broad range of phenomena, and it usually per-
forms quite well when applied to energy differences (such as S2n), radii
and nuclear deformations. Other well-calibrated mass models include

the microscopic–macroscopic finite-range droplet model (FRDM)18,
the Brussels–Montreal Skyrme–HFB models based on the Hartree–
Fock–Bogoliubov (HFB) method17 and Gogny force models19,20.
Figure 2 illustrates the difficulties with theoretical extrapolations

towards drip lines. Shown are the S2n values for the isotopic chain of
even–even erbium isotopes predicted with different EDF, SLy421, SV-
min13, UNEDF015, UNEDF122, and with the FRDM18 and HFB-2117

models. In the region for which experimental data are available, all
models agree and well reproduce the data. However, the discrepancy
between various predictions steadily grows when moving away from
the region of known nuclei, because the dependence of the effective
force on the neutron-to-proton asymmetry (neutron excess) is poorly
determined. In the example considered, the neutron drip line is

0

4

8

 12

 16

 20

 24

S
2n

 (M
eV

)

Er

Neutron number, N

 80  100  120  140  160

Experiment
Drip line

0

2

4

 140  148  156  164
N

0

4

8

 58  62  66
Z

N = 76  162 154

S
2n

 (M
eV

)

S
2p

 (M
eV

)

FRDM

HFB-21

SLy4

UNEDF1

UNEDF0

SV-min

exp

Er

Figure 2 | Calculated and experimental two-neutron separation energies of
even–even erbium isotopes. Calculations performed in this work using SLy4,
SV-min, UNEDF0 andUNEDF1 functionals are compared to experiment2 and
FRDM18 andHFB-2117 models. The differences betweenmodel predictions are
small in the region where data exist (bracketed by vertical arrows) and grow

steadily when extrapolating towards the two-neutron drip line (S2n5 0). The
bars on the SV-min results indicate statistical errors due to uncertainty in the
coupling constants of the functional. Detailed predictions around S2n5 0 are
illustrated in the right inset. The left inset depicts the calculated and
experimental two-proton separation energies at N5 76.
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Figure 1 | Nuclear even–even landscape as of 2012. Mapof bound even–even
nuclei as a function of Z and N. There are 767 even–even isotopes known
experimentally,2,3 both stable (black squares) and radioactive (green squares).
Mean drip lines and their uncertainties (red) were obtained by averaging the
results of different models. The two-neutron drip line of SV-min (blue) is

shown together with the statistical uncertainties at Z5 12, 68 and 120 (blue
error bars). The S2n5 2MeV line is also shown (brown) together with its
systematic uncertainty (orange). The inset shows the irregular behaviour of the
two-neutron drip line around Z5 100.
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Proton and neutron driplines predicted by Skyrme EDFs

Total: 6900± 500 nuclei with Z ≤ 120 (≈ 3400 known)
Systematic errors estimated by comparing models
Computationally efficient (but still a HPC problem)
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Bestiary of [universal] nuclear energy functionals

Nonrelativistic [HFB] functionals
Skyrme — local densities and ∇s

Gogny — finite range Gaussians

Fayans — self-consistent FFS

+

Relativistic [covariant Hartree + pairing = RHB] functionals
RMF — meson fields (generalized Walecka model)
point coupling Lagrangian

1 Repeat cycle until stops changing (self-consistent):
densities ρi → potential that minimizes energy E [ρi ]→ s.p. states→ ρi

Densities (or density matrices) from single-particle wave functions
Includes pairing densities, i.e., 〈ψiψj〉 as well as 〈ψ†i ψj〉

2 [Restore symmetries, beyond mean-field correlations, . . . ]
3 Evaluate observables (masses, radii, β-decay, fission . . . )

Frequently interpreted as Kohn-Sham density functional theory
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SV-min, UNEDF0 andUNEDF1 functionals are compared to experiment2 and
FRDM18 andHFB-2117 models. The differences betweenmodel predictions are
small in the region where data exist (bracketed by vertical arrows) and grow

steadily when extrapolating towards the two-neutron drip line (S2n5 0). The
bars on the SV-min results indicate statistical errors due to uncertainty in the
coupling constants of the functional. Detailed predictions around S2n5 0 are
illustrated in the right inset. The left inset depicts the calculated and
experimental two-proton separation energies at N5 76.
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Figure 1 | Nuclear even–even landscape as of 2012. Mapof bound even–even
nuclei as a function of Z and N. There are 767 even–even isotopes known
experimentally,2,3 both stable (black squares) and radioactive (green squares).
Mean drip lines and their uncertainties (red) were obtained by averaging the
results of different models. The two-neutron drip line of SV-min (blue) is

shown together with the statistical uncertainties at Z5 12, 68 and 120 (blue
error bars). The S2n5 2MeV line is also shown (brown) together with its
systematic uncertainty (orange). The inset shows the irregular behaviour of the
two-neutron drip line around Z5 100.
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Two-neutron separation energies of even-even erbium isotopes

Compare different functionals, with uncertainties of fits
Dependence on neutron excess poorly determined (cf. driplines)
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State-of-the-art Skyrme EDFs

Is there a limit to improvement of
Skyrme rms energy residual?

Recently many advances by
UNEDF/NUCLEI, FIDIPRO, and
others to improve/test EDFs

Extra observables and ab initio
calculations in neutron drops for
constraints (e.g., on isovector)

Sophisticated fit and correlation
analysis implies the EDF is not limited
by the parameter fitting

But still don’t beat the energy barrier
(and not nearly as good energy rms
as mass models)

=⇒ limit of Skyrme EDF strategy?
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Gogny HFB as a mass model: State-of-the-art

V (1, 2) =
∑
j=1,2

e
− (r1−r2)2

µ2
j (Wj + BjPσ − HjPτ −MjPσPτ ) {µj} = {0.5, 1.0} fm

+ t0(1 + x0Pσ)δ(r1 − r2)ρ(r)α + iWLS
←−∇12δ(r1 − r2)×−→∇12 · (−→σ 1 +−→σ 2)

Goriely et al., Eur. Phys. J. A 52, 202 (2016)

≈ 14 parameters

quadrupole correlations
included self-consistently

D1M: δBrms = 0.8 MeV
for 2353 masses

σ ≈ 0.65 MeV for 2064
β-decay energies

radii, giant resonances
and fission properties

SNM: kF ≈ 1.34 fm−1,
av ≈ −16 MeV

Page 2 of 7 Eur. Phys. J. A (2016) 52: 202

Fig. 1. (Color online) Differences between theoretical Gogny-HFB (plus 5DCH) and experimental binding energies. The upper
panel is obtained with the D1S interaction, the middle panel with D1N and the lower panel with D1M. Some isotopic chains
for Z = 28, 50, 74 and 92 are highlighted with colored circles.

Skyrme-HFB calculations which reach a 0.5–0.7MeV rms
deviation. For this reason, a new Gogny force, D1M, has
been developed and fitted to all measured masses, keep-
ing the additional constraint to provide reliable nuclear
matter and neutron matter properties, but also radii, gi-
ant resonance and fission properties. In addition, for the
first time the quadrupole collective corrections have been
included in the mass formula by solving the collective
Schrödinger equation with the 5-dimensional collective
Hamiltonian (5DCH) [12, 13]. In sect. 2, we present the
Gogny-HFB mass model, including the fitting strategy.
The D1M properties regarding various observables related
to nuclei of infinite nuclear matter are described in sect. 3
and compared with those obtained with D1S or D1N. Fi-
nally, conclusions are drawn in sect. 4.

2 The Gogny-HFB mass model

2.1 The Gogny-HFB model

The Gogny-HFB model has been described in length in
various papers (see refs. [10–12, 14, 15] and references
therein). Both axially and triaxially deformed HFB codes
have been used to perform the calculations. These are
written in terms of an expansion of the single-particle
functions in a harmonic-oscillator basis. The triaxial code
is used to determine the quadrupole corrections to the
total binding energy and the charge radius. These are es-
timated within the 5DCH model [12,13] by

∆Equad = EMF − EBMF, (1)

where EMF is the mean-field (MF) energy obtained in the
axial symmetry approximation and EBMF is the binding
energy obtained beyond the mean-field (BMF) approxi-
mation, i.e. including the quadrupole corrections treated
with the 5DCH model. Similarly, dynamical corrections
are known to affect significantly the nuclear radius. The
quadrupole correction to the charge radii is estimated by

∆rquad =
√

r2
BMF − r2

MF , (2)

the final charge radius being estimated by r2
th = r2

MF +
∆r2

quad. Note that the quadrupole corrections are calcu-

lated for even-even nuclei only and interpolated from those
for the others, while in the HFB calculation odd nuclei are
treated in the blocking plus equal filling approximation.
For closed-shell nuclei, the Gaussian overlap approxima-
tion used within the 5DCH approach gives erroneous neg-
ative corrections (see ref. [13] for more details). For those
nuclei, the correction is therefore set to zero.

The total binding energy reads Eth = Eaxial+∆Equad+
∆E∞ where in addition to the quadrupole correlations,
an infinite-basis correction ∆E∞ is introduced due to the
limitation of the number of major shells included in the
axially symmetric calculation. The same procedure as de-
scribed in ref. [14] is followed to estimate ∆E∞. If the en-
ergy Eaxial obtained with the axial code using N ! 14 ma-
jor shells can be determined within a reasonable computa-
tion time, this is not the case for both ∆E∞ and ∆Equad

(see also ref. [16] for a detailed study of the convergence
of the calculations with respect to the basis dimension).



Outline Overview Extensions Framework Extras Landscape EDFs Questions

Covariant EDFs: Relativistic mean-field models

L =ψ
[
γ · (i∂ − gωω − gρρ · τ − eA)−m − gσσ

]
ψ +

1
2

(∂σ)2 − 1
2

mσσ
2 − 1

3
g2σ

3

− 1
4

g3σ
4 − 1

4
ΩµνΩµν +

1
2

m2
ωω

2 − 1
4

RµνRµν +
1
2

m2
ρρ

2 − 1
4

FµνFµν

Agbemava et al., Phys. Rev. C 89, 054320 (2014)

RHB formalism

different Ls used

6–8+ fit parameters
(+ pairing parameters)

beyond mean-field
not included

δBrms ≈ 2–3 MeV
for 835 masses

SNM: kF ≈ 1.31 fm−1,
av ≈ −16.1 MeV
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FIG. 6. (Color online) The difference between theoretical and experimental masses of 835 even-even nuclei investigated in RHB
calculations with indicated CEDF’s. If Eth − Eexp < 0, the nucleus is more bound in the calculations than in experiment.

S2n and two-proton S2p separation energies are described
with a typical accuracy of 1 MeV (Table III). The accu-
racy of the description of separation energies depends on
the accuracy of the description of mass differences. As
a result, not always the functional which provides the
best description of masses gives the best description of
two-particle separation energies.

The accuracy of the description of two-neutron and
two-proton separation energies is illustrated for different
isotopic and isotonic chains on the example of RHB calcu-
lations with DD-PC1 in Figs. 10 and 11. Similar results
were obtained also in the calculations with NL3*, DD-
ME2 and DD-MEδ. One can see that two-proton sep-
aration energies are better described than two-neutron
separation energies (see also Table III). In part, this is a
consequence of the behavior of the calculated S2n curves
in the vicinity of spherical shell gaps. The experimen-
tal S2n curves are smooth (frequently almost straight) as
a function of neutron number between shell gaps (Fig.
10). For a given isotope chain, the calculations rather
well reproduce this behavior of experimental S2n curves
in the regions of a few neutrons away from shell closures.
However, the situation is different in the vicinity of the

N = 82 and 126 shell closures. Here, the calculations
overestimate (underestimate) experimental S2n values for
a few nuclei before (after) the shell closure in a number
of isotopic chains with Z ≥ 40.

It is interesting that such problems do not exist for
two-proton separation energies (Fig. 11). The origin of
these problems is most likely related to the relative im-
pact of proton and neutron shell closures. Fig. 17 shows
that the band of nuclei with spherical or near-spherical
deformations (gray area in the figure) is wider around
N = 82 and N = 126 as compared with the one around
Z = 50 and Z = 82. Thus, the transition from spherical
shapes to well-deformed shapes (where the mean field de-
scription is justified) proceeds faster (in terms of particle
number) for the proton subsystem than for the neutron
subsystem. In contrast, the transitional shapes requiring
a beyond mean field description are expected for a wider
range of nuclei around the N = 82 and N = 126 shell
closures. Neglecting these beyond mean field correlations
is most likely the source for the above mentioned discrep-
ancies between experimental and calculated S2n values in
the vicinity of the N = 82 and N = 126 shell closures.

This analysis leads to a more critical look on the reap-
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Motivations for doing better than empirical EDFs

Apparent model dependence (systematic errors?)

Extrapolations to driplines, large A, high density are uncontrolled

Breakdown and failure mode is unclear:
e.g., should EDFs work to the driplines?

More accuracy wanted for r-process: is this even possible?

What observables? Coupling to external currents? 0νββ m.e.?

Connect to nuclear EFTs (and so to QCD)?

. . .
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Hierarchy of nuclear degrees of freedom

R
es
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scale&
separa)on&

DFT 

collective 
models 

CI 

ab initio 

LQCD 

constituent 
quarks 

Laundry list of nuclear EFTs

Chiral EFT: nucleons, [∆’s,]
pions; [HO basis]

Pionless EFT: nucleons only
(low-energy few-body) or
nucleons and clusters (halo)

EFT for deformed nuclei:
systematic collective dofs
(Papenbrock, Coello Pérez,
Weidenmueller)

EFT at Fermi surface
(Landau-Migdal theory):
quasi-nucleons

Where does DFT fit in?
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Liquid drop model: SEMF (bulk properties) (A = N + Z )

EB(N,Z ) = av A− asA2/3 − aC
Z 2

A1/3 − asym
(N − Z )2

A
+ ∆

Many predictions! Implies A→∞
limit of nuclear matter (with e→ 0)

=⇒ saturation point

Rough numbers: av ≈ 16 MeV,
as ≈ 18 MeV, aC ≈ 0.7 MeV,
asym ≈ 28 MeV

Nuclear radii: R ≈ (1.2 fm)A1/3

Pairing ∆ ≈ ±12/
√

A MeV
(even-even/odd-odd) or 0
[or 43/A3/4 MeV or . . . ]

More detailed mass formulas
include shell effects, etc.
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Questions to address about EFT for DFT

What are the relevant degrees of freedom? Symmetries?
[Can we have quasiparticles in the bulk?]

Power counting: what is our expansion? Breakdown scale?

Is there an RG argument to apply? (cf. scale toward Fermi surface)

How should the EFT be formulated? Effective action?
How do I think about parameterizing a density functional?

How can we implement/expand about liquid drop physics?

How do we reconcile the different EDF representations?

Dealing with zero modes — can we adapt methods for gauge theories
(for constraints)?

Can we implement such an EFT without losing the favorable
computational scaling of current nuclear EDFs?
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Outline

Motivations for considering nuclear DFT as an EFT

Extensions of nuclear EDFs using EFT ideas

Nuclear DFT as effective action
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Skyrme energy functionals (original motivation: G-matrix)

Minimize E =
∫

dx E [ρ(x), τ(x),J(x), . . .] (for N = Z ):

E [ρ, τ ,J] =
1

2M
τ +

3
8

t0ρ2 +
1

16
t3ρ2+α +

1
16

(3t1 + 5t2)ρτ

+
1
64

(9t1 − 5t2)(∇ρ)2 − 3
4

W0ρ∇ · J +
1

32
(t1 − t2)J2

where ρ(x) =
∑

i |ψi (x)|2 and τ(x) =
∑

i |∇ψi (x)|2 (and J)

Skyrme Kohn-Sham equation from functional derivatives:
(
−∇ 1

2M∗(x)
∇+ U(x) +

3
4

W0∇ρ ·
1
i
∇× σ

)
ψi (x) = εi ψi (x) ,

U = 3
4 t0ρ+ ( 3

16 t1 + 5
16 t2)τ + · · · and 1

2M∗(x) = 1
2M + ( 3

16 t1 + 5
16 t2)ρ

Iterate until ψi ’s and εi ’s are self-consistent

In practice: other densities, pairing is very important (HFB),
projection needed (zero modes), beyond mean-field correlations, . . .
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Skyrme energy functionals (original motivation: G-matrix)
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∫

dx E [ρ(x), τ(x),J(x), . . .] (for N = Z ):
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2M
τ +

3
8

t0ρ2 +
1

16
t3ρ2+α +

1
16

(3t1 + 5t2)ρτ
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Skyrme Kohn-Sham equation from functional derivatives:
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3
4
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1
i
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)
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16 t1 + 5
16 t2)τ + · · · and 1

2M∗(x) = 1
2M + ( 3

16 t1 + 5
16 t2)ρ

Iterate until ψi ’s and εi ’s are self-consistent

In practice: other densities, pairing is very important (HFB),
projection needed (zero modes), beyond mean-field correlations, . . .
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What is learned from comparing Skyrme and dilute EDFs?

Skyrme energy density functional (for N = Z and without pairing)

E [ρ, τ, J] =

∫
d3x

{
τ

2M
+

3
8

t0ρ2 +
1

16
(3t1 + 5t2)ρτ+

1
64

(9t1 − 5t2)(∇ρ)2

− 3
4

W0ρ∇ · J +
1
16

t3ρ2+α + · · ·
}

where ρ(r) =
∑

i |ψi (r)|2 , τ(r) =
∑

i |∇ψi (r)|2 , . . .

Systematic dilute LDA ρτJ EDF (4 species, short-range only)

E [ρ, τ, J] =

∫
d3x

{
τ

2M
+

3
8

C0ρ
2 +

1
16

(3C2 + 5C′2)ρτ+
1

64
(9C2 − 5C′2)(∇ρ)2

− 3
4

C′′2 ρ∇ · J +
c1

2M
C2

0ρ
7/3 +

c2

2M
C3

0ρ
8/3 +

1
16

D0ρ
3 + · · ·

}

Same functional as dilute Fermi gas with ti ↔ Ci !

Is Skyrme missing non-analytic, NNN, long-range (pion),
(and so on) terms? Can we simply extend it?

Does a “perturbative” low-density expansion make sense?
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Still more questions for EDFs

Are density dependencies too simplistic? How do you know?

How should we organize possible terms in the EDF?

Where are the pions? Where is chiral symmetry?

What is the connection to many-body forces?

How do we estimate a priori theoretical uncertainties?

What is the theoretical limit of accuracy?

and so on . . .

=⇒ Extend or modify EDF forms in (semi-)controlled way

=⇒ Use microscopic many-body theory for guidance

There are multiple paths to a nuclear EDF =⇒What about EFT?
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Some current strategies for nuclear EDFs using EFT
Extend or modify conventional EDF forms in (semi-)controlled ways

1 Long-distance chiral physics from an EFT expansion
Density matrix expansion (DME) applied to NN and NNN diagrams
[Re-fit residual Skyrme parameters and test description]
MBPT expansion justified by phase-space-based power counting

2 In-medium chiral perturbation theory [Munich group]
ChPT loop expansion becomes EOS expansion
Apply DME to get DFT functional

3 Extend existing functionals following EFT principles
Non-local regularized pseudo-potential [Raimondi et al., 1402.1556]

Optimize pseudo-potential to experimental data
Test with correlation analysis technology

4 RG evolution of effective action functional [Jens Braun et al.]

Here: can we develop bottom-up EFT using a QFT formulation?



Outline Overview Extensions Framework Extras Path DME Dobaczewski NDA

Low resolution chiral EFT calculations of nuclear matter

Evolve NN by RG to low momentum, fit N2LO NNN to A = 3,4

Predict nuclear matter in MBPT [Hebeler et al. (2011)]
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Cutoff dependence at 2nd order significantly reduced

3rd order contributions are small (MBPT validated for PNM)

Remaining cutoff dependence: many-body corrections, 4NF?
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Effects of softening interactions in the nuclear medium
Separable estimate:

≈

E (n+1)
pp

E (n)
pp

≈ m∗

m

∫
d3k

(2π)3 Q(Pav, k)
〈k|V |k〉
k2

av − k2
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Effects of softening interactions in the nuclear medium
Separable estimate:

≈

E (n+1)
pp

E (n)
pp

≈ m∗

m

∫
d3k

(2π)3 Q(Pav, k)
〈k|V |k〉
k2

av − k2

Suppose R � k−1
F � a

and T-matrix has zero-energy pole:

〈p|T |p′〉 =
C0〈p|η〉〈η|p′〉

1−
∫ d3k

(2π)3
〈k|V |k〉

E−~2p2/m

=⇒ C0 ∼ −2π2/Λ and R ∝ Λ−1

=⇒ kF � Λ =⇒ QkF → 1
=⇒ E (n+1)

pp /E (n)
pp ∼ −1

Phase space:
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Density matrix expansion (DME) revisited [Negele/Vautherin]

Dominant chiral EFT MBPT contributions can be put into form

〈V 〉 ∼
∫

dR dr12 dr34 ρ(r1, r3)K (r12, r34)ρ(r2, r4)

r1
r2

ρ(r1,r3)
ρ(r2,r4)

r3 r4

K(r1-r2, r3-r4)

Earlier work: momentum space with non-local interactions

DME: Expand KS ρ in local operators w/factorized non-locality

ρ(r1, r2) =
∑

εα≤εF

ψ†α(r1)ψα(r2) =
∑

n

Πn(r)〈On(R)〉 r1
r2

R-r/2 +r/2

with 〈On(R)〉 = {ρ(R),∇2ρ(R), τ(R), · · · } maps 〈V 〉 to Skyrme-like EDF!

Original DME expands about nuclear matter (k -space + NNN)

ρ(R+r/2,R−r/2) ≈ 3j1(skF)

skF
ρ(R)+

35j3(skF)

2sk3
F

(1
4
∇2ρ(R)−τ(R)+

3
5

k2
Fρ(R)+· · ·

)
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Adaptation of chiral EFT MBPT to Skyrme HFB form

ESkyrme =
τ

2M
+

3
8

t0ρ2 +
1
16

t3ρ2+α +
1
16

(3t1 + 5t2)ρτ+
1

64
(9t1 − 5t2)|∇ρ|2 + · · ·

=⇒ EDME =
τ

2M
+ A[ρ] + B[ρ]τ + C[ρ]|∇ρ|2 + · · ·

Orbitals and Occupation #’s

Kohn−Sham Potentials

t , t0 1 , ..., t2

Skyrme
energy

functional
HFB

solver

VKS(r) =
δEint[ρ]

δρ(r)
⇐⇒ [−∇2

2m
+VKS(x)]ψα = εαψα =⇒ ρ(x) =

∑

α

nα|ψα(x)|2
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Adaptation of chiral EFT MBPT to Skyrme HFB form

ESkyrme =
τ

2M
+

3
8

t0ρ2 +
1
16

t3ρ2+α +
1
16

(3t1 + 5t2)ρτ+
1

64
(9t1 − 5t2)|∇ρ|2 + · · ·

=⇒ EDME =
τ

2M
+ A[ρ] + B[ρ]τ + C[ρ]|∇ρ|2 + · · ·

Orbitals and Occupation #’s

Kohn−Sham Potentials

energy
functional

HFB
solver

DME

ρρA[  ], B[  ], ...

VKS(r) =
δEint[ρ]

δρ(r)
⇐⇒ [−∇2

2m
+VKS(x)]ψα = εαψα =⇒ ρ(x) =

∑

α

nα|ψα(x)|2
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Full ab-initio: Is Negele-Vautherin DME good enough?
Try best nuclear matter with RG-softened χ-EFT NN/NNN
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Do densities look like nuclei from Skyrme EDF’s? Yes!

Are the error bars competitive? No! 1 MeV/A off in 40Ca
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Improved DME for pion exchange
Phase-space averaging for finite nuclei [Gebremariam et al.]
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New developments [Alex Dyhdalo, OSU] : use local regulated NN + NNN

Current gameplan [OSU + MSU + LLNL]: Can we see pions?
Add NN/NNN pion exchange through N2LO
Optimized refit of Skyrme parameters for short-range parts
Assess global results and isotope chains (2π NNN)
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Some current strategies for nuclear EDFs using EFT
Extend or modify conventional EDF forms in (semi-)controlled ways

1 Long-distance chiral physics from an EFT expansion
Density matrix expansion (DME) applied to NN and NNN diagrams
[Re-fit residual Skyrme parameters and test description]
MBPT expansion justified by phase-space-based power counting

2 In-medium chiral perturbation theory [Munich group]
ChPT loop expansion becomes EOS expansion
Apply DME to get DFT functional

3 Extend existing functionals following EFT principles
Non-local regularized pseudo-potential [Raimondi et al., 1402.1556]

Optimize pseudo-potential to experimental data
Test with correlation analysis technology

4 RG evolution of effective action functional [Jens Braun et al.]

Here: can we develop bottom-up EFT using a QFT formulation?
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Effective theory for Nuclear EDFs
J. Dobaczewski, K. Bennaceur, F. Raimondi, J. Phys. G 39, 125103 (2012)

Seek spectroscopic quality functional (including single-particle levels)

Consider non-ab-initio formulation but with firm theoretical basis

Claim: resolution scale of chiral EFT is higher than needed

Rather than k . 2mπ or kF, consider δk to dissociate a nucleon:
δEkin = ~2kF δk/M ≈ 0.25~c δk ≈ 8 MeV =⇒ δk ≈ 32 MeV/~c

And describe nuclear excitations and shell-effects at the 1 MeV
energy, which implies δk ≈ 4 MeV/~c and below

So from this perspective the pion is a high-energy dof



Outline Overview Extensions Framework Extras Path DME Dobaczewski NDA

Effective theory for Nuclear EDFs
J. Dobaczewski, K. Bennaceur, F. Raimondi, J. Phys. G 39, 125103 (2012)

Seek spectroscopic quality functional (including single-particle levels)

Consider non-ab-initio formulation but with firm theoretical basis

Claim: resolution scale of chiral EFT is higher than needed

Rather than k . 2mπ or kF, consider δk to dissociate a nucleon:
δEkin = ~2kF δk/M ≈ 0.25~c δk ≈ 8 MeV =⇒ δk ≈ 32 MeV/~c

And describe nuclear excitations and shell-effects at the 1 MeV
energy, which implies δk ≈ 4 MeV/~c and below

So from this perspective the pion is a high-energy dof

Strategy: expand “pseudopotential”, which specifies the EDF by folding
with an uncorrelated Slater determinant, found self-consistently

Spirit of mean-field approaches (and technology)

Gives full functional within HF approximation (completeness?)

Self-interaction problem solved by deriving EDF in HF form
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Effective theory for Nuclear EDFs
J. Dobaczewski, K. Bennaceur, F. Raimondi, J. Phys. G 39, 125103 (2012)

Seek spectroscopic quality functional (including single-particle levels)

Consider non-ab-initio formulation but with firm theoretical basis

Claim: resolution scale of chiral EFT is higher than needed

Rather than k . 2mπ or kF, consider δk to dissociate a nucleon:
δEkin = ~2kF δk/M ≈ 0.25~c δk ≈ 8 MeV =⇒ δk ≈ 32 MeV/~c

And describe nuclear excitations and shell-effects at the 1 MeV
energy, which implies δk ≈ 4 MeV/~c and below

So from this perspective the pion is a high-energy dof

Regulated zero-range interaction =⇒ introduces resolution scale

Gaussians smear away details of nuclear densities

Describe residual smooth variations within a controlled expansion

Fit coupling constants to data with constraints (continuity equation)

Check for scale independence, convergence, and naturalness
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Regularized pseudopotential: pionless-EFT-like expansion
Central two-body regularized pseudopotential (also s.o. and tensor)

V (r′1, r
′
2; r1, r2) =

4∑

i=1

P̂iÔi (k,k′)δ(r′1 − r1)δ(r′2 − r2)ga(r1 − r2)

with operators P̂i (spin,isospin exchange), Ôi (derivative), k,k′
(relative momentum), while a sets the resolution scale:

ga(r) =
1

(a
√
π)3 e−r2/a2 −→

a→0
δ(r)

Simplified special case: If Ôi = Ôi (k + k′), then

V (r) =
4∑

i=1

P̂iÔi (k)ga(r) =
4∑

i=1

P̂i

nmax∑

n=0

V (i)
2n∇2nga(r)

where V (i)
2n are the coupling constants to be fit

EDF as functional of the one-body density matrix (cf. Gogny)

Eeff[ρ(r, r′)] =

∫
dr
∫

dr′ V (r− r′)[ρ(r)ρ(r′)− ρ(r, r′)ρ(r′, r)]
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Does it work like an effective theory? Proof of principle
Order-by-order convergence
test against pseudo-data
(from a Gogny functional)

factor of 4 at each order
can fine-tune couplings

N2LO regulator independent;
N3LO converged energy/radius

Independence of the regulator
scale a (i.e., flatness ) and
independent of reference
nucleus

Error plots vs. A shows
convergence patterns

Fixed a = 0.85 fm; exponential
decrease of constants with n
with Λ ≈ 700 MeV
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Does it work like an effective theory? Proof of principle
Order-by-order convergence
test against pseudo-data
(from a Gogny functional)

factor of 4 at each order
can fine-tune couplings

N2LO regulator independent;
N3LO converged energy/radius

Independence of the regulator
scale a (i.e., flatness ) and
independent of reference
nucleus

Error plots vs. A shows
convergence patterns

Fixed a = 0.85 fm; exponential
decrease of constants with n
with Λ ≈ 700 MeV
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Does it work like an effective theory? Proof of principle
Order-by-order convergence
test against pseudo-data
(from a Gogny functional)

factor of 4 at each order
can fine-tune couplings

N2LO regulator independent;
N3LO converged energy/radius

Independence of the regulator
scale a (i.e., flatness ) and
independent of reference
nucleus

Error plots vs. A shows
convergence patterns

Fixed a = 0.85 fm; exponential
decrease of constants with n
with Λ ≈ 700 MeV
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Naturalness in EDF coefficients as chiral signature?
Georgi (1993): fπ for strongly interacting fields; rest is Λχ ≈ mρ; clmn ∼ O(1)

Lχ eft = clmn

(
N†N
f 2
πΛχ

)l (
π

fπ

)m (
∂µ,mπ

Λχ

)n

f 2
πΛ2

χ fπ ∼ 100 MeV

Chiral NDA analysis for EDFs:
[Friar et al., rjf et al.]

c
[

N†N
f 2
πΛχ

]l [ ∇
Λχ

]n

f 2
πΛ2

χ

=⇒
ρ←→ N†N
τ ←→ ∇N† · ∇N
J←→ N†∇N

Density expansion?
1000 ≥ Λχ ≥ 500 =⇒ 1

7
≤ ρ0

f 2
πΛχ

≤ 1
4

Also gradient expansion

Applied to RMF, Skyrme EDFs
2 3 4 5

power of density
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)
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natural (Λ=600 MeV)
Skyrme ρn

RMFT-II ρn net
RMFT-I ρn net

kF = 1.35 fm−1

What does this tell us about accuracy limits?
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Naturalness in Skyrme coefficients as chiral signature?

Georgi (1993): fπ for strongly interacting fields; rest is Λχ ≈ mρ; clmn ∼ O(1)

Lχ eft = clmn

(
N†N
f 2
πΛχ

)l (
π

fπ

)m (
∂µ,mπ

Λχ

)n

f 2
πΛ2

χ fπ ∼ 100 MeV

Check chiral naturalness for large set of Skyrme EDFs:
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Kortelainen*et*al.*(2010)*

~50*scaled*sets*of*Skyrme*coefficients*

Looks like natural distribution =⇒ Does this mean pionful EFT is needed?
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Some reasons to think EFT for nuclear DFT

Folk theorem: Any successful low-energy phenomenology
can be cast as [the leading order of] an EFT

Five (or more) different representations all seem to work
=⇒ build on common liquid drop systematics

Works very well with simple calculations and few parameters

(Some) EDFs look like momentum (and density?) expansions

NDA phenomenology −→ EDF constants seem to inherit
underlying physics (e.g., chiral scales)

· · ·
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Outline

Motivations for considering nuclear DFT as an EFT

Extensions of nuclear EDFs using EFT ideas

Nuclear DFT as effective action
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Effective actions and broken symmetries

Natural framework for spontaneous symmetry breaking
e.g., test for zero-field magnetization M in a spin system
introduce an external field H to break rotational symmetry

if F [H] calculated perturbatively, M[H = 0] = 0 to all orders

Legendre transform Helmholtz free energy F (H):

invert M = −∂F (H)/∂H
H(M)
=⇒ Γ[M] = F [H(M)] + MH(M)

since H = ∂Γ/∂M −→ 0, stationary points of Γ =⇒ ground state

Can couple source “H” many ways (and multiple sources)
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introduce an external field H to break rotational symmetry

if F [H] calculated perturbatively, M[H = 0] = 0 to all orders
Legendre transform Helmholtz free energy F (H):

invert M = −∂F (H)/∂H
H(M)
=⇒ Γ[M] = F [H(M)] + MH(M)

since H = ∂Γ/∂M −→ 0, stationary points of Γ =⇒ ground state

Can couple source “H” many ways (and multiple sources)
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DFT and effective actions (Fukuda et al., Polonyi, . . . )

External field⇐⇒ Magnetization

Helmholtz free energy F [H]
⇐⇒ Gibbs free energy Γ[M]

Legendre
transform

=⇒ Γ[M] = F [H] + H M

H =
∂Γ[M]

∂M
ground−−−−→
state

∂Γ[M]

∂M

∣∣∣∣
Mgs

= 0

Partition function with sources J that adjust (any) densities:

Z[J] = e−W [J] ∼ Tr e−β(Ĥ+J ρ̂) =⇒ e.g., path integral for W [J]

Invert to find J[ρ] and Legendre transform from J to ρ:

ρ(x) =
δW [J]

δJ(x)
=⇒ Γ[ρ] = W [J]−

∫
J ρ and J(x) = − δΓ[ρ]

δρ(x)

=⇒ Γ[ρ] ∝ energy functional E [ρ], stationary at ρgs(x)!
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A bestiary of effective actions
Couple source to local Lagrangian field, e.g., J(x)φ(x)

Γ[ϕ] where ϕ(x) = 〈φ(x)〉 =⇒ 1PI effective action

Arises from fermion L’s by introducing auxiliary (HS) fields
Can approximate with stationary phase =⇒ loop expansion

Couple J to non-local composite op, e.g., J(x , x ′)φ(x)φ(x ′)

Γ[G, ϕ] =⇒ 2PI effective action [CJT]

cf. Baym-Kadanoff conserving (“Φ-derivable”) approximations
Often applied to hot, nonequilibrium QCD

Source coupled to local composite operator, e.g., J(x)φ2(x)

2PPI (two-particle-point-irreducible) effective action

Kohn-Sham DFT from inversion method
Careful: new divergences arise (e.g., pairing)
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Partition function in β →∞ limit [see Zinn-Justin]

Consider Hamiltonian with time-independent source J(x):

Ĥ(J) = Ĥ +

∫
J φ̂ or Ĥ(J) = Ĥ +

∫
J ψ†ψ

If ground state is isolated (and bounded from below),

e−βĤ(J) = e−βE0(J)
[
|0〉〈0|J +O

(
e−β(E1(J)−E0(J)))]

As β →∞, Z[J] =⇒ ground state of Ĥ(J) with energy E0(J)

Z[J] = e−W [J] ∼ Tr e−β(Ĥ+J ρ̂) =⇒ E0(J) = lim
β→∞

− 1
β

logZ[J] =
1
β

W [J]

Γ[ρ]: expectation value of Ĥ in ground state generated by J[ρ]

1
β

Γ[ρ] = E0(J)−
∫

J ρ = 〈Ĥ + J ρ̂〉J −
∫

J ρ = 〈Ĥ〉J J→0−→ E0

J(x) = − δΓ[ρ]

δρ(x)
J→0−→ δΓ[ρ]

δρ(x)

∣∣∣∣
ρgs(x)

= 0 =⇒ variational FHK[ρ]
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Ĥ(J) = Ĥ +
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Z[J] = e−W [J] ∼ Tr e−β(Ĥ+J ρ̂) =⇒ E0(J) = lim
β→∞

− 1
β

logZ[J] =
1
β

W [J]
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Pairing in Kohn-Sham DFT [rjf, Hammer, Puglia, nucl-th/0612086]

Add source j coupled to anomalous density:

Z [J, j] = e−W [J,j] =

∫
D(ψ†ψ) exp

{
−
∫

dx [L+ J(x)ψ†αψα + j(x)(ψ†↑ψ
†
↓ + ψ↓ψ↑)]

}
Densities found by functional derivatives wrt J, j :

ρ(x) =
δW [J, j]
δv(x)

∣∣∣∣
j
, φ(x) ≡ 〈ψ†↑(x)ψ†↓(x) + ψ↓(x)ψ↑(x)〉J,j =

δW [J, j]
δj(x)

∣∣∣∣
J

Find Γ[ρ, φ] from W [J0, j0] by inversion (∆ = ∆0 + ∆1 + · · · )
Kohn-Sham system =⇒ short-range HFB with j0 as gap(

h0(x)− µ0 j0(x)
j0(x) −h0(x) + µ0

)(
ui (x)
vi (x)

)
= Ei

(
ui (x)
vi (x)

)

where h0(x) ≡ −∇
2

2M
+ J0(x)

New renormalization counterterms needed (e.g., 1
2ζ j2)
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Some current strategies for nuclear EDFs using EFT
Extend or modify conventional EDF forms in (semi-)controlled ways

1 Long-distance chiral physics from an EFT expansion
Density matrix expansion (DME) applied to NN and NNN diagrams
[Re-fit residual Skyrme parameters and test description]
MBPT expansion justified by phase-space-based power counting

2 In-medium chiral perturbation theory [Munich group]
ChPT loop expansion becomes EOS expansion
Apply DME to get DFT functional

3 Extend existing functionals following EFT principles
Non-local regularized pseudo-potential [Raimondi et al., 1402.1556]

Optimize pseudo-potential to experimental data
Test with correlation analysis technology

4 RG evolution of effective action functional [Jens Braun et al.]

Here: can we develop bottom-up EFT using a QFT formulation?
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RG Approach to DFT [J. Braun et al., from Polonyi-Schwenk]

Non-interacting fermions in
background mean-field
potential V at λ = 0

Gradually switch off background
potential and turn on the
microscopic interaction U as λ→ 1

Sλ,1 =

∫
τ

∫
x
ψ†α(x)

[
∂

∂τ
− ∇

2
x

2M
+ (1− λ)Vλ;α(x)

]
ψα(x)

Sλ,2 =
λ

2

∫
τ

∫
x

∫
τ ′

∫
x′

(ψ†ψ) · U · Rλ · (ψ†ψ)

Zλ[J] ∼
∫
D(ψ†ψ)e−Sλ+Jψ†ψ

=⇒
≡ eWλ[J]

Latest: confine in box with L→∞ at end [Braun et al., arXiv:1606.04388]

ρ(τ, x) =
δWλ[J]

δJ(τ, x)
=⇒ Γλ[ρ] = sup

J

{
−Wλ[J] +

∫
τ

∫
x

J(τ, x)ρ(τ, x)

}
2PPI effective action gives HK functional: Eλ[ρ] = limβ→∞ 1

βΓλ[ρ]
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What would a condensed matter theorist do?
From Atland and Simons “Condensed Matter Field Theory”:

May want to HS decouple in all three channels with q � |pi |:

Sint[ψ,ψ] ≈ 1
2

∑
p,p′,q

(
ψσpψσp+qV (q)ψσ′p′ψσ′p′−q − ψσpψσ′p+qV (p′ − p)ψσ′p′+qψσ′p′

− ψσpψσ′−p+qV (p′ − p)ψσ′p′ψσ′−p′+q

)
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Nuclei are self-bound =⇒ KS potentials break symmetries
Conceptural issue: Is Kohn-Sham DFT well defined?

J. Engel: ground state density spread uniformly over space
Want DFT for internal densities

Practical issue: what to do when KS potentials break symmetries?
Symmetry restoration with superposition of states:

|ψ〉 =

∫
dα f (α)|φα〉 =⇒ minimize wrt f (α), before or after |φ〉

Wave function method strategies for “center of mass” problem
isolate “internal” dofs, e.g., with Jacobi coordinates
work in HO Slater determinant basis for which COM decouples
work with internal Hamiltonian so that COM part factors

How to accomodate within effective action DFT framework?

Zero-frequency modes =⇒ divergent perturbation expansion
Transformation to collective variables =⇒ work with
overcomplete dof’s =⇒ system with constraints
Can we apply methods for gauge theories?
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Zero modes: collective coordinates and functional integrals

Possible approach: use BRST invariance

Add more fermionic variables (ghosts) so more overcomplete
Apparent complication is actually a simplification because
in gauge systems there is a supersymmetry
Examples in the literature with applications to mechanical systems
E.g., Bes and Kurchan, “The treatment of collective coordinates in
many-body systems: An application of the BRST invariance”
Can the procedure be adapted to DFT?
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Questions to address about EFT for DFT

What are the relevant degrees of freedom? Symmetries?
[Can we have quasiparticles in the bulk?]

Power counting: what is our expansion? Breakdown scale?

Is there an RG argument to apply? (cf. scale toward Fermi surface)

How should the EFT be formulated? Effective action?
How do I think about parameterizing a density functional?

How can we implement/expand about liquid drop physics?

How do we reconcile the different EDF representations?

Dealing with zero modes — can we adapt methods for gauge
theories (constraints)?

Can we implement such an EFT without losing favorable
computational scaling?
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What do (ordinary) nuclei look like?

Charge densities of magic
nuclei (mostly) shown

Proton density has to be
“unfolded” from ρcharge(r),
which comes from elastic
electron scattering

Roughly constant interior
density with
R ≈ (1.1–1.2 fm) · A1/3

Roughly constant surface
thickness

=⇒ Like a liquid drop!
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Nuclear and neutron matter energy vs. density

[Akmal et al. calculations shown]
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Hierarchy of contributions to infinite matterHierarchy of many-body contributions 
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• binding energy results from cancellations of much larger kinetic and potential 

energy contributions

• chiral hierarchy of many-body terms preserved for considered density range

• cutoff dependence of natural size, consistent with chiral exp. parameter ∼ 1/3
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Large cancellation of kinetic and potential energy

Chiral hierarchy of 2NF and 3NF up to saturation density
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Scaling of 〈V (3)〉/〈V (2)〉 in nuclear matter
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Density functional theory (DFT) as justification
for energy density functional (EDF) approach

Hohenberg-Kohn: There exists an
energy functional Evext [ρ] of
ρ(x) for external potential vext:

Evext [ρ] = FHK[ρ] +

∫
dx vext(x)ρ(x)

Minimize =⇒ Egs, ρgs

Useful if you can approximate the
energy functional; suggests a
hunting license for EDF’s

FHK is universal (same for any
external vext), so should be able to
add any vext we want!

Kohn-Sham (KS) DFT:
Introduce orbitals for ρ(x)
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Unraveling the magic of DFT [Kutzelnigg (2008)]

Wavefunction-based: for anti-symmetric A-body |Ψ〉, find
Egs = min

Ψ
〈Ψ|Ĥ|Ψ〉 (CI, CC use a single-particle basis for |Ψ〉)

DFT: fermion densities as basic variables

Common but misleading statements:
“All information about a quantum mechanical ground state

is contained in its electron density ρ.”
“The energy is completely expressible in terms of the density alone.”

At odds with kinetic and interaction energies needing
(1,2, · · · )–particle density matrices!

Key: WF formulation deals with single, fixed Hamiltonian,
E stationary to density matrix (or Ψ) variations, not just ρ(x)

DFT: Consider a family of Hamiltonians Ĥ[v ]→ E [v ], then

FHK[ρ] = min
v
{E [v ]−

∫
dx v(x)ρ(x)} and

E [v ] = min
ρ
{F [ρ] +

∫
dx v(x)ρ(x)} ≡ min

ρ
{Ev [ρ]}
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Challenges for nuclear DFT (cf. Coulomb DFT)

Difficult conventional nuclear Hamiltonians

Sources of non-perturbative physics for NN interaction
1 Strong short-range repulsion (“hard core”)
2 Iterated tensor interactions (e.g., from pion exchange)
3 Near zero-energy bound states (e.g., deuteron)

Non-negligible many-body forces

Non-trivial implementation issues

Essential role of pairing (so like HFB rather than HF)
Important long-range correlations
Some observables we want are not KS-DFT observables
We don’t have a vext!
Symmetry breaking in finite, self-bound systems
(translation, rotation, number, . . . )

=⇒What about symmetry restoration?
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Skyrme generalizations based on EFT principles
Ability to use local densities based on short range of nuclear
interactions compared to variations in local and non-local density
matrix =⇒ use separation of scales

Skyrme Finite-size instab. Spin instabilities Beyond RPA ?

Density functional

! Skyrme force
V (R,r) = t0

(
1+ x0P̂σ

)
δ(r)+

1
6
t3
(
1+ x3P̂σ

)
δ(r) [ρ0 (R)]α

+
1
2
t1
(
1+ x1P̂σ

) [
δ(r) k2 +k′2 δ(r)

]
+ t2

(
1+ x2P̂σ

)
k′ · δ(r) k

+ iW0 [σ1 +σ2]k′× δ(r) k,

! Density functional

E =

∫
d3r

[
h̄2

2m
τ0 + HSkyrme(ρ0,ρ1,τ0,τ1,s0,s1, . . .) + HCoul.(ρp)

]

! Densities
ρ=

∑
i
ϕ†i ϕi , τ =

∑
i,µ

(∇µϕ†i )(∇µϕi), j, J : currents
sν =

∑
i
ϕ†i σνϕi , Tν =

∑
i,µ

(∇µϕ†i )σν(∇µϕi), ρ0 = ρn +ρp, ρ1 = ρn−ρp, . . .

! Strong interaction energy density HSkyrme

H
even
0 = Cρ0 (ρ0)ρ20 +C∆ρ

0 ρ0∆ρ0 +Cτ0 ρ0τ0 +CJ
0 J2

0 +C∇J
0 ρ0∇ ·J0,

H
even
1 = Cρ1 (ρ0)ρ21 +C∆ρ

1 ρ1∆ρ1 +Cτ1 ρ1τ1 +CJ
1 J2

1 +C∇J
1 ρ1∇ ·J1,

H
odd
0 = Cs

0(ρ0)s
2
0 +C∆s

0 s0 ·∆s0 +CsT
0 s0 ·T0 +Cj

0j
2
0 +C∇j

0 s0 · (∇× j0),

H
odd
1 = Cs

1(ρ0)s
2
1 +C∆s

1 s1 ·∆s1 +CsT
1 s1 ·T1 +Cj

1j
2
1 +C∇j

1 s1 · (∇× j1).

Instabilities in Nuclear Energy Density Functionals T. LesinskiExpand in densities and gradients

Includes time-odd fields =⇒ new domain to explore

Gogny EDF can be accurately cast in same form [arXiv:1002.3646]
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Naturalness revisited (M. Kortelainen et al.)

Apply natural units scaling to 48 Skyrme functionals

Look for optimal Λ by deviations from unity:
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Λ ≈ 600 MeV consistent with previous analysis
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Construct W [v ] and then Γ[ρ] order-by-order

Need a diagrammatic expansion (e.g., MBPT or EFT)

Inversion method =⇒ Split source v(x) = VKS + v1 + v2 + · · ·
VKS chosen to get ρ(x) in noninteracting (Kohn-Sham) system:

Vext

=⇒
VKS

Orbitals {ψα(x)} in local potential VKS([ρ],x)

[−∇2/2m + VKS(x)]ψα = εαψα =⇒ ρ(x) =
A∑

α=1

|ψα(x)|2

Self-consistency from v(x)→ vext(x) =⇒ VKS(x) ∝ δΓint[ρ]/δρ(x)

Alternative: Do MBPT with single particle potential U(x) and
H = (T + U) + (V − U + vext) and choose U = VKS (no ∆ρ(x))
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Self-consistency from v(x)→ vext(x) =⇒ VKS(x) ∝ δΓint[ρ]/δρ(x)

Alternative: Do MBPT with single particle potential U(x) and
H = (T + U) + (V − U + vext) and choose U = VKS (no ∆ρ(x))
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Construct W [v ] and then Γ[ρ] order-by-order

Need a diagrammatic expansion (e.g., MBPT or EFT)

Inversion method =⇒ Split source v(x) = VKS + v1 + v2 + · · ·
VKS chosen to get ρ(x) in noninteracting (Kohn-Sham) system:

Vext

=⇒
VKS

Orbitals {ψα(x)} in local potential VKS([ρ],x)

[−∇2/2m + VKS(x)]ψα = εαψα =⇒ ρ(x) =
A∑

α=1

|ψα(x)|2

Self-consistency from v(x)→ vext(x) =⇒ VKS(x) ∝ δΓint[ρ]/δρ(x)

Alternative: Do MBPT with single particle potential U(x) and
H = (T + U) + (V − U + vext) and choose U = VKS (no ∆ρ(x))
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What is needed for ab initio Kohn-Sham DFT?
1 Need MBPT to work with tuned U [H = (T + U) + (V − U)]
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 < 2.5 fm
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(see new results from K. Hebeler et al.)
If convergence insensitive to U =⇒ choose so KS density exact

2 Need to calculate VKS(x) from δE [ρ]/δρ(x), etc. but diagrams depend
non-locally on KS orbitals

Density matrix expansion (DME) =⇒ explicit densities
Use chain rule =⇒ “optimized effective potential” (OEP)
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Jacob’s Ladder: Coulomb DFT [J. Perdew et al.]
“And he [Jacob] dreamed, and behold a ladder set up on the earth, and the top of
it reached to heaven . . . ” [Genesis 28:12]

~wwwwwwwwwwwwwwwwwwww

HEAVEN =⇒ Chemical Accuracy

5. Full orbital-based DFT from MBPT+.
[E.g., RPA with Kohn-Sham orbitals.]

4. Hyper-GGA includes exact exchange energy
density calculated with (occupied) orbitals.

3. Meta-GGA adds (some subset of) ∇2ρ↑(r),
∇2ρ↓(r), τ↑(r), and τ↓(r).
[Note: τ [ρ] is nonlocal; τ [φKS

i ] is semi-local.]

2. Generalized gradient approximation (GGA)
adds ∇ρ↑(r) and ∇ρ↓(r).

1. Local spin density approximation (LSDA) with
ρ↑(r) and ρ↓(r) as ingredients.
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Jacob’s Ladder: Nuclear DFT [arXiv:0906.1463]
“And he [Jacob] dreamed, and behold a ladder set up on the earth, and the top of
it reached to heaven . . . ” [Genesis 28:12]

~wwwwwwwwwwwwwwww

HEAVEN =⇒ UNEDF from NN· · ·N (QCD)

5. Full orbital-based DFT based on
[lattice QCD =⇒ ] chiral EFT =⇒ Vlow k .

4. Complete semi-local functional (e.g., DME)
from chiral EFT =⇒ Vlow k .

3. Long-range chiral NN and NNN =⇒ Π–DME
=⇒ merged with Skyrme and refit.

2. Generalized Skyrme with ∇nρ(r), ρα(r), . . .
with constraints (e.g., neutron drops)

1. Conventional Skyrme EDF’s [e.g. SLY4].

Developing 2.–5. in parallel!
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Computational scaling for Coulomb systems

Full configuration interaction
(CI) grows exponentially with
number N

Coupled cluster CCSD(T) ∝ N7

Quantum Monte Carlo (QMC)
scales ∝ N3

Density functional theory (DFT)
scales ∝ N3 and linear scaling
possible

M. Head-Gordon and E. Artacho
Physics Today, April 2008
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Historically: Microscopic EDF from G-Matrix

G-matrix softens highly non-perturbative NN potentials

Negele/Vautherin density matrix expansion (DME)
=⇒ Skyrme-like EDF from G-matrix for Hartree-Fock

Semi-quantitatively successful
Empirical fits far superior =⇒ little further development

Ab-initio DFT is possible from many-body perturbation theory (MBPT)
if convergent and can tune single-particle potential U

H = (T + U)︸ ︷︷ ︸
Kohn−Sham

+(V − U)

Need to be able to adjust U so density unchanged
Recent successes for Coulomb DFT

But MBPT with G-matrix doesn’t work (hole-line expansion)

Use RG to soften: low-momentum potentials (Vlow k ,VSRG)

revisit hole-line expansion
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Compare Potential and G Matrix: AV18 vs. VSRG

AV18 VSRG

↖
G Matrices

↗
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Hole-Line Expansion Revisited (Bethe, Day, . . . )

Consider ratio of fourth-order diagrams to third-order:

k

m
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b
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c k
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a bl

c

n

b
k

m

a l
c

p
q

b

“Conventional” G matrix still couples low-k and high-k

no new hole line =⇒ ratio ≈ −χ(r = 0) ≈ −1 =⇒ sum all orders
add a hole line =⇒ ratio ≈∑n≤kF

〈bn|(1/e)G|bn〉 ≈ κ ≈ 0.15

Low-momentum potentials decouple low-k and high-k

add a hole line =⇒ still suppressed
no new hole line =⇒ also suppressed (limited phase space)
freedom to choose single-particle U =⇒ use for Kohn-Sham

=⇒ Ab initio MBPT and DFT can work!

(How do we get a Kohn-Sham VKS(x) from even HF diagrams?)



Outline Overview Extensions Framework Extras Nuclei DFT Scaling DME Skyrme

Nuclear matter with NN ladders only [nucl-th/0504043]

Brueckner ladders
order-by-order

Repulsive core =⇒
series diverges

Usual solution: resum
into G-matrix then do
hole-line expansion

Vlow k or VSRG converges
=⇒ KS DFT possible!

Add 3-body fit to
few-body binding
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Nuclear matter with NN ladders only [nucl-th/0504043]

Brueckner ladders
order-by-order

Repulsive core =⇒
series diverges

Usual solution: resum
into G-matrix then do
hole-line expansion

Vlow k or VSRG converges
=⇒ KS DFT possible!

Add 3-body fit to
few-body binding
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Effects of softening interactions in the nuclear medium
Separable estimate:

≈
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Effects of softening interactions in the nuclear medium
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Effects of softening interactions in the nuclear medium
Separable estimate:
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Long-range chiral EFT
=⇒ extended Skyrme
Add long-range (π-exchange)
contributions in the density
matrix expansion (DME)

NN/NNN through N2LO
[Gebremariam et al.]

Refit Skyrme parameters for
short-range parts

Test for sensitities and improved
observables (e.g., isotope
chains) [NUCLEI]

Contributions from 2π 3NF
particularly interesting

Can we “see” the pion in
medium to heavy nuclei?
(cf. direct ab initio calcs)
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DME meets Vlow k [Bogner, Furnstahl, Platter]

E = 1
2M τ + A[ρ] + B[ρ]τ + C[ρ]|∇ρ|2 + · · · in momentum space

A[ρ] ∼ k3
F

∑

lsj

ĵ t̂
∫ kF

0
k2 dk Vlsjt (k , k) PA(k/kF) + {V3N} + · · ·

B[ρ] ∼ k−3
F

∑

lsj

ĵ t̂
∫ kF

0
k2 dk Vlsjt (k , k) PB(k/kF) + {V3N} + · · ·

PA, PB are simple polynomials in k/kF

See also DME applied to ChPT in nuclear medium
(N. Kaiser et al., nucl-th/0212049, 0312059, 0406038)

Three-body contributions from DME in Jacobi coordinates

C[ρ] is a two-dimensional integral over off-diagonal V

Also spin-orbit, tensor, . . .
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Novel optimization algorithms: Test case

!"#$%#&%'

left: Deviation between theoretical and experimental nuclear masses
for the SLy4 Skyrme EDF using HFBTHO solver

right: Same for UNEDFpre EDF parametrization

Close to conventional Skyrme accuracy limit
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Nuclear constrained calculations: GCM
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Nuclear constrained calculations:
Deformation energy surface
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