EFT for nuclear DFT: Looking for help

Dick Furnstahl

Department of Physics Ohio State University

Frontiers in Nuclear Physics September 27, 2016

Key question #2:

Can successful, but model dependent, many-body methods, such as density functional approaches, be transformed into predictive EFTs, allowing for model-independent investigations of the limits of nuclear stability?

Outline

Motivations for considering nuclear DFT as an EFT

Extensions of nuclear EDFs using EFT ideas

Nuclear DFT as effective action

Motivations for considering nuclear DFT as an EFT

Extensions of nuclear EDFs using EFT ideas

Nuclear DFT as effective action

Outline Overview Extensions Framework Extras

Landscape EDFs Question

Explosion of many-body methods using microscopic input

 Ab initio (new and enhanced methods; microscopic NN+3NF)

• Shell model (usual: empirical inputs)

• Density functional theory

Nuclear Landscape

Explosion of many-body methods using microscopic input

- Ab initio (new and enhanced methods; microscopic NN+3NF)
 - Stochastic: GFMC/AFDMC; lattice EFT
 - Diagonalization: IT-NCSM
 - Non-linear eqs: coupled cluster
 - Flow equations: IM-SRG
 - Self-consistent Green's function
 - Many-body perturbation theory
- Shell model (usual: empirical inputs)
 - Effective SM interactions from coupled cluster, IM-SRG
- Density functional theory
 - Microscopic input, e.g., DME

Boundaries are continually pushed; e.g., $\alpha - \alpha$ scattering and properties of Calcium isotopes and ...

Explosion of many-body methods using microscopic input

- Ab initio (new and enhanced methods; microscopic NN+3NF)
 - Stochastic: GFMC/AFDMC; lattice EFT
 - Diagonalization: IT-NCSM
 - Non-linear eqs: coupled cluster
 - Flow equations: IM-SRG
 - Self-consistent Green's function
 - Many-body perturbation theory
- Shell model (usual: empirical inputs)
 - Effective SM interactions from coupled cluster, IM-SRG
- Density functional theory
 - Microscopic input, e.g., DME
 - Bottom-up EFT?

Boundaries are continually pushed; e.g., $\alpha - \alpha$ scattering and properties of Calcium isotopes and ...

J. Erler et al., Nature 486, 509 (2012)

- Proton and neutron driplines predicted by Skyrme EDFs
 - Total: 6900 \pm 500 nuclei with Z \leq 120 (\approx 3400 known)
 - Systematic errors estimated by comparing models
 - Computationally efficient (but still a HPC problem)

Bestiary of [universal] nuclear energy functionals

- Nonrelativistic [HFB] functionals
 - Skyrme local densities and ∇s
 - Gogny finite range Gaussians
 - Fayans self-consistent FFS
- Relativistic [covariant Hartree + pairing = RHB] functionals
 - RMF meson fields (generalized Walecka model)
 - point coupling Lagrangian

Repeat cycle until stops changing (self-consistent):
 densities ρ_i → potential that minimizes energy E[ρ_i] → s.p. states → ρ_i
 Densities (or density matrices) from single-particle wave functions Includes pairing densities, i.e., ⟨ψ_iψ_j⟩ as well as ⟨ψ[†]_iψ_j⟩

- [Restore symmetries, beyond mean-field correlations, ...]
- **3** Evaluate observables (masses, radii, β -decay, fission . . .)

Frequently interpreted as Kohn-Sham density functional theory

"The limits of the nuclear landscape"

• Two-neutron separation energies of even-even erbium isotopes

- Compare different functionals, with uncertainties of fits
- Dependence on neutron excess poorly determined (cf. driplines)

State-of-the-art Skyrme EDFs

- Is there a limit to improvement of Skyrme rms energy residual?
- Recently many advances by UNEDF/NUCLEI, FIDIPRO, and others to improve/test EDFs
- Extra observables and ab initio calculations in neutron drops for constraints (e.g., on isovector)
- Sophisticated fit and correlation analysis implies the EDF is not limited by the parameter fitting
- But still don't beat the energy barrier (and not nearly as good energy rms as mass models)
- Iimit of Skyrme EDF strategy?

Gogny HFB as a mass model: State-of-the-art

$$V(1,2) = \sum_{j=1,2} e^{-\frac{(r_1 - r_2)^2}{\mu_j^2}} (W_j + B_j P_\sigma - H_j P_\tau - M_j P_\sigma P_\tau) \qquad \{\mu_j\} = \{0.5, 1.0\} \text{ fm}$$

$$+ t_0(1 + x_0 P_{\sigma})\delta(\mathbf{r}_1 - \mathbf{r}_2)\rho(\mathbf{\bar{r}})^{\alpha} + iW_{LS}\overleftarrow{\nabla}_{12}\delta(\mathbf{r}_1 - \mathbf{r}_2)\times\overrightarrow{\nabla}_{12}\cdot(\overrightarrow{\sigma}_1 + \overrightarrow{\sigma}_2)$$

- \approx 14 parameters
- quadrupole correlations included self-consistently
- D1M: δB_{rms} = 0.8 MeV for 2353 masses
- $\sigma \approx 0.65 \,\text{MeV}$ for 2064 β -decay energies
- radii, giant resonances and fission properties
- SNM: $k_{\rm F} \approx 1.34 \, {\rm fm}^{-1}$, $a_v \approx -16 \, {\rm MeV}$

Covariant EDFs: Relativistic mean-field models

$$\mathcal{L} = \overline{\psi} \Big[\gamma \cdot (i\partial - g_{\omega}\omega - g_{\rho}\rho \cdot \tau - eA) - m - g_{\sigma}\sigma \Big] \psi + \frac{1}{2}(\partial\sigma)^{2} - \frac{1}{2}m_{\sigma}\sigma^{2} - \frac{1}{3}g_{2}\sigma^{3} \\ - \frac{1}{4}g_{3}\sigma^{4} - \frac{1}{4}\Omega_{\mu\nu}\Omega^{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega^{2} - \frac{1}{4}\boldsymbol{R}_{\mu\nu}\boldsymbol{R}^{\mu\nu} + \frac{1}{2}m_{\rho}^{2}\rho^{2} - \frac{1}{4}\boldsymbol{F}_{\mu\nu}\boldsymbol{F}^{\mu\nu} \Big]$$

Agbemava et al., Phys. Rev. C 89, 054320 (2014)

- RHB formalism
- different Ls used
- 6–8+ fit parameters (+ pairing parameters)
- beyond mean-field not included
- $\delta B_{\rm rms} \approx 2-3 \,{\rm MeV}$ for 835 masses
- SNM: $k_{\rm F} \approx 1.31 \, {\rm fm}^{-1}$, $a_v \approx -16.1 \, {\rm MeV}$

Motivations for doing better than empirical EDFs

- Apparent model dependence (systematic errors?)
- Extrapolations to driplines, large A, high density are uncontrolled
- Breakdown and failure mode is unclear: e.g., should EDFs work to the driplines?
- More accuracy wanted for r-process: is this even possible?
- What observables? Coupling to external currents? $0\nu\beta\beta$ m.e.?
- Connect to nuclear EFTs (and so to QCD)?

Hierarchy of nuclear degrees of freedom

Laundry list of nuclear EFTs

- Chiral EFT: nucleons, [Δ's,] pions; [HO basis]
- Pionless EFT: nucleons only (low-energy few-body) or nucleons and clusters (halo)
- EFT for deformed nuclei: systematic collective dofs (Papenbrock, Coello Pérez, Weidenmueller)
- EFT at Fermi surface (Landau-Migdal theory): quasi-nucleons

Where does DFT fit in?

Liquid drop model: SEMF (bulk properties) (A = N + Z)

$$E_B(N,Z) = a_v A - a_s A^{2/3} - a_C \frac{Z^2}{A^{1/3}} - a_{sym} \frac{(N-Z)^2}{A} + \Delta$$

- Many predictions! Implies A → ∞ limit of nuclear matter (with e → 0) ⇒ saturation point
- Rough numbers: $a_v \approx 16$ MeV, $a_s \approx 18$ MeV, $a_C \approx 0.7$ MeV, $a_{sym} \approx 28$ MeV
- Nuclear radii: $R \approx (1.2 \, \text{fm}) A^{1/3}$
- Pairing $\Delta \approx \pm 12/\sqrt{A}$ MeV (even-even/odd-odd) or 0 [or $43/A^{3/4}$ MeV or ...]
- More detailed mass formulas include shell effects, etc.

Questions to address about EFT for DFT

- What are the relevant degrees of freedom? Symmetries? [Can we have quasiparticles in the bulk?]
- Power counting: what is our expansion? Breakdown scale?
- Is there an RG argument to apply? (cf. scale toward Fermi surface)
- How should the EFT be formulated? Effective action? How do I think about parameterizing a density functional?
- How can we implement/expand about liquid drop physics?
- How do we reconcile the different EDF representations?
- Dealing with zero modes can we adapt methods for gauge theories (for constraints)?
- Can we implement such an EFT without losing the favorable computational scaling of current nuclear EDFs?

Motivations for considering nuclear DFT as an EFT

Extensions of nuclear EDFs using EFT ideas

Nuclear DFT as effective action

Skyrme energy functionals (original motivation: G-matrix)

• Minimize
$$E = \int d\mathbf{x} \, \mathcal{E}[\rho(\mathbf{x}), \tau(\mathbf{x}), \mathbf{J}(\mathbf{x}), \ldots]$$
 (for $N = Z$):

$$\mathcal{E}[\rho, \tau, \mathbf{J}] = \frac{1}{2M}\tau + \frac{3}{8}t_0\rho^2 + \frac{1}{16}t_3\rho^{2+\alpha} + \frac{1}{16}(3t_1 + 5t_2)\rho\tau + \frac{1}{64}(9t_1 - 5t_2)(\nabla\rho)^2 - \frac{3}{4}W_0\rho\nabla\cdot\mathbf{J} + \frac{1}{32}(t_1 - t_2)\mathbf{J}^2$$

• where $\rho(\mathbf{x}) = \sum_{i} |\psi_i(\mathbf{x})|^2$ and $\tau(\mathbf{x}) = \sum_{i} |\nabla \psi_i(\mathbf{x})|^2$ (and J)

Skyrme energy functionals (original motivation: G-matrix)

• Minimize
$$E = \int d\mathbf{x} \, \mathcal{E}[\rho(\mathbf{x}), \tau(\mathbf{x}), \mathbf{J}(\mathbf{x}), \ldots]$$
 (for $N = Z$):

$$\mathcal{E}[\rho, \tau, \mathbf{J}] = \frac{1}{2M}\tau + \frac{3}{8}t_0\rho^2 + \frac{1}{16}t_3\rho^{2+\alpha} + \frac{1}{16}(3t_1 + 5t_2)\rho\tau + \frac{1}{64}(9t_1 - 5t_2)(\nabla\rho)^2 - \frac{3}{4}W_0\rho\nabla\cdot\mathbf{J} + \frac{1}{32}(t_1 - t_2)\mathbf{J}^2$$

• where $\rho(\mathbf{x}) = \sum_{i} |\psi_i(\mathbf{x})|^2$ and $\tau(\mathbf{x}) = \sum_{i} |\nabla \psi_i(\mathbf{x})|^2$ (and J)

• Skyrme Kohn-Sham equation from functional derivatives:

$$\left(-\nabla \frac{1}{2M^*(\mathbf{x})}\nabla + U(\mathbf{x}) + \frac{3}{4}W_0\nabla \rho \cdot \frac{1}{i}\nabla \times \boldsymbol{\sigma}\right)\psi_i(\mathbf{x}) = \epsilon_i\,\psi_i(\mathbf{x})\;,$$

 $U = \frac{3}{4}t_0\rho + (\frac{3}{16}t_1 + \frac{5}{16}t_2)\tau + \cdots \text{ and } \frac{1}{2M^*(\mathbf{x})} = \frac{1}{2M} + (\frac{3}{16}t_1 + \frac{5}{16}t_2)\rho$

- Iterate until ψ_i 's and ϵ_i 's are self-consistent
- In practice: other densities, pairing is very important (HFB), projection needed (zero modes), beyond mean-field correlations, ...

What is learned from comparing Skyrme and dilute EDFs?

• Skyrme energy density functional (for N = Z and without pairing)

$$\begin{split} E[\rho,\tau,\mathbf{J}] &= \int d^3x \left\{ \frac{\tau}{2M} + \frac{3}{8} t_0 \rho^2 + \frac{1}{16} (3t_1 + 5t_2) \rho \tau + \frac{1}{64} (9t_1 - 5t_2) (\boldsymbol{\nabla}\rho)^2 \right. \\ &\left. - \frac{3}{4} W_0 \rho \boldsymbol{\nabla} \cdot \mathbf{J} + \frac{1}{16} t_3 \rho^{2+\alpha} + \cdots \right\} \\ \text{where } \rho(\mathbf{r}) &= \sum_i |\psi_i(\mathbf{r})|^2, \ \tau(\mathbf{r}) = \sum_i |\nabla \psi_i(\mathbf{r})|^2, \ldots \end{split}$$

• Systematic dilute LDA $\rho\tau$ J EDF (4 species, short-range only)

$$E[\rho,\tau,\mathbf{J}] = \int d^3x \left\{ \frac{\tau}{2M} + \frac{3}{8}C_0\rho^2 + \frac{1}{16}(3C_2 + 5C_2')\rho\tau + \frac{1}{64}(9C_2 - 5C_2')(\nabla\rho)^2 - \frac{3}{4}C_2''\rho\nabla\cdot\mathbf{J} + \frac{c_1}{2M}C_0^2\rho^{7/3} + \frac{c_2}{2M}C_0^3\rho^{8/3} + \frac{1}{16}D_0\rho^3 + \cdots \right\}$$

- Same functional as dilute Fermi gas with $t_i \leftrightarrow C_i$!
 - Is Skyrme missing non-analytic, NNN, long-range (pion), (and so on) terms? Can we simply extend it?
 - Does a "perturbative" low-density expansion make sense?

Still more questions for EDFs

- Are density dependencies too simplistic? How do you know?
- How should we organize possible terms in the EDF?
- Where are the pions? Where is chiral symmetry?
- What is the connection to many-body forces?
- How do we estimate a priori theoretical uncertainties?
- What is the theoretical limit of accuracy?
- and so on ...
- \implies Extend or modify EDF forms in (semi-)controlled way
- \implies Use microscopic many-body theory for guidance

There are multiple paths to a nuclear EDF \implies What about EFT?

Some current strategies for nuclear EDFs using EFT

Extend or modify conventional EDF forms in (semi-)controlled ways

- Long-distance chiral physics from an EFT expansion
 - Density matrix expansion (DME) applied to NN and NNN diagrams
 - [Re-fit residual Skyrme parameters and test description]
 - MBPT expansion justified by phase-space-based power counting
- In-medium chiral perturbation theory [Munich group]
 - ChPT loop expansion becomes EOS expansion
 - Apply DME to get DFT functional
- Extend existing functionals following EFT principles
 - Non-local regularized pseudo-potential [Raimondi et al., 1402.1556]
 - Optimize pseudo-potential to experimental data
 - Test with correlation analysis technology
- BG evolution of effective action functional [Jens Braun et al.]

Here: can we develop bottom-up EFT using a QFT formulation?

Low resolution chiral EFT calculations of nuclear matter

- Evolve NN by RG to low momentum, fit N²LO NNN to A = 3, 4
- Predict nuclear matter in MBPT [Hebeler et al. (2011)]

- Cutoff dependence at 2nd order significantly reduced
- 3rd order contributions are small (MBPT validated for PNM)
- Remaining cutoff dependence: many-body corrections, 4NF?

Effects of softening interactions in the nuclear medium

 $Holes: \Theta(k_f - |P \pm k|)$

Effects of softening interactions in the nuclear medium

Separable estimate:

$$\frac{E_{\rm pp}^{(n+1)}}{E_{\rm pp}^{(n)}} \approx \frac{m^*}{m} \int \frac{d^3k}{(2\pi)^3} \,\overline{Q}(P_{\rm av},k) \,\frac{\langle \mathbf{k} | V | \mathbf{k} \rangle}{k_{\rm av}^2 - k^2}$$

Suppose $R \ll k_{\rm F}^{-1} \ll a$ and T-matrix has zero-energy pole:

$$\left< \mathbf{p} | \mathcal{T} | \mathbf{p}' \right> = \frac{C_0 \left< \mathbf{p} | \eta \right> \left< \eta | \mathbf{p}' \right>}{1 - \int \frac{d^3 k}{(2\pi)^3} \frac{\left< \mathbf{k} | \mathcal{V} | \mathbf{k} \right>}{E - \hbar^2 \rho^2 / m}}$$

$$\implies C_0 \sim -2\pi^2/\Lambda \text{ and } R \propto \Lambda^{-1}$$
$$\implies k_{\rm F} \ll \Lambda \implies Q_{k_{\rm F}} \to 1$$
$$\implies E_{\rm pp}^{(n+1)}/E_{\rm pp}^{(n)} \sim -1$$

Phase space:

Density matrix expansion (DME) revisited [Negele/Vautherin]

• Dominant chiral EFT MBPT contributions can be put into form

$$\langle V \rangle \sim \int d\mathbf{R} \, d\mathbf{r}_{12} \, d\mathbf{r}_{34} \, \rho(\mathbf{r}_1, \mathbf{r}_3) \mathcal{K}(\mathbf{r}_{12}, \mathbf{r}_{34}) \rho(\mathbf{r}_2, \mathbf{r}_4) \stackrel{\rho(\mathbf{r}_1, \mathbf{r}_3)}{\underbrace{\left(\int_{\mathbf{r}_3}^{\mathbf{r}_1} \mathcal{K}(\mathbf{r}_1 - \mathbf{r}_2, \mathbf{r}_3 - \mathbf{r}_4) \right)}_{\mathbf{r}_4} \int_{\rho(\mathbf{r}_2, \mathbf{r}_4)}^{2} \rho(\mathbf{r}_2, \mathbf{r}_4) \rho(\mathbf{r}_2, \mathbf{r}_4) \rho(\mathbf{r}_3, \mathbf{r}_4) \rho(\mathbf{r}_4, \mathbf{r}_5, \mathbf{r}_4) \rho(\mathbf{r}_4, \mathbf{r}_5, \mathbf{r}_4) \rho(\mathbf{r}_4, \mathbf{r}_5, \mathbf{r}_5) \rho(\mathbf{r}_5, \mathbf{r}_5) \rho(\mathbf{r}_5) \rho(\mathbf{r}_5, \mathbf{r}_5) \rho(\mathbf{r}_5, \mathbf{r}_$$

r

r.

• Earlier work: momentum space with non-local interactions

Density matrix expansion (DME) revisited [Negele/Vautherin]

• Dominant chiral EFT MBPT contributions can be put into form

$$\langle V \rangle \sim \int d\mathbf{R} \, d\mathbf{r}_{12} \, d\mathbf{r}_{34} \, \rho(\mathbf{r}_1, \mathbf{r}_3) \mathcal{K}(\mathbf{r}_{12}, \mathbf{r}_{34}) \rho(\mathbf{r}_2, \mathbf{r}_4) \xrightarrow{\rho(\mathbf{r}_1, \mathbf{r}_3)} \left(\underbrace{\mathbf{K}(\mathbf{r}_1 - \mathbf{r}_2, \mathbf{r}_3 - \mathbf{r}_4)}_{\mathbf{r}_2} \underbrace{\mathbf{F}_2}_{\mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4} \right) = \mathbf{F}_2$$

r,

r,

Earlier work: momentum space with non-local interactions

DME: Expand KS ρ in local operators w/factorized non-locality

$$\rho(\mathbf{r}_1, \mathbf{r}_2) = \sum_{\epsilon_{\alpha} \leq \epsilon_{\mathrm{F}}} \psi_{\alpha}^{\dagger}(\mathbf{r}_1) \psi_{\alpha}(\mathbf{r}_2) = \sum_{n} \Pi_n(\mathbf{r}) \langle \mathcal{O}_n(\mathbf{R}) \rangle \qquad \stackrel{\mathbf{r}_1}{\underbrace{-\mathbf{r}/2 \quad \mathbf{R} \quad +\mathbf{r}/2}} \overset{\mathbf{r}_2}{\underbrace{\mathbf{r}_1 \quad \mathbf{r}_2}} \overset{\mathbf{r}_2}{\underbrace{\mathbf{r}_2 \quad \mathbf{r}_2}} \overset{\mathbf{r}_2}{\underbrace{\mathbf{r}_2}} \overset{\mathbf{r}_2}{\underbrace{\mathbf{r}_2}}$$

with $\langle \mathcal{O}_n(\mathbf{R}) \rangle = \{\rho(\mathbf{R}), \nabla^2 \rho(\mathbf{R}), \tau(\mathbf{R}), \cdots \}$ maps $\langle V \rangle$ to Skyrme-like EDF!

Density matrix expansion (DME) revisited [Negele/Vautherin]

• Dominant chiral EFT MBPT contributions can be put into form

$$\langle V \rangle \sim \int d\mathbf{R} \, d\mathbf{r}_{12} \, d\mathbf{r}_{34} \, \rho(\mathbf{r}_1, \mathbf{r}_3) K(\mathbf{r}_{12}, \mathbf{r}_{34}) \rho(\mathbf{r}_2, \mathbf{r}_4) \xrightarrow{\rho(\mathbf{r}_1, \mathbf{r}_3)} \left(\underbrace{\mathbf{K}(\mathbf{r}_1 \cdot \mathbf{r}_2, \mathbf{r}_3 \cdot \mathbf{r}_4)}_{\mathbf{r}_3} \right)_{\rho(\mathbf{r}_2, \mathbf{r}_4)}$$

r,

r,

Earlier work: momentum space with non-local interactions

DME: Expand KS ρ in local operators w/factorized non-locality

$$\rho(\mathbf{r}_1, \mathbf{r}_2) = \sum_{\epsilon_\alpha \leq \epsilon_F} \psi_\alpha^{\dagger}(\mathbf{r}_1) \psi_\alpha(\mathbf{r}_2) = \sum_n \Pi_n(\mathbf{r}) \langle \mathcal{O}_n(\mathbf{R}) \rangle \qquad \stackrel{\mathbf{r}_1}{\underbrace{-\mathbf{r}/2 \quad \mathbf{R} \quad +\mathbf{r}/2}}$$

with $\langle \mathcal{O}_n(\mathbf{R}) \rangle = \{\rho(\mathbf{R}), \nabla^2 \rho(\mathbf{R}), \tau(\mathbf{R}), \cdots \}$ maps $\langle V \rangle$ to Skyrme-like EDF!

Original DME expands about nuclear matter (k-space + NNN)

$$\rho(\mathbf{R}+\mathbf{r}/2,\mathbf{R}-\mathbf{r}/2)\approx\frac{3j_{1}(sk_{\rm F})}{sk_{\rm F}}\rho(\mathbf{R})+\frac{35j_{3}(sk_{\rm F})}{2sk_{\rm F}^{3}}\left(\frac{1}{4}\nabla^{2}\rho(\mathbf{R})-\tau(\mathbf{R})+\frac{3}{5}k_{\rm F}^{2}\rho(\mathbf{R})+\cdots\right)$$

Adaptation of chiral EFT MBPT to Skyrme HFB form

Adaptation of chiral EFT MBPT to Skyrme HFB form

Full ab-initio: Is Negele-Vautherin DME good enough?

• Try best nuclear matter with RG-softened χ -EFT NN/NNN

Do densities look like nuclei from Skyrme EDF's? Yes!

• Are the error bars competitive? No! 1 MeV/A off in ⁴⁰Ca

Improved DME for pion exchange

- New developments [Alex Dyhdalo, OSU] : use local regulated NN + NNN
- Current gameplan [OSU + MSU + LLNL]: Can we see pions?
 - Add NN/NNN pion exchange through N²LO
 - Optimized refit of Skyrme parameters for short-range parts
 - Assess global results and isotope chains (2π NNN)

Some current strategies for nuclear EDFs using EFT

Extend or modify conventional EDF forms in (semi-)controlled ways

- Long-distance chiral physics from an EFT expansion
 - Density matrix expansion (DME) applied to NN and NNN diagrams
 - [Re-fit residual Skyrme parameters and test description]
 - MBPT expansion justified by phase-space-based power counting
- In-medium chiral perturbation theory [Munich group]
 - ChPT loop expansion becomes EOS expansion
 - Apply DME to get DFT functional
- Extend existing functionals following EFT principles
 - Non-local regularized pseudo-potential [Raimondi et al., 1402.1556]
 - Optimize pseudo-potential to experimental data
 - Test with correlation analysis technology
- BG evolution of effective action functional [Jens Braun et al.]

Here: can we develop bottom-up EFT using a QFT formulation?

Effective theory for Nuclear EDFs

J. Dobaczewski, K. Bennaceur, F. Raimondi, J. Phys. G 39, 125103 (2012)

- Seek spectroscopic quality functional (including single-particle levels)
 - Consider non-ab-initio formulation but with firm theoretical basis
- Claim: resolution scale of chiral EFT is higher than needed
 - Rather than $k \leq 2m_{\pi}$ or $k_{\rm F}$, consider δk to dissociate a nucleon: $\delta E_{\rm kin} = \hbar^2 k_{\rm F} \, \delta k / M \approx 0.25 \hbar c \, \delta k \approx 8 \, {\rm MeV} \Longrightarrow \delta k \approx 32 \, {\rm MeV} / \hbar c$
 - And describe nuclear excitations and shell-effects at the 1 MeV energy, which implies $\delta k \approx 4 \,\text{MeV}/\hbar c$ and below
 - So from this perspective the pion is a high-energy dof

Effective theory for Nuclear EDFs

J. Dobaczewski, K. Bennaceur, F. Raimondi, J. Phys. G 39, 125103 (2012)

- Seek spectroscopic quality functional (including single-particle levels)
 - Consider non-ab-initio formulation but with firm theoretical basis
- Claim: resolution scale of chiral EFT is higher than needed
 - Rather than $k \leq 2m_{\pi}$ or $k_{\rm F}$, consider δk to dissociate a nucleon: $\delta E_{\rm kin} = \hbar^2 k_{\rm F} \, \delta k / M \approx 0.25 \hbar c \, \delta k \approx 8 \, {\rm MeV} \Longrightarrow \delta k \approx 32 \, {\rm MeV} / \hbar c$
 - And describe nuclear excitations and shell-effects at the 1 MeV energy, which implies $\delta k \approx 4 \,\text{MeV}/\hbar c$ and below
 - So from this perspective the pion is a high-energy dof
- Strategy: expand "pseudopotential", which specifies the EDF by folding with an uncorrelated Slater determinant, found self-consistently
 - Spirit of mean-field approaches (and technology)
 - Gives *full* functional within HF approximation (completeness?)
 - Self-interaction problem solved by deriving EDF in HF form

Effective theory for Nuclear EDFs

J. Dobaczewski, K. Bennaceur, F. Raimondi, J. Phys. G 39, 125103 (2012)

- Seek spectroscopic quality functional (including single-particle levels)
 - Consider non-ab-initio formulation but with firm theoretical basis
- Claim: resolution scale of chiral EFT is higher than needed
 - Rather than $k \leq 2m_{\pi}$ or $k_{\rm F}$, consider δk to dissociate a nucleon: $\delta E_{\rm kin} = \hbar^2 k_{\rm F} \, \delta k / M \approx 0.25 \hbar c \, \delta k \approx 8 \, {\rm MeV} \Longrightarrow \delta k \approx 32 \, {\rm MeV} / \hbar c$
 - And describe nuclear excitations and shell-effects at the 1 MeV energy, which implies $\delta k \approx 4 \,\text{MeV}/\hbar c$ and below
 - So from this perspective the pion is a high-energy dof
- Regulated zero-range interaction \implies introduces resolution scale
 - · Gaussians smear away details of nuclear densities
 - Describe residual smooth variations within a controlled expansion
- Fit coupling constants to data with constraints (continuity equation)
 - Check for scale independence, convergence, and naturalness
Regularized pseudopotential: pionless-EFT-like expansion

• Central two-body regularized pseudopotential (also s.o. and tensor)

$$V(\mathbf{r}_1',\mathbf{r}_2';\mathbf{r}_1,\mathbf{r}_2) = \sum_{i=1}^4 \widehat{P}_i \widehat{O}_i(\mathbf{k},\mathbf{k}') \delta(\mathbf{r}_1'-\mathbf{r}_1) \delta(\mathbf{r}_2'-\mathbf{r}_2) g_{\mathbf{a}}(\mathbf{r}_1-\mathbf{r}_2)$$

with operators \widehat{P}_i (spin, isospin exchange), \widehat{O}_i (derivative), **k**, **k**' (relative momentum), while *a* sets the resolution scale:

$$g_a(\mathbf{r}) = rac{1}{(a\sqrt{\pi})^3} e^{-r^2/a^2} \xrightarrow[a \to 0]{} \delta(\mathbf{r})$$

• Simplified special case: If $\widehat{O}_i = \widehat{O}_i(\mathbf{k} + \mathbf{k}')$, then

$$V(\mathbf{r}) = \sum_{i=1}^{4} \widehat{P}_i \widehat{O}_i(\mathbf{k}) g_a(\mathbf{r}) = \sum_{i=1}^{4} \widehat{P}_i \sum_{n=0}^{n_{\max}} V_{2n}^{(i)} \nabla^{2n} g_a(\mathbf{r})$$

where $V_{2n}^{(i)}$ are the coupling constants to be fit • EDF as functional of the one-body density matrix (cf. Gogny) $E_{\text{eff}}[\rho(\mathbf{r},\mathbf{r}')] = \int d\mathbf{r} \int d\mathbf{r}' V(\mathbf{r}-\mathbf{r}')[\rho(\mathbf{r})\rho(\mathbf{r}') - \rho(\mathbf{r},\mathbf{r}')\rho(\mathbf{r}',\mathbf{r})]$

Does it work like an effective theory? Proof of principle

- Order-by-order convergence test against pseudo-data (from a Gogny functional)
 - factor of 4 at each order
 - can fine-tune couplings
- N²LO regulator independent; N³LO converged energy/radius
- Independence of the regulator scale a (i.e., flatness) and independent of reference nucleus
- Error plots vs. A shows convergence patterns
- Fixed a = 0.85 fm; exponential decrease of constants with n with Λ ≈ 700 MeV

Does it work like an effective theory? Proof of principle

- Order-by-order convergence test against pseudo-data (from a Gogny functional)
 - factor of 4 at each order
 - can fine-tune couplings
- N²LO regulator independent; N³LO converged energy/radius
- Independence of the regulator scale *a* (i.e., flatness) and independent of reference nucleus
- Error plots vs. A shows convergence patterns
- Fixed a = 0.85 fm; exponential decrease of constants with n with Λ ≈ 700 MeV

Does it work like an effective theory? Proof of principle

- Order-by-order convergence test against pseudo-data (from a Gogny functional)
 - factor of 4 at each order
 - can fine-tune couplings
- N²LO regulator independent; N³LO converged energy/radius
- Independence of the regulator scale a (i.e., flatness) and independent of reference nucleus
- Error plots vs. A shows convergence patterns
- Fixed a = 0.85 fm; exponential decrease of constants with n with Λ ≈ 700 MeV

Naturalness in EDF coefficients as chiral signature?

Georgi (1993): f_{π} for strongly interacting fields; rest is $\Lambda_{\chi} \approx m_{\rho}$; $c_{lmn} \sim O(1)$

$$\mathcal{L}_{\chi \,\text{eft}} = c_{lmn} \left(\frac{N^{\dagger}N}{f_{\pi}^2 \Lambda_{\chi}}\right)^{l} \left(\frac{\pi}{f_{\pi}}\right)^{m} \left(\frac{\partial^{\mu}, m_{\pi}}{\Lambda_{\chi}}\right)^{n} f_{\pi}^2 \Lambda_{\chi}^2 \qquad f_{\pi} \sim 100 \,\text{MeV}$$

What does this tell us about accuracy limits?

Naturalness in Skyrme coefficients as chiral signature?

Georgi (1993): f_{π} for strongly interacting fields; rest is $\Lambda_{\chi} \approx m_{\rho}$; $c_{lmn} \sim \mathcal{O}(1)$ $\mathcal{L}_{\chi \,\text{eft}} = c_{lmn} \left(\frac{N^{\dagger}N}{f_{\pi}^2\Lambda_{\chi}}\right)^l \left(\frac{\pi}{f_{\pi}}\right)^m \left(\frac{\partial^{\mu}, m_{\pi}}{\Lambda_{\chi}}\right)^n f_{\pi}^2\Lambda_{\chi}^2 \qquad f_{\pi} \sim 100 \,\text{MeV}$

Check chiral naturalness for large set of Skyrme EDFs:

Looks like natural distribution \implies Does this mean pionful EFT is *needed*?

Some reasons to think EFT for nuclear DFT

- Folk theorem: Any successful low-energy phenomenology can be cast as [the leading order of] an EFT
- Five (or more) different representations all seem to work
 ⇒ build on common liquid drop systematics
- Works very well with simple calculations and few parameters
- (Some) EDFs look like momentum (and density?) expansions
- NDA phenomenology —> EDF constants seem to inherit underlying physics (e.g., chiral scales)

ο . . .

Outline

Motivations for considering nuclear DFT as an EFT

Extensions of nuclear EDFs using EFT ideas

Nuclear DFT as effective action

Effective actions and broken symmetries

- Natural framework for spontaneous symmetry breaking
 - e.g., test for zero-field magnetization *M* in a spin system
 - introduce an external field H to break rotational symmetry

• if F[H] calculated perturbatively, M[H = 0] = 0 to all orders

Effective actions and broken symmetries

- Natural framework for spontaneous symmetry breaking
 - e.g., test for zero-field magnetization *M* in a spin system
 - introduce an external field H to break rotational symmetry

if *F*[*H*] calculated perturbatively, *M*[*H* = 0] = 0 to all orders
Legendre transform Helmholtz free energy *F*(*H*):

invert $M = -\partial F(H)/\partial H \stackrel{H(M)}{\Longrightarrow} \Gamma[M] = F[H(M)] + MH(M)$ • since $H = \partial \Gamma/\partial M \longrightarrow 0$, stationary points of $\Gamma \implies$ ground state • Can couple source "*H*" many ways (and multiple sources)

DFT and effective actions (Fukuda et al., Polonyi, ...)

- External field \iff Magnetization
- Helmholtz free energy *F*[*H*]
 ⇐⇒ Gibbs free energy Γ[*M*]

Legendre $\implies \Gamma[M] = F[H] + HM$ transform

$$H = \frac{\partial \Gamma[M]}{\partial M} \quad \xrightarrow{ground}{state} \quad \frac{\partial \Gamma[M]}{\partial M} \Big|_{M_{es}} = 0$$

source magnet

DFT and effective actions (Fukuda et al., Polonyi, ...)

- External field \iff Magnetization
- Helmholtz free energy *F*[*H*]
 ⇐⇒ Gibbs free energy Γ[*M*]

Legendre transform $\Longrightarrow \Gamma[M] = F[H] + HM$

$$H = \frac{\partial \Gamma[M]}{\partial M} \quad \xrightarrow{ground}{state} \quad \frac{\partial \Gamma[M]}{\partial M} \bigg|_{M_{es}} = 0$$

• Partition function with sources *J* that adjust (any) densities:

 $\mathcal{Z}[J] = e^{-W[J]} \sim \operatorname{Tr} e^{-\beta(\widehat{H} + J\widehat{\rho})} \quad \Longrightarrow \quad \text{e.g., path integral for } W[J]$

• *Invert* to find $J[\rho]$ and Legendre transform from J to ρ :

$$\rho(\mathbf{x}) = \frac{\delta W[J]}{\delta J(\mathbf{x})} \implies \Gamma[\rho] = W[J] - \int J \rho \text{ and } J(\mathbf{x}) = -\frac{\delta \Gamma[\rho]}{\delta \rho(\mathbf{x})}$$

 \implies $\Gamma[\rho] \propto$ energy functional $E[\rho]$, stationary at $\rho_{gs}(\mathbf{x})!$

A bestiary of effective actions

- Couple source to local Lagrangian field, e.g., $J(x)\phi(x)$
 - $\Gamma[\varphi]$ where $\varphi(x) = \langle \phi(x) \rangle \Longrightarrow$ 1PI effective action
 - Arises from fermion *L*'s by introducing auxiliary (HS) fields
 - Can approximate with stationary phase \Longrightarrow loop expansion
- Couple J to non-local composite op, e.g., $J(x, x')\phi(x)\phi(x')$
 - $\Gamma[G, \varphi] \Longrightarrow$ 2PI effective action [CJT]
 - cf. Baym-Kadanoff conserving ("Φ-derivable") approximations
 - Often applied to hot, nonequilibrium QCD
- Source coupled to local composite operator, e.g., $J(x)\phi^2(x)$
 - 2PPI (two-particle-point-irreducible) effective action
 - Kohn-Sham DFT from inversion method
 - Careful: new divergences arise (e.g., pairing)

Partition function in $\beta \rightarrow \infty$ **limit** [see Zinn-Justin]

• Consider Hamiltonian with time-independent source $J(\mathbf{x})$:

$$\widehat{H}(J) = \widehat{H} + \int J \widehat{\phi} \quad \text{or} \quad \widehat{H}(J) = \widehat{H} + \int J \psi^{\dagger} \psi$$

• If ground state is isolated (and bounded from below),

$$e^{-\beta \widehat{H}(J)} = e^{-\beta E_0(J)} \left[|0\rangle \langle 0|_J + \mathcal{O} \big(e^{-\beta (E_1(J) - E_0(J))} \big) \right]$$

• As
$$\beta \to \infty$$
, $\mathcal{Z}[J] \Longrightarrow$ ground state of $\widehat{H}(J)$ with energy $E_0(J)$
$$\mathcal{Z}[J] = e^{-W[J]} \sim \operatorname{Tr} e^{-\beta(\widehat{H}+J\widehat{\rho})} \implies E_0(J) = \lim_{\beta \to \infty} -\frac{1}{\beta} \log \mathcal{Z}[J] = \frac{1}{\beta} W[J]$$

Partition function in $\beta \rightarrow \infty$ limit [see Zinn-Justin]

• Consider Hamiltonian with time-independent source $J(\mathbf{x})$:

$$\widehat{H}(J) = \widehat{H} + \int J \widehat{\phi} \quad \text{or} \quad \widehat{H}(J) = \widehat{H} + \int J \psi^{\dagger} \psi$$

• If ground state is isolated (and bounded from below),

$$e^{-\beta \widehat{H}(J)} = e^{-\beta E_0(J)} \left[|0\rangle \langle 0|_J + \mathcal{O} \big(e^{-\beta (E_1(J) - E_0(J))} \big) \right]$$

• As
$$\beta \to \infty$$
, $\mathcal{Z}[J] \Longrightarrow$ ground state of $\widehat{H}(J)$ with energy $E_0(J)$
$$\mathcal{Z}[J] = e^{-W[J]} \sim \operatorname{Tr} e^{-\beta(\widehat{H}+J\,\widehat{\rho})} \implies E_0(J) = \lim_{\beta \to \infty} -\frac{1}{\beta} \log \mathcal{Z}[J] = \frac{1}{\beta} W[J]$$

• $\Gamma[\rho]$: expectation value of \widehat{H} in ground state generated by $J[\rho]$

$$\frac{1}{\beta} \Gamma[\rho] = E_0(J) - \int J \rho = \langle \widehat{H} + J \widehat{\rho} \rangle_J - \int J \rho = \langle \widehat{H} \rangle_J \xrightarrow{J \to 0} E_0$$

 $J(x) = -\frac{\delta\Gamma[\rho]}{\delta\rho(x)} \xrightarrow{J \to 0} \left. \frac{\delta\Gamma[\rho]}{\delta\rho(x)} \right|_{\rho_{gs}(\mathbf{x})} = \mathbf{0} \quad \Longrightarrow \quad \text{variational } F_{\text{HK}}[\rho]$

Pairing in Kohn-Sham DFT [rjf, Hammer, Puglia, nucl-th/0612086]

• Add source *j* coupled to anomalous density:

$$Z[J,j] = e^{-W[J,j]} = \int D(\psi^{\dagger}\psi) \exp\left\{-\int dx \left[\mathcal{L} + J(x) \psi^{\dagger}_{\alpha}\psi_{\alpha} + j(x)(\psi^{\dagger}_{\uparrow}\psi^{\dagger}_{\downarrow} + \psi_{\downarrow}\psi_{\uparrow})\right]\right\}$$

• Densities found by functional derivatives wrt *J*, *j*:

$$\rho(\mathbf{x}) = \left. \frac{\delta W[J, j]}{\delta v(\mathbf{x})} \right|_{j}, \quad \phi(\mathbf{x}) \equiv \langle \psi_{\uparrow}^{\dagger}(\mathbf{x})\psi_{\downarrow}^{\dagger}(\mathbf{x}) + \psi_{\downarrow}(\mathbf{x})\psi_{\uparrow}(\mathbf{x}) \rangle_{J,j} = \left. \frac{\delta W[J, j]}{\delta j(\mathbf{x})} \right|_{J,j}$$

- Find $\Gamma[\rho, \phi]$ from $W[J_0, j_0]$ by inversion $(\Delta = \Delta_0 + \Delta_1 + \cdots)$
- Kohn-Sham system \implies short-range HFB with j_0 as gap

$$\begin{pmatrix} h_0(\mathbf{x}) - \mu_0 & \mathbf{j}_0(\mathbf{x}) \\ \mathbf{j}_0(\mathbf{x}) & -h_0(\mathbf{x}) + \mu_0 \end{pmatrix} \begin{pmatrix} u_i(\mathbf{x}) \\ v_i(\mathbf{x}) \end{pmatrix} = E_i \begin{pmatrix} u_i(\mathbf{x}) \\ v_i(\mathbf{x}) \end{pmatrix}$$

$$\text{where} \qquad h_0(\mathbf{x}) \equiv -\frac{\nabla^2}{2M} + J_0(\mathbf{x})$$

• New renormalization counterterms needed (e.g., $\frac{1}{2}\zeta j^2$)

Some current strategies for nuclear EDFs using EFT

Extend or modify conventional EDF forms in (semi-)controlled ways

- Long-distance chiral physics from an EFT expansion
 - Density matrix expansion (DME) applied to NN and NNN diagrams
 - [Re-fit residual Skyrme parameters and test description]
 - MBPT expansion justified by phase-space-based power counting
- In-medium chiral perturbation theory [Munich group]
 - ChPT loop expansion becomes EOS expansion
 - Apply DME to get DFT functional
- Extend existing functionals following EFT principles
 - Non-local regularized pseudo-potential [Raimondi et al., 1402.1556]
 - Optimize pseudo-potential to experimental data
 - Test with correlation analysis technology
- In the second section of a s

Here: can we develop bottom-up EFT using a QFT formulation?

RG Approach to DFT [J. Braun et al., from Polonyi-Schwenk]

Non-interacting fermions in background mean-field potential *V* at $\lambda = 0$

Gradually switch off background potential and turn on the microscopic interaction U as $\lambda \rightarrow 1$

• Latest: confine in box with $L \rightarrow \infty$ at end [Braun et al., arXiv:1606.04388]

$$\rho(\tau, \mathbf{x}) = \frac{\delta W_{\lambda}[J]}{\delta J(\tau, \mathbf{x})} \implies \Gamma_{\lambda}[\rho] = \sup_{J} \left\{ -W_{\lambda}[J] + \int_{\tau} \int_{\mathbf{x}} J(\tau, \mathbf{x}) \rho(\tau, \mathbf{x}) \right\}$$

• 2PPI effective action gives HK functional: $E_{\lambda}[\rho] = \lim_{\beta \to \infty} \frac{1}{\beta} \Gamma_{\lambda}[\rho]$

What would a condensed matter theorist do?

From Atland and Simons "Condensed Matter Field Theory":

Figure 6.1 On the different channels of decoupling an interaction by Hubbard–Stratonovich transformation. (a) Decoupling in the "density" channel; (b) decoupling in the "pairing" or "Cooper" channel; and (c) decoupling in the "exchange" channel.

• May want to HS decouple in *all three* channels with $q \ll |p_i|$:

$$S_{\text{int}}[\overline{\psi},\psi] \approx \frac{1}{2} \sum_{\rho,\rho',q} \left(\overline{\psi}_{\sigma\rho} \psi_{\sigma\rho+q} V(\mathbf{q}) \overline{\psi}_{\sigma'\rho'} \psi_{\sigma'\rho'-q} - \overline{\psi}_{\sigma\rho} \psi_{\sigma'\rho+q} V(\mathbf{p}'-\mathbf{p}) \overline{\psi}_{\sigma'\rho'+q} \psi_{\sigma'\rho'} \right)$$
$$- \overline{\psi}_{\sigma\rho} \overline{\psi}_{\sigma'-\rho+q} V(\mathbf{p}'-\mathbf{p}) \psi_{\sigma'\rho'} \psi_{\sigma'-\rho'+q} \right)$$

Nuclei are self-bound \implies KS potentials break symmetries

- Conceptural issue: Is Kohn-Sham DFT well defined?
 - J. Engel: ground state density spread uniformly over space
 - Want DFT for internal densities
- Practical issue: what to do when KS potentials break symmetries?
 - Symmetry restoration with superposition of states:

 $|\psi\rangle = \int d\alpha f(\alpha) |\phi\alpha\rangle \implies \text{minimize wrt } f(\alpha), \text{ before or after } |\phi\rangle$

Wave function method strategies for "center of mass" problem

- isolate "internal" dofs, e.g., with Jacobi coordinates
- work in HO Slater determinant basis for which COM decouples
- work with internal Hamiltonian so that COM part factors
- How to accomodate within effective action DFT framework?
 - Zero-frequency modes \implies divergent perturbation expansion
 - Transformation to collective variables ⇒ work with overcomplete dof's ⇒ system with constraints
 - Can we apply methods for gauge theories?

Zero modes: collective coordinates and functional integrals

• Possible approach: use BRST invariance

- Add more fermionic variables (ghosts) so more overcomplete
- Apparent complication is actually a simplification because in gauge systems there is a supersymmetry
- Examples in the literature with applications to mechanical systems
- E.g., Bes and Kurchan, "The treatment of collective coordinates in many-body systems: An application of the BRST invariance"
- Can the procedure be adapted to DFT?

Questions to address about EFT for DFT

- What are the relevant degrees of freedom? Symmetries? [Can we have quasiparticles in the bulk?]
- Power counting: what is our expansion? Breakdown scale?
- Is there an RG argument to apply? (cf. scale toward Fermi surface)
- How should the EFT be formulated? Effective action? How do I think about parameterizing a density functional?
- How can we implement/expand about liquid drop physics?
- How do we reconcile the different EDF representations?
- Dealing with zero modes can we adapt methods for gauge theories (constraints)?
- Can we implement such an EFT without losing favorable computational scaling?

What do (ordinary) nuclei look like?

- Charge densities of magic nuclei (mostly) shown
- Proton density has to be "unfolded" from ρ_{charge}(r), which comes from elastic electron scattering
- Roughly constant interior density with $R \approx (1.1-1.2 \text{ fm}) \cdot A^{1/3}$
- Roughly constant surface thickness
- \implies Like a liquid drop!

What do (ordinary) nuclei look like?

- Charge densities of magic nuclei (mostly) shown
- Proton density has to be "unfolded" from ρ_{charge}(r), which comes from elastic electron scattering
- Roughly constant interior density with $R \approx (1.1-1.2 \text{ fm}) \cdot A^{1/3}$
- Roughly constant surface thickness
- \implies Like a liquid drop!

Nuclear and neutron matter energy vs. density

- Uniform with Coulomb turned off
- Density *n* (or often ρ)
- Fermi momentum $n = (\nu/6\pi^2)k_F^3$
- Neutron matter (Z = 0) has positive pressure
- Symmetric nuclear matter (N = Z = A/2) saturates
- *Empirical* saturation at about $E/A \approx -16$ MeV and $n \approx 0.17 \pm 0.03$ fm⁻³

Hierarchy of contributions to infinite matter

- Large cancellation of kinetic and potential energy
- Chiral hierarchy of 2NF and 3NF up to saturation density

Hierarchy of contributions to infinite matter

- Large cancellation of kinetic and potential energy
- Chiral hierarchy of 2NF and 3NF up to saturation density

Hierarchy of contributions to infinite matter

- Large cancellation of kinetic and potential energy
- Chiral hierarchy of 2NF and 3NF up to saturation density

Scaling of $\langle V^{(3)} \rangle / \langle V^{(2)} \rangle$ in nuclear matter

Density functional theory (DFT) as justification for energy density functional (EDF) approach

Hohenberg-Kohn: There exists an energy functional *E<sub>ν_{ext}*[ρ] of ρ(**x**) for external potential *ν_{ext}*:
</sub>

$$E_{v_{\text{ext}}}[\rho] = F_{\text{HK}}[\rho] + \int d\mathbf{x} \, v_{\text{ext}}(\mathbf{x}) \rho(\mathbf{x})$$

Minimize $\Longrightarrow E_{gs}, \rho_{gs}$

- Useful if you can approximate the energy functional; suggests a hunting license for EDF's
- *F*_{HK} is *universal* (same for any external *v*_{ext}), so should be able to add any *v*_{ext} we want!
- Kohn-Sham (KS) DFT: Introduce orbitals for ρ(x)

Unraveling the magic of DFT [Kutzelnigg (2008)]

- Wavefunction-based: for anti-symmetric A-body $|\Psi\rangle$, find $E_{gs} = \min_{\Psi} \langle \Psi | \hat{H} | \Psi \rangle$ (CI, CC use a single-particle basis for $|\Psi\rangle$)
- DFT: fermion densities as basic variables
 - Common but misleading statements:
 - "All information about a quantum mechanical ground state is contained in its electron density ρ ."
 - "The energy is completely expressible in terms of the density alone."
 - At odds with kinetic and interaction energies needing (1,2,...)-particle density matrices!

Unraveling the magic of DFT [Kutzelnigg (2008)]

- Wavefunction-based: for anti-symmetric A-body $|\Psi\rangle$, find $E_{gs} = \min_{\Psi} \langle \Psi | \hat{H} | \Psi \rangle$ (CI, CC use a single-particle basis for $|\Psi\rangle$)
- DFT: fermion densities as basic variables
 - Common but misleading statements:
 - "All information about a quantum mechanical ground state is contained in its electron density ρ ."

"The energy is completely expressible in terms of the density alone."

- At odds with kinetic and interaction energies needing (1,2,...)-particle density matrices!
- Key: WF formulation deals with single, fixed Hamiltonian, E stationary to density matrix (or Ψ) variations, not just ρ(x)

• DFT: Consider a *family* of Hamiltonians
$$\widehat{H}[v] \to E[v]$$
, then
 $F_{\text{HK}}[\rho] = \min_{v} \{ E[v] - \int d\mathbf{x} \, v(\mathbf{x})\rho(\mathbf{x}) \}$ and
 $E[v] = \min_{\rho} \{ F[\rho] + \int d\mathbf{x} \, v(\mathbf{x})\rho(\mathbf{x}) \} \equiv \min_{\rho} \{ E_{v}[\rho] \}$

Challenges for nuclear DFT (cf. Coulomb DFT)

- Difficult conventional nuclear Hamiltonians
 - Sources of non-perturbative physics for NN interaction
 - Strong short-range repulsion ("hard core")
 - Iterated tensor interactions (e.g., from pion exchange)
 - Near zero-energy bound states (e.g., deuteron)
 - Non-negligible many-body forces
- Non-trivial implementation issues
 - Essential role of pairing (so like HFB rather than HF)
 - Important long-range correlations
 - Some observables we want are not KS-DFT observables
 - We don't have a *v*_{ext}!
 - Symmetry breaking in finite, self-bound systems (translation, rotation, number, ...)
 - \implies What about symmetry restoration?

Skyrme generalizations based on EFT principles

- Ability to use local densities based on short range of nuclear interactions compared to variations in local and non-local density matrix =>> use separation of scales
- Density functional

$$E = \int d^3 \mathbf{r} \left[\frac{\hbar^2}{2m} \tau_0 + \mathcal{H}_{\text{Skyrme}}(\rho_0, \rho_1, \tau_0, \tau_1, \mathbf{s}_0, \mathbf{s}_1, \ldots) + \mathcal{H}_{\text{Coul.}}(\rho_{\text{p}}) \right]$$

Densities

$$\begin{split} \rho &= \sum_{i} \varphi_{i}^{\dagger} \varphi_{i}, \qquad \tau = \sum_{i,\mu} (\nabla_{\mu} \varphi_{i}^{\dagger}) (\nabla_{\mu} \varphi_{i}), \qquad \mathbf{j}, \ \mathbf{J}: \text{currents} \\ \mathbf{s}_{\nu} &= \sum_{i} \varphi_{i}^{\dagger} \sigma_{\nu} \varphi_{i}, \qquad \mathbf{T}_{\nu} = \sum_{i,\mu} (\nabla_{\mu} \varphi_{i}^{\dagger}) \sigma_{\nu} (\nabla_{\mu} \varphi_{i}), \qquad \rho_{0} = \rho_{n} + \rho_{p}, \quad \rho_{1} = \rho_{n} - \rho_{p}, \quad \dots \end{split}$$

Strong interaction energy density \mathcal{H}_{Skyrme}

$$\begin{split} &\mathcal{H}_{0}^{\text{even}} &= C_{0}^{\rho}(\rho_{0})\rho_{0}^{2} + C_{0}^{\Delta\rho}\rho_{0}\Delta\rho_{0} + C_{0}^{\tau}\rho_{0}\tau_{0} + C_{0}^{J}\mathbf{J}_{0}^{2} + C_{0}^{\nabla J}\rho_{0}\boldsymbol{\nabla}\cdot\mathbf{J}_{0}, \\ &\mathcal{H}_{1}^{\text{even}} &= C_{1}^{\rho}(\rho_{0})\rho_{1}^{2} + C_{1}^{\Delta\rho}\rho_{1}\Delta\rho_{1} + C_{1}^{\tau}\rho_{1}\tau_{1} + C_{1}^{J}\mathbf{J}_{1}^{2} + C_{1}^{\nabla J}\rho_{1}\boldsymbol{\nabla}\cdot\mathbf{J}_{1}, \\ &\mathcal{H}_{0}^{\text{odd}} &= C_{0}^{s}(\rho_{0})\mathbf{s}_{0}^{2} + C_{0}^{\Delta s}\mathbf{s}_{0}\cdot\Delta\mathbf{s}_{0} + C_{0}^{sT}\mathbf{s}_{0}\cdot\mathbf{T}_{0} + C_{0}^{j}\mathbf{J}_{0}^{2} + C_{0}^{\nabla j}\mathbf{s}_{0}\cdot(\boldsymbol{\nabla}\times\mathbf{j}_{0}), \\ &\mathcal{H}_{1}^{\text{odd}} &= C_{1}^{s}(\rho_{0})\mathbf{s}_{1}^{2} + C_{1}^{\Delta s}\mathbf{s}_{1}\cdot\Delta\mathbf{s}_{1} + C_{1}^{sT}\mathbf{s}_{1}\cdot\mathbf{T}_{1} + C_{1}^{j}\mathbf{J}_{1}^{2} + C_{1}^{\nabla j}\mathbf{s}_{1}\cdot(\boldsymbol{\nabla}\times\mathbf{j}_{1}). \end{split}$$

- Expand in densities and gradients
- Includes time-odd fields ⇒ new domain to explore

Energy density functional for spherical nuclei (II)

We can write the N³LO spherical energy density as a sum of contributions from zero, second, fourth, and sixth orders: $\mathcal{H}_{6} = C_{60}^{0}R_{0}\Delta^{3}R_{0} + C_{42}^{0}R_{0}\Delta^{2}R_{2}$ $+ C_{60}^{0}R_{0}\Delta^{2}R_{2}$

 $\mathcal{H}=\mathcal{H}_0+\mathcal{H}_2+\mathcal{H}_4+\mathcal{H}_6,$

where

$${\cal H}_0 = C^0_{00} R_0 R_0,$$

 $egin{array}{lll} \mathcal{H}_2 &= \ C_{20}^0 R_0 \Delta R_0 + C_{02}^0 R_0 R_2 \ [0.5ex] &+ \ C_{11}^0 R_0 ec{
abla} \cdot ec{J}_1, + C_{01}^1 ec{J}_1^2, \end{array}$

Energy densities \mathcal{H}_0 and \mathcal{H}_2 correspond, of course, to the standard Skyrme functional with $C_{00}^0 = C^{\rho}$, $C_{20}^0 = C^{\Delta\rho}$, $C_{02}^0 = C^{\tau}$, $C_{11}^0 = C^{\nabla J}$, and $C_{01}^1 = C^{J1}$. At fourth order, the energy density reads

$$\begin{split} \mathcal{H}_4 &= C_{40}^0 R_0 \Delta^2 R_0 + C_{22}^0 R_0 \Delta R_2 \\ &+ C_{04}^0 R_0 R_4 + C_{22}^2 R_2 R_2 \\ &+ D_{22}^0 R_0 \sum_{ab} \vec{\nabla}_a \vec{\nabla}_b \ \vec{R}_{2ab} + D_{02}^2 \sum_{ab} \ \vec{R}_{2ab} \vec{R}_{2ab} \\ &+ C_{21}^1 \vec{J}_1 \cdot \Delta \vec{J}_1 + C_{03}^1 \vec{J}_1 \cdot \vec{J}_3 \\ &+ D_{21}^1 \vec{J}_1 \cdot \vec{\nabla} \left(\vec{\nabla} \cdot \vec{J}_1 \right) \\ &+ C_{01}^0 R_0 \Delta \left(\vec{\nabla} \cdot \vec{J}_1 \right) + C_{13}^0 R_0 \left(\vec{\nabla} \cdot \vec{J}_3 \right) \\ &+ C_{11}^2 R_2 \left(\vec{\nabla} \cdot \vec{J}_1 \right) + D_{11}^2 \sum_{ab} \ \vec{R}_{2ab} \ \vec{\nabla}_a \vec{J}_{1b}, \end{split}$$

 $\mathcal{H}_{6} = C_{aa}^{0}R_{0}\Delta^{3}R_{0} + C_{aa}^{0}R_{0}\Delta^{2}R_{2}$ $+ C_{24}^0 R_0 \Delta R_4 + C_{0e}^0 R_0 R_6$ $+ C_{22}^2 R_2 \Delta R_2 + C_{24}^2 R_2 R_4$ $+ D^0_{42} R_0 \Delta \sum_{ab} \vec{\nabla}_a \vec{\nabla}_b \stackrel{\leftrightarrow}{R}_{2ab} + D^0_{24} R_0 \sum_{ab} \vec{\nabla}_a \vec{\nabla}_b \stackrel{\leftrightarrow}{R}_{4ab}$ $+ D_{22}^2 R_2 \sum_{ab} \vec{
abla}_a \vec{
abla}_b \, \vec{R}_{2ab} + E_{22}^2 \sum_{ab} \vec{R}_{2ab} \, \Delta \, \vec{R}_{2ab}$ + $F_{22}^2 \sum_{abc} \vec{R}_{2ab} \vec{\nabla}_a \vec{\nabla}_c \vec{R}_{2cb} + E_{04}^2 \sum_{ab} \vec{R}_{2ab} \vec{R}_{4ab}$ $+ C_{11}^{1} \cdot \vec{I}_{1} \cdot \Delta^{2} \cdot \vec{I}_{1} + C_{12}^{1} \cdot \vec{I}_{1} \cdot \Delta \cdot \vec{I}_{2}$ $+ C^1_{05} \vec{J_1} \cdot \vec{J_5} + C^3_{03} \vec{J_3} \cdot \vec{J_3}$ + $D_{41}^1 \vec{J}_1 \cdot \Delta \vec{\nabla} \left(\vec{\nabla} \cdot \vec{J}_1 \right) + D_{23}^1 \vec{J}_1 \cdot \vec{\nabla} \left(\vec{\nabla} \cdot \vec{J}_3 \right)$ + $E_{23}^1 \sum_{abc} \vec{J}_{1a} \vec{\nabla}_b \vec{\nabla}_c \, \vec{J}_{3abc} + D_{03}^3 \sum_{abc} \vec{J}_{3abc} \vec{J}_{3abc}$ + $C_{e_1}^0 R_0 \Delta^2 \left(\vec{\nabla} \cdot \vec{J_1} \right) + C_{e_2}^0 R_0 \Delta \left(\vec{\nabla} \cdot \vec{J_3} \right)$ + $C_{15}^0 R_0 \left(\vec{\nabla} \cdot \vec{J}_5 \right) + C_{21}^2 R_2 \Delta \left(\vec{\nabla} \cdot \vec{J}_1 \right)$ + $C_{12}^2 R_2 (\vec{\nabla} \cdot \vec{J}_3) + C_{11}^4 R_4 (\vec{\nabla} \cdot \vec{J}_1)$ $+ D_{33}^0 R_0 \sum_{abc} \vec{\nabla}_a \vec{\nabla}_b \vec{\nabla}_c \, \vec{J}_{3abc} + D_{13}^2 \sum_{abc} \vec{R}_{2ab} \, \vec{\nabla}_c \, \vec{J}_{3abc}$ $+ D_{31}^2 \sum_{ab} \overleftrightarrow{R}_{2ab} \Delta \vec{
abla}_a \vec{J}_{1b} + E_{13}^2 \sum_{ab} \overleftrightarrow{R}_{2ab} \vec{
abla}_a \vec{J}_{3b}$ $+ D_{11}^4 \sum_{ab} \overleftrightarrow{R}_{4ab} \overrightarrow{
abla}_a \overrightarrow{J}_{1b}$ $+ E_{31}^2 \sum_{ab} \vec{R}_{2ab} \, \vec{\nabla}_a \vec{\nabla}_b \left(\vec{\nabla} \cdot \vec{J}_1 \right).$

The energy densities above are given in terms of 50 coupling constants $C_{mn}^{n'}$, $D_{mn}^{n'}$, $E_{mn}^{n'}$, and $F_{mn}^{n'}$.

B.G. Carlsson et al., C 78, 044326 (2008)
Naturalness revisited (M. Kortelainen et al.)

- Apply natural units scaling to 48 Skyrme functionals
- Look for optimal Λ by deviations from unity:

• $\Lambda \approx 600 \text{ MeV}$ consistent with previous analysis

Construct W[v] and then $\Gamma[\rho]$ order-by-order

- Need a diagrammatic expansion (e.g., MBPT or EFT)
- Inversion method \implies Split source $v(\mathbf{x}) = V_{KS} + v_1 + v_2 + \cdots$
 - V_{KS} chosen to get $\rho(\mathbf{x})$ in noninteracting (Kohn-Sham) system:

Construct W[v] and then $\Gamma[\rho]$ order-by-order

- Need a diagrammatic expansion (e.g., MBPT or EFT)
- Inversion method \implies Split source $v(\mathbf{x}) = V_{KS} + v_1 + v_2 + \cdots$
 - V_{KS} chosen to get $\rho(\mathbf{x})$ in noninteracting (Kohn-Sham) system:

Orbitals {ψ_α(**x**)} in local potential V_{KS}([ρ], **x**)

$$[-\nabla^2/2m + V_{\rm KS}(\mathbf{x})]\psi_{\alpha} = \varepsilon_{\alpha}\psi_{\alpha} \implies \rho(\mathbf{x}) = \sum_{\alpha=1}^{A} |\psi_{\alpha}(\mathbf{x})|^2$$

• Self-consistency from $v(\mathbf{x}) \rightarrow v_{ext}(\mathbf{x}) \Longrightarrow V_{KS}(\mathbf{x}) \propto \delta \Gamma_{int}[\rho] / \delta \rho(\mathbf{x})$

Construct W[v] and then $\Gamma[\rho]$ order-by-order

- Need a diagrammatic expansion (e.g., MBPT or EFT)
- Inversion method \implies Split source $v(\mathbf{x}) = V_{KS} + v_1 + v_2 + \cdots$
 - V_{KS} chosen to get $\rho(\mathbf{x})$ in noninteracting (Kohn-Sham) system:

• Orbitals $\{\psi_{\alpha}(\mathbf{x})\}$ in local potential $V_{\text{KS}}([\rho], \mathbf{x})$

$$[-\nabla^2/2m + V_{\rm KS}(\mathbf{x})]\psi_{\alpha} = \varepsilon_{\alpha}\psi_{\alpha} \implies \rho(\mathbf{x}) = \sum_{\alpha=1}^{A} |\psi_{\alpha}(\mathbf{x})|^2$$

• Self-consistency from $v(\mathbf{x}) \rightarrow v_{ext}(\mathbf{x}) \Longrightarrow V_{KS}(\mathbf{x}) \propto \delta \Gamma_{int}[\rho] / \delta \rho(\mathbf{x})$

• Alternative: Do MBPT with single particle potential $U(\mathbf{x})$ and $H = (T + U) + (V - U + v_{ext})$ and choose $U = V_{KS}$ (no $\Delta \rho(\mathbf{x})$)

What is needed for ab initio Kohn-Sham DFT?

O Need MBPT to work with tuned U [H = (T + U) + (V - U)]

• (see new results from K. Hebeler et al.)

- If convergence insensitive to $U \Longrightarrow$ choose so KS density exact
- Need to calculate V_{KS}(x) from δE[ρ]/δρ(x), etc. but diagrams depend non-locally on KS orbitals
 - Density matrix expansion (DME) \Longrightarrow explicit densities
 - Use chain rule \implies "optimized effective potential" (OEP)

Jacob's Ladder: Coulomb DFT [J. Perdew et al.]

"And he [Jacob] dreamed, and behold a ladder set up on the earth, and the top of it reached to heaven ..." [Genesis 28:12]

 $\mathsf{HEAVEN} \Longrightarrow \mathsf{Chemical} \ \mathsf{Accuracy}$

- 5. Full orbital-based DFT from MBPT+. [E.g., RPA with Kohn-Sham orbitals.]
- 4. Hyper-GGA includes exact exchange energy density calculated with (occupied) orbitals.
- **3.** Meta-GGA adds (some subset of) $\nabla^2 \rho_{\uparrow}(\mathbf{r})$, $\nabla^2 \rho_{\downarrow}(\mathbf{r})$, $\tau_{\uparrow}(\mathbf{r})$, and $\tau_{\downarrow}(\mathbf{r})$. [Note: $\tau[\rho]$ is nonlocal; $\tau[\phi_i^{\text{KS}}]$ is semi-local.]
- Generalized gradient approximation (GGA) adds ∇ρ_↑(**r**) and ∇ρ_↓(**r**).
- **1.** Local spin density approximation (LSDA) with $\rho_{\uparrow}(\mathbf{r})$ and $\rho_{\downarrow}(\mathbf{r})$ as ingredients.

Nuclei DFT Scaling DME Skyrme

Jacob's Ladder: Nuclear DFT [arXiv:0906.1463]

"And he [Jacob] dreamed, and behold a ladder set up on the earth, and the top of it reached to heaven" [Genesis 28:12]

$\mathsf{HEAVEN} \Longrightarrow \mathsf{UNEDF} \text{ from } \mathsf{NN} \cdots \mathsf{N} \text{ (QCD)}$

- **5.** Full orbital-based DFT based on [lattice QCD \implies] chiral EFT $\implies V_{\text{low }k}$.
- 4. Complete semi-local functional (e.g., DME) from chiral EFT $\implies V_{\text{low }k}$.
- **3.** Long-range chiral NN and NNN \implies Π -DME \implies merged with Skyrme and refit.
- **2.** Generalized Skyrme with $\nabla^n \rho(\mathbf{r}), \rho^{\alpha}(\mathbf{r}), \ldots$ with constraints (e.g., neutron drops)
- 1. Conventional Skyrme EDF's [e.g. SLY4].
- Developing 2.–5. in parallel!

Computational scaling for Coulomb systems

- Full configuration interaction (CI) grows exponentially with number N
- Coupled cluster CCSD(T) $\propto N^7$
- Quantum Monte Carlo (QMC) scales $\propto N^3$
- Density functional theory (DFT) scales $\propto N^3$ and linear scaling possible

M. Head-Gordon and E. Artacho Physics Today, April 2008

Historically: Microscopic EDF from G-Matrix

- G-matrix softens highly non-perturbative NN potentials
- Negele/Vautherin density matrix expansion (DME)
 Skyrme-like EDF from G-matrix for Hartree-Fock
 - Semi-quantitatively successful
 - Empirical fits far superior \implies little further development
- Ab-initio DFT is possible from many-body perturbation theory (MBPT) if convergent and can tune single-particle potential *U*

$$H = \underbrace{(T + U)}_{\text{Kohn-Sham}} + (V - U)$$

- Need to be able to adjust U so density unchanged
- Recent successes for Coulomb DFT
- But MBPT with G-matrix doesn't work (hole-line expansion)
- Use RG to soften: low-momentum potentials ($V_{\text{low }k}$, V_{SRG})
 - revisit hole-line expansion

Compare Potential and G Matrix: AV18 vs. V_{SRG}

Hole-Line Expansion Revisited (Bethe, Day, ...)

• Consider ratio of fourth-order diagrams to third-order:

• "Conventional" G matrix still couples low-k and high-k

- no new hole line \implies ratio $\approx -\chi(\mathbf{r} = \mathbf{0}) \approx -\mathbf{1} \implies$ sum all orders
- add a hole line \implies ratio $\approx \sum_{n < k_{\rm F}} \langle bn | (1/e)G | bn \rangle \approx \kappa \approx 0.15$
- Low-momentum potentials decouple low-k and high-k
 - add a hole line \implies still suppressed
 - no new hole line \implies also suppressed (limited phase space)
 - freedom to choose single-particle $U \Longrightarrow$ use for Kohn-Sham

 \implies Ab initio MBPT and DFT can work!

• (How do we get a Kohn-Sham $V_{KS}(\mathbf{x})$ from even HF diagrams?)

Nuclear matter with NN ladders only [nucl-th/0504043]

 Brueckner ladders order-by-order

- Repulsive core series diverges
- Usual solution: resum into G-matrix then do hole-line expansion

Nuclear matter with NN ladders only [nucl-th/0504043]

 Brueckner ladders order-by-order

- Repulsive core series diverges
- Usual solution: resum into G-matrix then do hole-line expansion
- $V_{\text{low }k}$ or V_{SRG} converges \implies KS DFT possible!
- Add 3-body fit to few-body binding

Effects of softening interactions in the nuclear medium

Effects of softening interactions in the nuclear medium

$$rac{E_{
m pp}^{(n+1)}}{E_{
m pp}^{(n)}} pprox rac{m^*}{m} \int \! rac{d^3k}{(2\pi)^3} \, \overline{Q}(P_{
m av},k) \, rac{\langle {f k} | \, V | {f k}
angle}{k_{
m av}^2 - k^2}$$

Effects of softening interactions in the nuclear medium

Long-range chiral EFT

\Longrightarrow extended Skyrme

- Add long-range (π-exchange) contributions in the density matrix expansion (DME)
 - NN/NNN through N²LO [Gebremariam et al.]
- Refit Skyrme parameters for short-range parts
- Test for sensitities and improved observables (e.g., isotope chains) [NUCLEI]
- Contributions from 2π 3NF particularly interesting
- Can we "see" the pion in medium to heavy nuclei? (cf. direct ab initio calcs)

DME meets $V_{low k}$ [Bogner, Furnstahl, Platter]

• $\mathcal{E} = \frac{1}{2M}\tau + A[\rho] + B[\rho]\tau + C[\rho]|\nabla\rho|^2 + \cdots$ in momentum space

$$\mathcal{A}[\rho] \sim k_{\rm F}^3 \sum_{lsj} \hat{j} \hat{t} \int_0^{k_{\rm F}} k^2 \, dk \, V_{lsjt}(k,k) \, \mathcal{P}_{\mathcal{A}}(k/k_{\rm F}) + \{V_{3N}\} + \cdots$$

$$B[\rho] \sim k_{\rm F}^{-3} \sum_{lsj} \hat{j} \hat{t} \int_0^{k_{\rm F}} k^2 \, dk \, V_{lsjt}(k,k) \, P_B(k/k_{\rm F}) + \{V_{3N}\} + \cdots$$

- P_A , P_B are simple polynomials in k/k_F
- See also DME applied to ChPT in nuclear medium (N. Kaiser et al., nucl-th/0212049, 0312059, 0406038)
- Three-body contributions from DME in Jacobi coordinates
- $C[\rho]$ is a two-dimensional integral over off-diagonal V
- Also spin-orbit, tensor, ...

Novel optimization algorithms: Test case

- left: Deviation between theoretical and experimental nuclear masses for the SLy4 Skyrme EDF using HFBTHO solver
- right: Same for UNEDFpre EDF parametrization
- Close to conventional Skyrme accuracy limit

Nuclear constrained calculations: GCM

Experiment: E. Clément *et al.* Phys. Rev. C75 (2007) 054313, A. Görgen *et al.* Eur. Phys. J. A26 (2005) 153
 M. B., P. Bonche, P.-H. Heenen, Phys. Rev. C 74 (2006) 024312.

Nuclear constrained calculations:

Deformation energy surface

