Neutrino Masses and CP Violation

Mu-Chun Chen, University of California at Irvine

KITP Conference on Symmetry Tests in Nuclei and Atoms, September 19, 2016

physicists

PCT \``normal" people

PRINCETON LANDMARKS

Raymond F. Streater and Arthur S. Wightman

> PCT, Spin and Statistics, and All That

common features: non-trivial and one easily may get lost T conserved in many areas of physics

violated by 2nd law of thermodynamics CP violated in particle physics

origin unknown

CP Violation in Particle Physics

- CP violation: required to explain matter-antimatter asymmetry
- So far observed only in flavor sector
 - SM: CKM matrix for the quark sector
 - experimentally established δ_{CKM} as major source of CP violation
- Search for new source of CP violation:
 - CP violation in neutrino sector
 - if found ⇒ phase in PMNS matrix ⇒ **fundamental origin?**
- Discrete family symmetries:
 - suggested by large neutrino mixing angles
 - neutrino mixing angles from group theoretical CG coefficients

Discrete (family) symmetries ⇔ Physical CP violation

Where Do We Stand?

 Recent 3 neutrino global analysis (including recent results from reactor experiments and T2K): Capozzi, Fogli, Lisi, Marrone, Montanino, Palazzo (2013, updated May 2014)

Parameter	Best fit	1σ range	2σ range	3σ range
$\delta m^2/10^{-5} \text{ eV}^2 \text{ (NH or IH)}$	7.54	7.32 - 7.80	7.15 - 8.00	6.99 - 8.18
$\sin^2 \theta_{12} / 10^{-1}$ (NH or IH)	3.08	2.91 - 3.25	2.75 - 3.42	2.59 - 3.59
$\Delta m^2 / 10^{-3} \mathrm{eV}^2 \mathrm{(NH)}$	2.43	2.37-2.49	2.30 - 2.55	2.23 - 2.61
$\Delta m^2 / 10^{-3} \ {\rm eV}^2$ (IH)	2.38	2.32 - 2.44	2.25-2.50	2.19 - 2.56
$\sin^2 \theta_{13} / 10^{-2} \text{ (NH)}$	2.34	2.15 - 2.54	1.95-2.74	1.76 - 2.95
$\sin^2 \theta_{13} / 10^{-2}$ (IH)	2.40	2.18-2.59	1.98-2.79	1.78-2.98
$\sin^2 \theta_{23} / 10^{-1} \text{ (NH)}$	4.37	4.14-4.70	3.93 - 5.52	3.74 - 6.26
$\sin^2 \theta_{23} / 10^{-1}$ (IH)	4.55	4.24-5.94	4.00-6.20	3.80 - 6.41
δ/π (NH)	1.39	1.12-1.77	$0.00-0.16\oplus0.86-2.00$	
δ/π (IH)	1.31	0.98 - 1.60	$0.00-0.02\oplus0.70-2.00$	

- ⇒ evidence of $\theta_{13} \neq 0$
- ⇒ hints of $\theta_{23} \neq \pi/4$

- no clear preference for hierarchy
- \Rightarrow expectation of Dirac CP phase δ
- → Majorana vs Dirac
- Recent T2K result $r \geq \delta \simeq \pi/2$, consistent with global fit best fit value

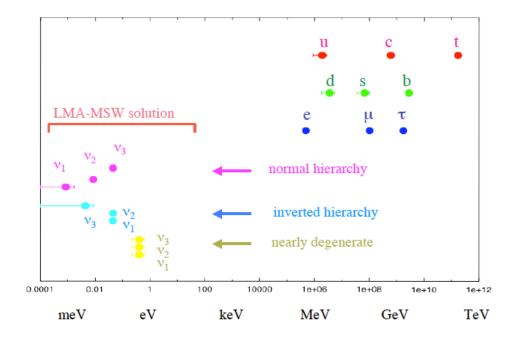
- Majorana vs Dirac?
- ☞ CP violation in lepton sector?
- Absolute mass scale of neutrinos?
- Solution Mass ordering: sign of (Δm_{13}^2) ?
- Solution: $θ_{23} > π/4$, $θ_{23} < π/4$, $θ_{23} = π/4$?
- Sterile neutrino(s)?

a suite of current and upcoming experiments to address these puzzles

some can only be answered by oscillation experiments

Open Questions - Theoretical

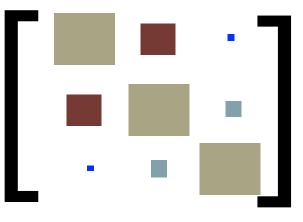
Smallness of neutrino mass:



 $m_V \ll m_{e, u, d}$

Flavor structure:

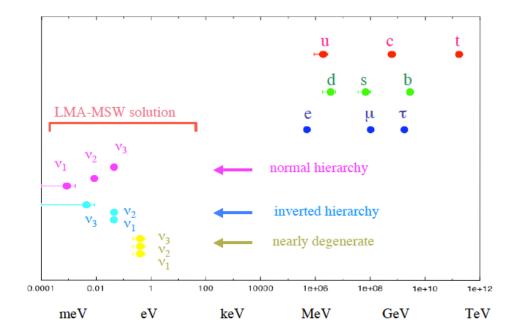
leptonic mixing



quark mixing

Open Questions - Theoretical

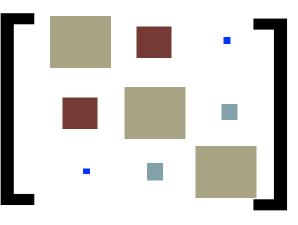
Smallness of neutrino mass:



 $m_V \ll m_{e, u, d}$

Fermion mass and hierarchy problem → Many (22) free parameters in the Yukawa sector of SM

Flavor structure:



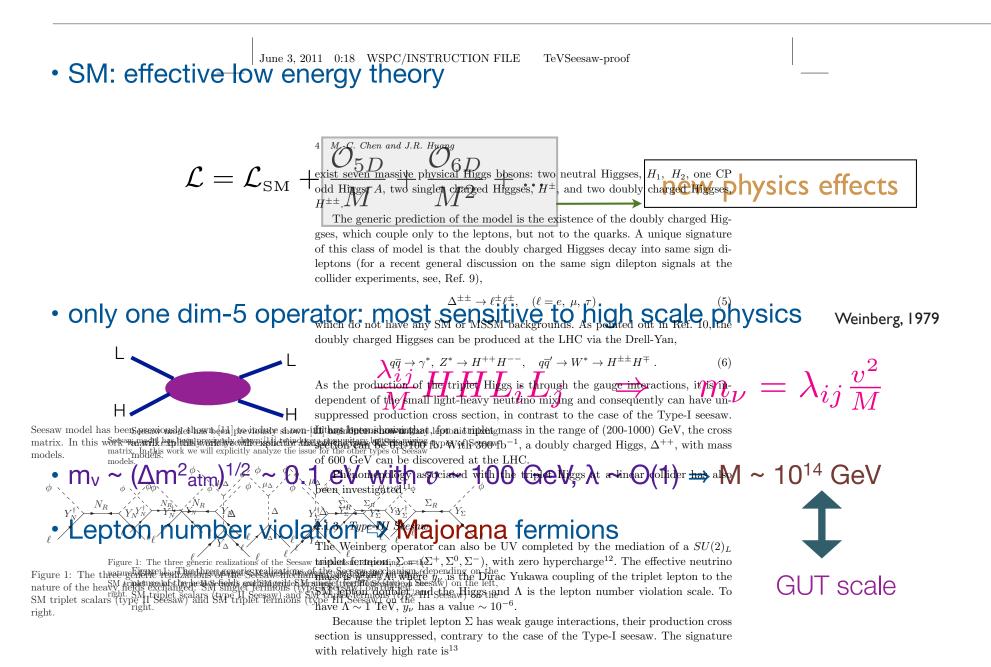
quark mixing

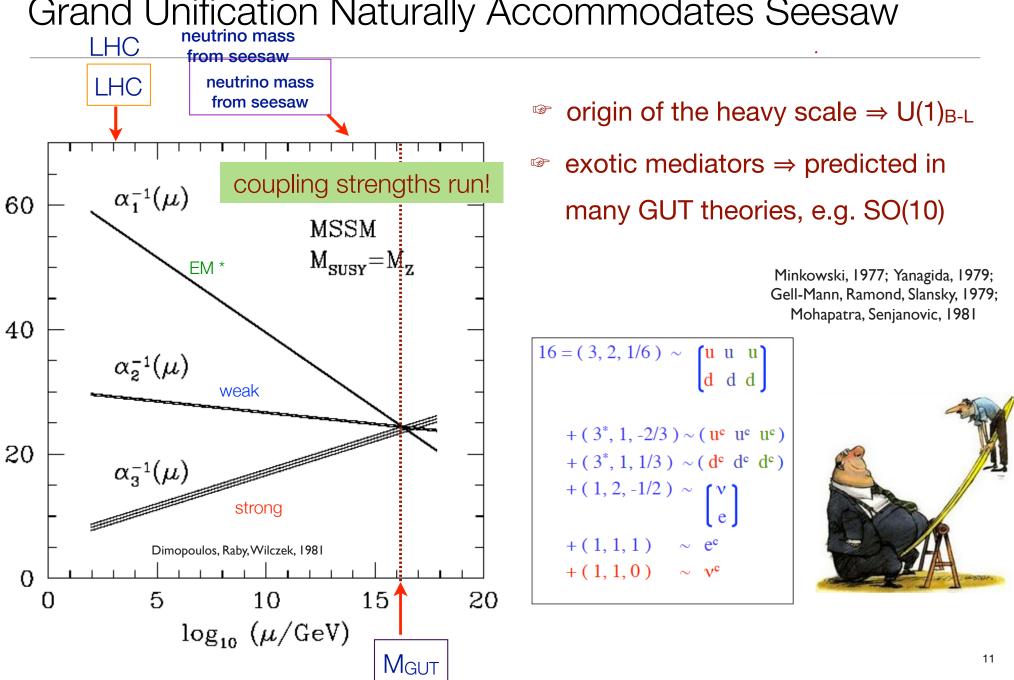
Smallness of neutrino masses

What is the operator for neutrino mass generation?

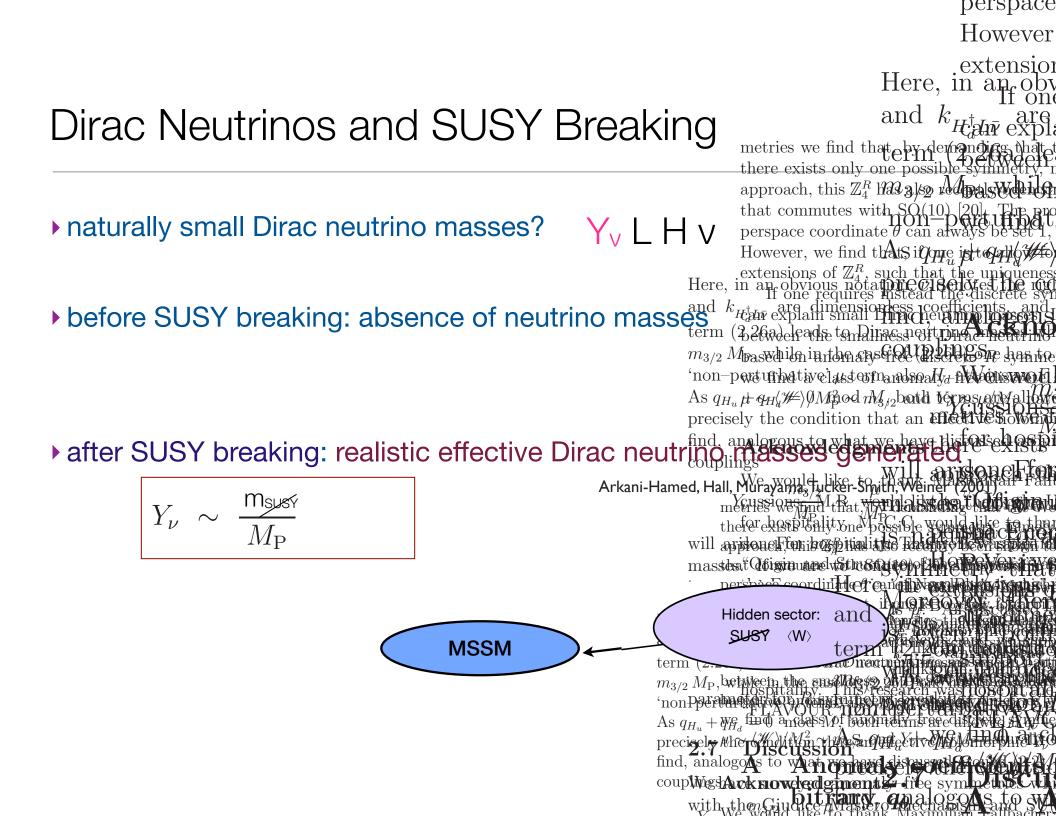
- Majorana vs Dirac
- scale of the operator
- suppression mechanism

Neutrino Mass beyond the SM





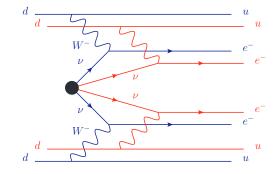
Grand Unification Naturally Accommodates Seesaw

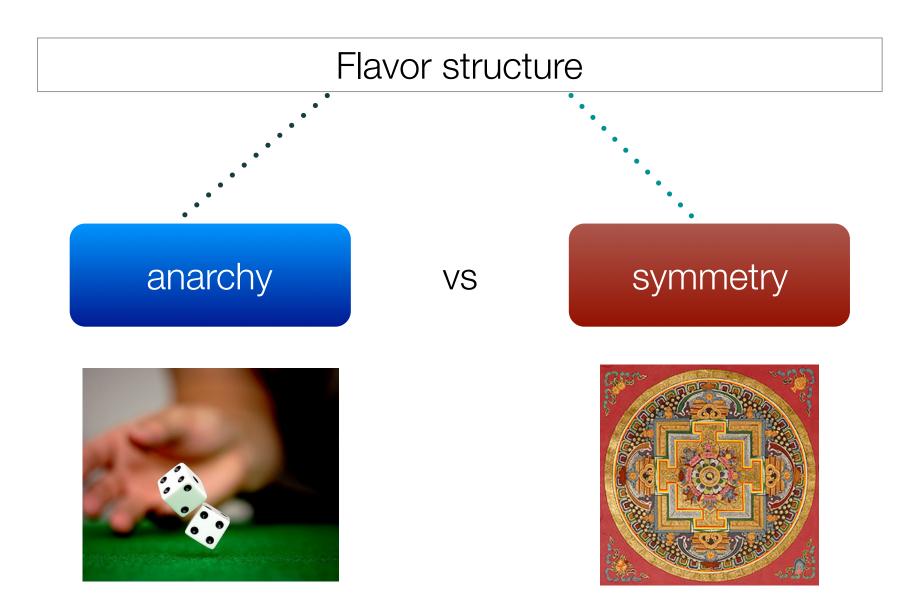


Dirac Neutrinos and SUSY Breaking

- Can be realized in MSSM with discrete \mathbb{Z}_M^R R symmetries
 - Dirac neutrinos, with naturally small masses
 M.-C. C., M. Ratz, C. Staudt, P. Vaudrevange (2012)
 - A L = 2 operators forbidden to all orders ⇒ no neutrinoless double beta decay
 - New signature: lepton number violation $\Delta L = 4$ operators, $(v_R)^4$, allowed \Rightarrow new LNV processes, e.g.
 - neutrinoless quadruple beta decay

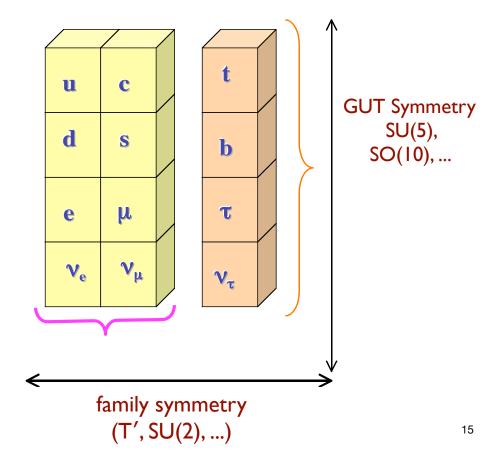
Heeck, Rodejohann (2013)





Origin of Flavor Mixing and Mass Hierarchy

- · Several models have been constructed based on
 - GUT Symmetry [SU(5), SO(10)] ⊕ Family Symmetry G_F
- Recently, models based on discrete family symmetry groups have been constructed
 - A₄ (tetrahedron)
 - T´ (double tetrahedron)
 - S₃ (equilateral triangle)
 - S₄ (octahedron, cube)
 - A₅ (icosahedron, dodecahedron)
 - Δ₂₇
 - Q₆



Tri-bimaximal Neutrino Mixing

Latest Global Fit (3σ)

Capozzi, Fogli, Lisi, Marrone, Montanino, Palazzo (March 2014)

- $\sin^2 \theta_{23} = 0.437 \ (0.374 0.626)$ $[\Theta^{\text{lep}}_{23} \sim 41.2^\circ]$
- $\sin^2 \theta_{12} = 0.308 \ (0.259 0.359)$ [$\Theta^{\text{lep}}_{12} \sim 33.7^\circ$]
- $\sin^2 \theta_{13} = 0.0234 \ (0.0176 0.0295) \qquad [\Theta^{\text{lep}}_{13} \sim 8.80^\circ]$
- Tri-bimaximal Mixing Pattern

Harrison, Perkins, Scott (1999)

$$U_{TBM} = \begin{pmatrix} \sqrt{2/3} & \sqrt{1/3} & 0 \\ -\sqrt{1/6} & \sqrt{1/3} & -\sqrt{1/2} \\ -\sqrt{1/6} & \sqrt{1/3} & \sqrt{1/2} \end{pmatrix} \qquad \sin^2 \theta_{\odot, \text{TBM}} = 1/3 \\ \sin \theta_{13, \text{TBM}} = 0.$$

Ma, Rajasekaran (2001); Babu, Ma, Valle (2003); Altarelli, Feruglio (2005)

$$M_{\nu} = \frac{\lambda v^2}{M_x} \begin{pmatrix} 2\xi_0 + u & -\xi_0 & -\xi_0 \\ -\xi_0 & 2\xi_0 & u - \xi_0 \\ -\xi_0 & u - \xi_0 & 2\xi_0 \end{pmatrix}$$
2 free parameters
2 free parameters
$$\text{relative strengths} \\ \Rightarrow \text{ CG's}$$

• always diagonalized by TBM matrix, independent of the two free parameters

$$U_{\text{TBM}} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -\sqrt{1/6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -\sqrt{1/6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$

Origin of CP Violation

CP violation ⇔ complex mass matrices

 $\overline{U}_{R,i}(M_u)_{ij}Q_{L,j} + \overline{Q}_{L,j}(M_u^{\dagger})_{ji}U_{R,i} \xrightarrow{\mathfrak{CP}} \overline{Q}_{L,j}(M_u)_{ij}U_{R,i} + \overline{U}_{R,i}(M_u)_{ij}^*Q_{L,j}$

- Conventionally, CPV arises in two ways:
 - Explicit CP violation: complex Yukawa coupling constants Y
 - Spontaneous CP violation: complex scalar VEVs <h>
- Complex CG coefficients in certain discrete groups ⇒ explicit CP violation
 - CPV in quark and lepton sectors purely from complex CG coefficients

M.-C.C., K.T. Mahanthappa Phys. Lett. B681, 444 (2009)

Υ

 $\langle h \rangle$

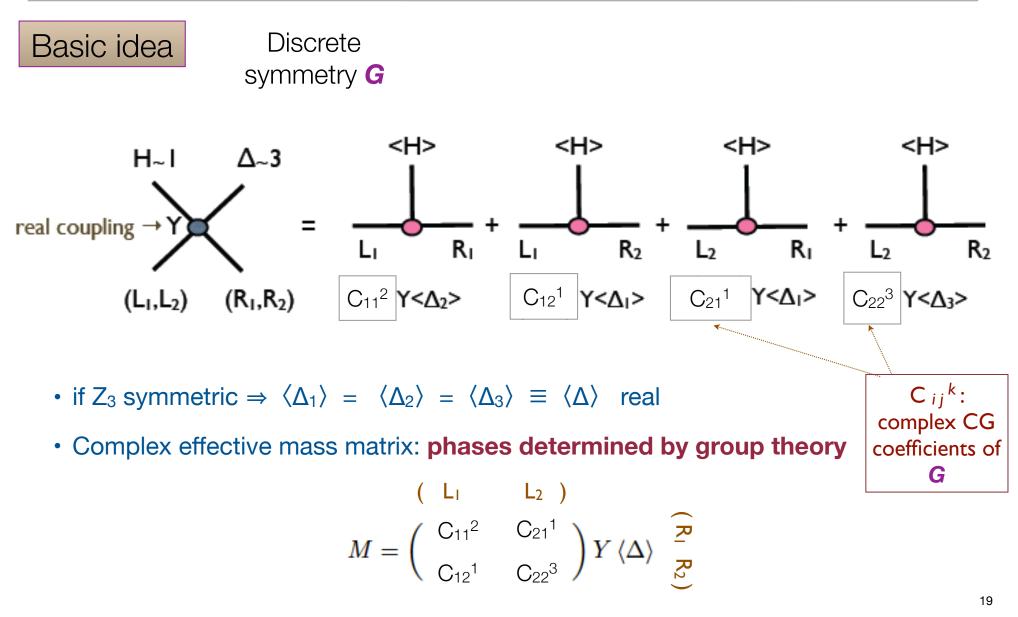
 e_L

CG coefficients in non-Abelian discrete symmetries relative strengths and phases in entries of Yukawa matrices mixing angles and phases (and mass hierarchy)

ep

Group Theoretical Origin of CP Violation

M.-C.C., K.T. Mahanthappa Phys. Lett. B681, 444 (2009)



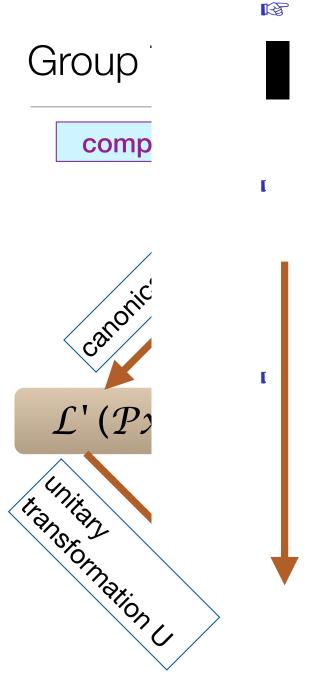
M.-C.C, M. Fallbache<u>r</u>, K.T. Mahanthappa, M. Ratz, A. Trautner, NPB (2014)

complex CGs I CP symmetry cannot be defined for certain groups

CP Violation from Group Theory!

Discrete Family Symmetries and Origin of CP Violation

Generalizing CP transformations



Generalized CP transformationM.-C.C, M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner, NPB (2014) $\Phi(x) \xrightarrow{\widetilde{CP}} U_{CP} \Phi^*(\mathcal{P} \ x)$ Holthausen, Lindner, and Schm

 $\rho(u(g)) = U_{CP} \rho(g)^* U_{CP}^{\dagger} \quad \forall g \in G$

further properties:

 u has to be class-inverting
 in all known cases, *u* is equivalent to an automorphism of order
 u has to be a class-inverting,
 involutory automorphism of G bottom-line: non-existence of such automorphism of G u has to be a class-inverting (involutory) automorphism of G
 u has to be a class-inverting (involutory) automorphism of G
 u has to be a class-inverting (involutory) automorphism of G
 u has to be a class-inverting (involutory) automorphism of G
 u has to be a class-inverting (involutory) automorphism of G
 u has to be a class-inverting (involutory) automorphism of G
 u has to be a class-inverting (involutory) automorphism of G
 u has to be a class-inverting (involutory) automorphism of G
 u has to be a class-inverting (involutory) automorphism of G
 u has to be a class-inverting (involutory) automorphism of G
 u has to be a class-inverting (involutory) automorphism of G
 u has to be a class-inverting (involutory) automorphism of G
 u has to be a class-inverting (involutory) automorphism of G
 u has to be a class-inverting (involutory) automorphism of G
 u has to be a class b to be a class a b to be a clas a b to be a clas a b to be a c

bettern-lines: T7

u has to be a class-inverting (involutory) automorphism of G

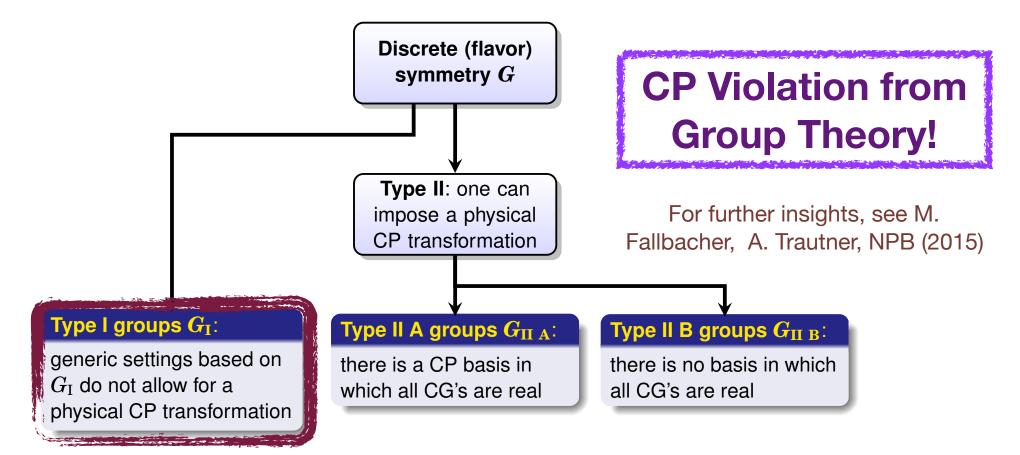
b

u has to be a class-inverting (involutory) automorphism of

Novel Origin of CP (Time Reversal) Violation

M.-C.C, M. Fallbache<u>r</u>, K.T. Mahanthappa, M. Ratz, A. Trautner, NPB (2014)

- more generally, for discrete groups that do not have class-inverting, involutory automorphism, CP is generically broken by complex CG coefficients (Type I Group)
- Non-existence of such automorphism ⇔ physical CP violation



Summary

- Fundamental origin of fermion mass hierarchy and flavor mixing still not known
- Neutrino masses: evidence of physics beyond the SM
- Dirac vs Majorana? should remain open minded!
 - naturally light Dirac neutrinos from discrete R-symmetry
 - suppressed nucleon decays and naturally small mu term
- Symmetries:
 - can provide an understanding of the pattern of fermion masses and mixing
 - Grand unified symmetry + discrete family symmetry \Rightarrow predictive power
 - Symmetry Tests ⇒ Correlations, Correlations, Correlations!!!
 - mixing parameters, LFV, proton (nucleon) decay, neutron-antineutron oscillation

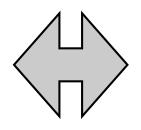
Summary

- Discrete Groups (of Type I) affords a Novel origin of CP violation:
 - Complex CGs \Rightarrow Group Theoretical Origin of CP Violation
- NOT all outer automorphisms correspond to physical CP transformations
- Condition on automorphism for physical CP transformation

$$\rho_{\boldsymbol{r}_i}(\boldsymbol{u}(g)) = \boldsymbol{U}_{\boldsymbol{r}_i} \rho_{\boldsymbol{r}_i}(g)^* \boldsymbol{U}_{\boldsymbol{r}_i}^{\dagger} \quad \forall g \in G \text{ and } \forall i$$

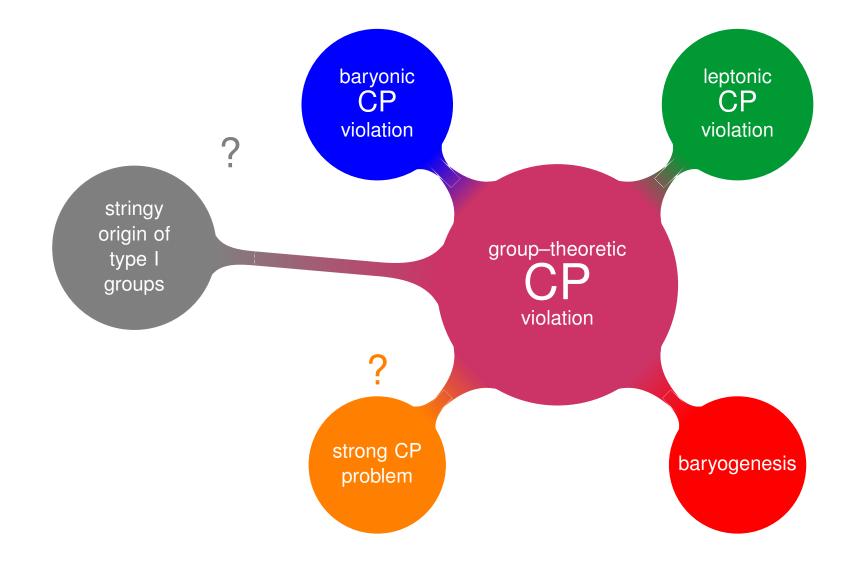
M.-C.C, M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner, NPB (2014)

class inverting, involutory automorphisms



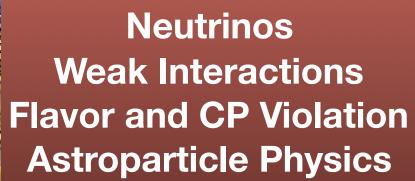
Conclusion & Outlook

(Type I) Discrete groups afford a new origin of CP violation:



26th International Workshop on Weak Interactions and Neutrinos (WIN 2017)

University of California, Irvine, June 19 - 24, 2017



Local Organizers: Mu-Chun Chen (<u>muchunc@uci.edu</u>) Michael Smy (<u>msmy@uci.edu</u>) <u>http://www.physics.uci.edu/WIN2017</u>



Just steps away...

Backup Slides

Examples

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

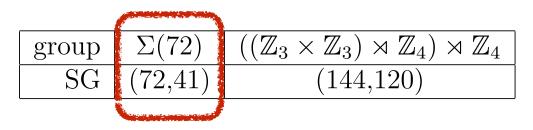
• Type I: all odd order non-Abelian groups

group
$$\mathbb{Z}_5 \rtimes \mathbb{Z}_4$$
 T_7 $\Delta(27)$ $\mathbb{Z}_9 \rtimes \mathbb{Z}_3$ SG(20,3)(21,1)(27,3)(27,4)

• Type IIA: dihedral and all Abelian groups

				1			
group	S_3	Q_8	A_4	$\mathbb{Z}_3 \rtimes \mathbb{Z}_8$	T′	S_4	A_5
SG	(6,1)	(8,4)	(12,3)	(24,1)	(24,3)	(24,12)	(60,5)
	•					Ċ.	-

• Type IIB

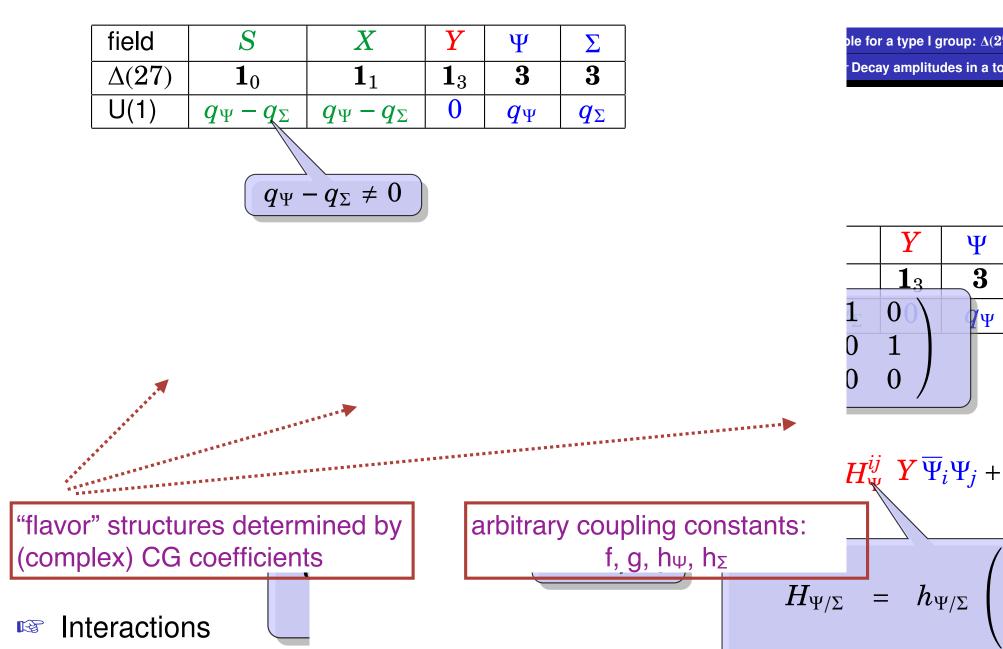


Example for a type I group: $\Lambda(27)$

- decay asymmetry in a toy model
- prediction of CP violating phase from group theory

— Decay amplitudes in a toy example based on $\Delta(27)$

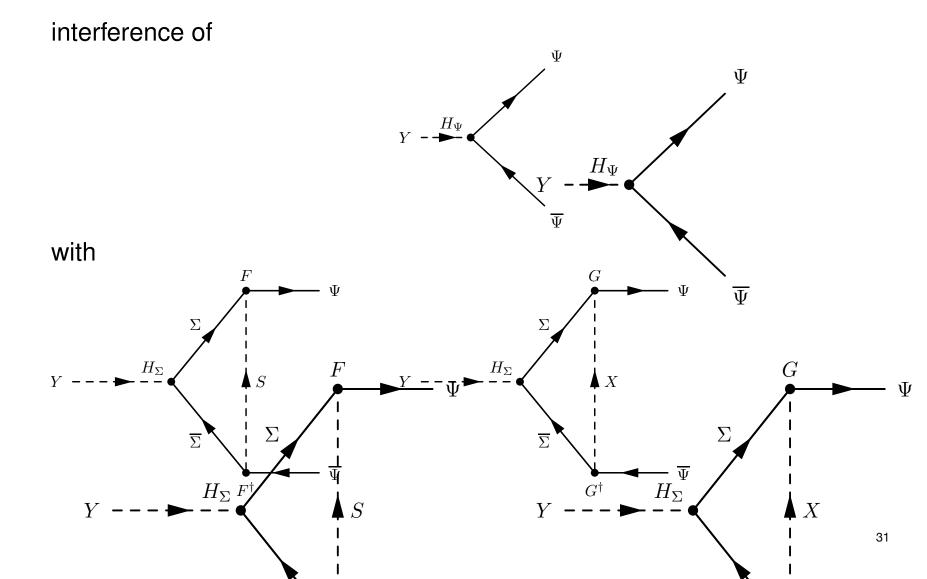
Fields



Toy Model based on $\Delta(27)$

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

• Particle decay $Y \to \overline{\Psi}\Psi$



Decay Asymmetry

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

Decay asymmetry

$$\begin{split} & \varepsilon_{Y \to \overline{\Psi} \Psi} = \frac{\Gamma(Y \to \overline{\Psi} \Psi) - \Gamma(Y^* \to \overline{\Psi} \Psi)}{\Gamma(Y \to \overline{\Psi} \Psi) + \Gamma(Y^* \to \overline{\Psi} \Psi)} \\ & \propto \quad \mathrm{Im} \left[I_S \right] \, \mathrm{Im} \left[\mathrm{tr} \left(F^{\dagger} \, H_{\Psi} \, F \, H_{\Sigma}^{\dagger} \right) \right] + \mathrm{Im} \left[I_X \right] \, \mathrm{Im} \left[\mathrm{tr} \left(G^{\dagger} \, H_{\Psi} \, G \, H_{\Sigma}^{\dagger} \right) \right] \\ & = \quad |f|^2 \, \, \mathrm{Im} \left[I_S \right] \, \mathrm{Im} \left[h_{\Psi} \, h_{\Sigma}^* \right] + |g|^2 \, \, \mathrm{Im} \left[I_X \right] \, \mathrm{Im} \left[\omega \, h_{\Psi} \, h_{\Sigma}^* \right] \, . \end{split}$$
one-loop integral $I_S = I(M_S, M_Y)$

- properties of ε
 - invariant under rephasing of fields
 - independent of phases of f and g
 - basis independent

Decay Asymmetry

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

Decay asymmetry

 $\mathcal{E}_{\mathbf{Y}\to\overline{\Psi}\Psi} = |f|^2 \operatorname{Im} [I_S] \operatorname{Im} [h_{\Psi} h_{\Sigma}^*] + |g|^2 \operatorname{Im} [I_X] \operatorname{Im} [\omega h_{\Psi} h_{\Sigma}^*]$

- cancellation requires delicate adjustment of relative phase $\varphi := \arg(h_{\Psi} h_{\Sigma}^*)$
- for non-degenerate M_S and M_X : Im $[I_S] \neq$ Im $[I_X]$
 - phase $\boldsymbol{\phi}$ unstable under quantum corrections
- for $\operatorname{Im} [I_S] = \operatorname{Im} [I_X] \& |f| = |g|$
 - phase $\boldsymbol{\phi}$ stable under quantum corrections
 - relations cannot be ensured by an outer automorphism (i.e. GCP) of $\Delta(27)$
 - require symmetry larger than $\Delta(27)$

Spontaneous CP Violation with Calculable CP Phase

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

field	X	Y	Z	Ψ	Σ	ϕ
$\Delta(27)$	1 ₁	1_3	1 ₈	3	3	1 0
U(1)	$2q_{\Psi}$	0	$2q_{\Psi}$	q_{Ψ}	$-q_{\Psi}$	0

 $\Delta(27) \subset SG(54,5): \begin{cases} (X,Z) & : \text{ doublet} \\ (\Psi,\Sigma^{C}) & : \text{ hexaplet} \\ \phi & : \text{ non-trivial 1-dim. representation} \end{cases}$

■ non-trivial $\langle \phi \rangle$ breaks SG(54, 5) → $\Delta(27)$ Type IIA → Type I

 $\implies \text{ allowed coupling leads to mass splitting } \mathscr{L}_{\text{toy}}^{\phi} \supset M^2 \left(|X|^2 + |Z|^2 \right) + \left[\frac{\mu}{\sqrt{2}} \langle \phi \rangle \left(|X|^2 - |Z|^2 \right) + \text{h.c.} \right]$

CP asymmetry with calculable phases

$$arepsilon_{Y o \overline{\Psi} \Psi} \propto |g|^2 |h_{\Psi}|^2 \, \mathrm{Im} \left[\; \omega \;
ight] \left(\mathrm{Im} \left[I_X
ight] - \mathrm{Im} \left[I_Z
ight]
ight)$$
phase predicted by group theory

CG coefficient of SG(54,5)

M.-C.C., K.T. Mahanthappa (2009)

Example: SU(5) Compatibility \Rightarrow T' Family Symmetry

M.-C.C, K.T. Mahanthappa (2007, 2009)

- Double Tetrahedral Group T´: double covering of A4
- Symmetries \Rightarrow 10 parameters in Yukawa sector \Rightarrow 22 physical observables
- Symmetries \Rightarrow correlations among quark and lepton mixing parameters

$$\theta_{13} \simeq \theta_c/3\sqrt{2} - \begin{array}{c} \text{CG's of} & \text{no free} \\ \text{SU(5) & T'} & \text{parameters!} \end{array}$$

$$\begin{split} &\tan^2\theta_\odot\simeq\tan^2\theta_{\odot,TBM}+\frac{1}{2}\theta_c\cos\delta\\ &\text{neutrino}\\ &\text{solar mixing} \end{split} \qquad 1/2 \qquad \begin{array}{c} \text{quark Cabibbo}\\ \text{mixing} \end{array} \qquad \begin{array}{c} \text{leptonic}\\ \text{CP phase} \end{array} \end{split}$$

CP Transformation

Canonical CP transformation

$$\phi(x) \xrightarrow{C\mathcal{P}} \eta_{C\mathcal{P}} \phi^*(\mathcal{P}x)$$
freedom of re-phasing fields

Generalized CP transformation

Ecker, Grimus, Konetschny (1981); Ecker, Grimus, Neufeld (1987); Grimus, Rebelo (1995)

$$\Phi(x) \xrightarrow{\widetilde{CP}} U_{CP} \Phi^*(\mathcal{P} x)$$

$$\bigwedge$$
unitary matrix

Generalized CP Transformation

Ecker, Grimus, Konetschny (1981); Ecker, Grimus, Neufeld (1987)

 \square setting w/ discrete symmetry G

G and CP transformations do not commute

- Seruglio, Hagedorn, Ziegler (2013); Holthausen, Lindner, Schmidt (2013)
- ${}^{
 m ISS}$ invariant contraction/coupling in A_4 or ${
 m T}'$

$$\left[\phi_{\mathbf{1}_2} \otimes (x_{\mathbf{3}} \otimes y_{\mathbf{3}})_{\mathbf{1}_1} \right]_{\mathbf{1}_0} \propto \phi \left(x_1 y_1 + \omega^2 x_2 y_2 + \omega x_3 y_3 \right)$$

$$\omega = e^{2\pi i/3}$$

- something non-invariant A_4/T' invariant contraction to
- ► need generalized CP transformation \widetilde{CP} : $\phi \stackrel{\widetilde{CP}}{\longmapsto} \phi^*$ as usual but

$$\left(\begin{array}{c} x_1\\ x_2\\ x_3\end{array}\right) \xrightarrow{\mathcal{CP}} \left(\begin{array}{c} x_1^*\\ x_3^*\\ x_2\end{array}\right) & \& & \left(\begin{array}{c} y_1\\ y_2\\ y_3\end{array}\right) \xrightarrow{\mathcal{CP}} \left(\begin{array}{c} y_1^*\\ y_1^*\\ y_3^*\end{array}\right) \\ & & y_2^*\end{array}\right)$$

The Bickerstaff-Damhus automorphism (BDA)

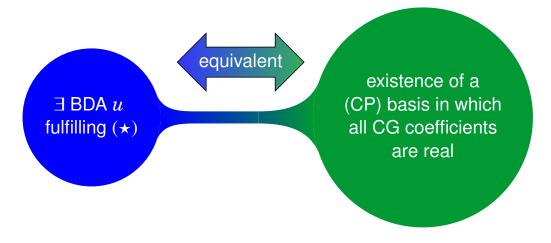
• Bickerstaff-Damhus automorphism (BDA) u

Bickerstaff, Damhus (1985)

$$\rho_{r_i}(u(g)) = U_{r_i} \rho_{r_i}(g)^* U_{r_i}^{\dagger} \quad \forall g \in G \text{ and } \forall i \qquad (\star)$$

unitary & symmetric

• BDA vs. Clebsch-Gordan (CG) coefficients



Twisted Frobenius-Schur Indicator

- How can one tell whether or not a given automorphism is a BDA?
- Frobenius-Schur indicator:

$$FS(\mathbf{r}_{i}) := \frac{1}{|G|} \sum_{g \in G} \chi_{\mathbf{r}_{i}}(g^{2}) = \frac{1}{|G|} \sum_{g \in G} tr \left[\rho_{\mathbf{r}_{i}}(g)^{2}\right]$$

$$FS(\mathbf{r}_{i}) = \begin{cases} +1, & \text{if } \mathbf{r}_{i} \text{ is a real representation,} \\ 0, & \text{if } \mathbf{r}_{i} \text{ is a complex representation,} \\ -1, & \text{if } \mathbf{r}_{i} \text{ is a pseudo-real representation.} \end{cases}$$

Twisted Frobenius-Schur indicator

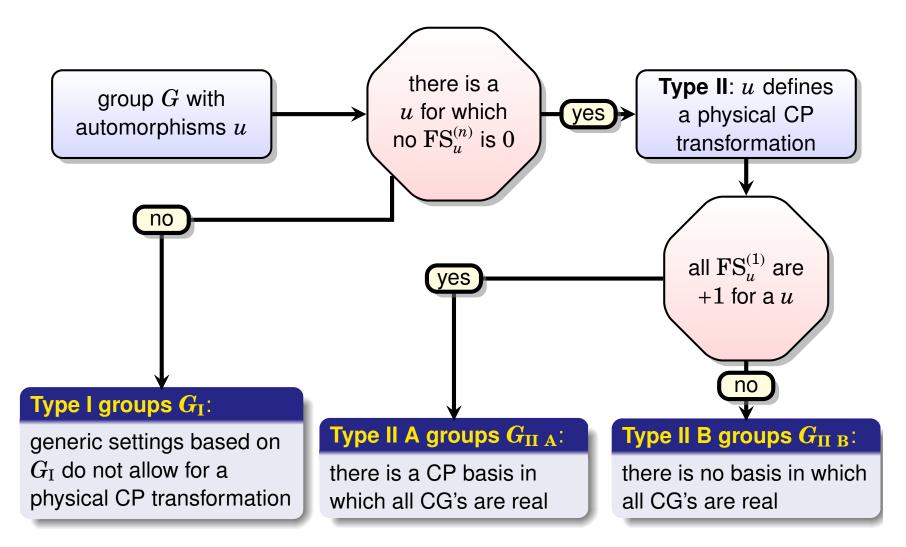
Bickerstaff, Damhus (1985); Kawanaka, Matsuyama (1990)

$$\mathbf{FS}_{u}(\boldsymbol{r}_{i}) = \frac{1}{|G|} \sum_{g \in G} \left[\rho_{\boldsymbol{r}_{i}}(g) \right]_{\alpha\beta} \left[\rho_{\boldsymbol{r}_{i}}(\boldsymbol{u}(g)) \right]_{\beta\alpha}$$

 $FS_{u}(\mathbf{r}_{i}) = \begin{cases} +1 \quad \forall i, & \text{if } u \text{ is a BDA,} \\ +1 \text{ or } -1 \quad \forall i, & \text{if } u \text{ is class-inverting and involutory,} \\ \text{different from } \pm 1, & \text{otherwise.} \end{cases}$

Three Types of Finite Groups

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)



Symmetry Relations

Quark Mixing

 $\theta^{e}_{13} \cong \theta_{c} / 3\sqrt{2}$

Lepton Mixing

mixing parameters	best fit	3ơ range	mixing parameters	best fit	3σ range
θ^{q}_{23}	2.36°	2.25º - 2.48º	θ^{e}_{23}	41.2°	35.1º - 52.6º
θ^{q}_{12}	12.88°	12.75° - 13.01°	θ^{e}_{12}	33.6°	30.6º - 36.8º
θ^{q}_{13}	0.21°	0.17º - 0.25º	θ^{e}_{13}	8.9°	7.5° -10.2°

• QLC-I
$$\theta_{c} + \theta_{sol} \cong 45^{\circ}$$

(BM) $\theta^{q}_{23} + \theta^{e}_{23} \cong 45^{\circ}$
• QLC-II $\tan^{2}\theta_{sol} \cong \tan^{2}\theta_{sol,TBM} + (\theta_{c}/2) * \cos \delta_{e}$

Ferrandis, Pakvasa; Dutta, Mimura; M.-C.C., Mahanthappa

• testing symmetry relations: a *more* robust way to distinguish different classes

Too small

of models

(TBM)

measuring leptonic mixing parameters to the precision of those in quark sector