Neutrino Masses

 and CP Violation

 and CP Violation}

Mu-Chun Chen, University of California at Irvine

KITP Conference on Symmetry Tests in Nuclei and Atoms, September 19, 2016

РСТ

physicists
 "normal" people

FRIMCETUN LATIMARRS
 II Paysics

Raymonid P. Streater and Aithur S. Wigititnan

PCT, Spinand

Statistics, and All liat

common features: non-trivial and one easily may get lost

- T conserved in many areas of physics
- CP violated in particle physics
- violated by $2 n d$
- origin unknown law of thermodynamics

CP Violation in Particle Physics

- CP violation: required to explain matter-antimatter asymmetry
- So far observed only in flavor sector
- SM: CKM matrix for the quark sector
- experimentally established $\delta_{\text {скм }}$ as major source of CP violation
- Search for new source of CP violation:
- CP violation in neutrino sector
- if found \Rightarrow phase in PMNS matrix \Rightarrow fundamental origin?
- Discrete family symmetries:
- suggested by large neutrino mixing angles
- neutrino mixing angles from group theoretical CG coefficients

Discrete (family) symmetries \Leftrightarrow Physical CP violation

Where Do We Stand?

- Recent 3 neutrino global analysis (including recent results from reactor experiments and T2K):

Capozzi, Fogli, Lisi, Marrone, Montanino, Palazzo (2013, updated May 2014)

Parameter	Best fit	1σ range	2σ range	3σ range
$\delta m^{2} / 10^{-5} \mathrm{eV}^{2}(\mathrm{NH}$ or IH$)$	7.54	$7.32-7.80$	$7.15-8.00$	$6.99-8.18$
$\sin ^{2} \theta_{12} / 10^{-1}(\mathrm{NH}$ or IH$)$	3.08	$2.91-3.25$	$2.75-3.42$	$2.59-3.59$
$\Delta m^{2} / 10^{-3} \mathrm{eV}^{2}(\mathrm{NH})$	2.43	$2.37-2.49$	$2.30-2.55$	$2.23-2.61$
$\Delta m^{2} / 10^{-3} \mathrm{eV}^{2}(\mathrm{IH})$	2.38	$2.32-2.44$	$2.25-2.50$	$2.19-2.56$
$\sin ^{2} \theta_{13} / 10^{-2}(\mathrm{NH})$	2.34	$2.15-2.54$	$1.95-2.74$	$1.76-2.95$
$\sin ^{2} \theta_{13} / 10^{-2}(\mathrm{IH})$	2.40	$2.18-2.59$	$1.98-2.79$	\vdots
$\sin ^{2} \theta_{23} / 10^{-1}(\mathrm{NH})$	4.37	$4.14-4.70$	$3.93-5.52$	$1.78-2.98$
$\sin ^{2} \theta_{23} / 10^{-1}(\mathrm{IH})$	4.55	$4.24-5.94$	$4.00-6.20$	$3.74-6.26$
$\delta / \pi(\mathrm{NH})$	1.39	$1.12-1.77$	$0.00-0.16 \oplus 0.86-2.00$	$3.80-6.41$
$\delta / \pi(\mathrm{IH})$	1.31	$0.98-1.60$	$0.00-0.02 \oplus 0.70-2.00$	\vdots

\Rightarrow evidence of $\theta_{13} \neq 0$
-hints of $\theta_{23} \neq \pi / 4$
\Rightarrow expectation of Dirac CP phase $\delta \quad \Rightarrow$ Majorana vs Dirac

Recent T2K result $\Rightarrow \delta \simeq-\pi / 2$, consistent with global fit best fit value

Open Questions - Neutrino Properties

Majorana vs Dirac?
CP violation in lepton sector?
Absolute mass scale of neutrinos?
Mass ordering: sign of $\left(\Delta m_{13}{ }^{2}\right)$?
Precision: $\theta_{23}>\pi / 4, \theta_{23}<\pi / 4, \theta_{23}=\pi / 4$?
Sterile neutrino(s)?
a suite of current and upcoming experiments to address these puzzles some can only be answered by oscillation experiments

Open Questions - Theoretical

Smallness of neutrino mass:

$$
m_{v} \ll m_{e, u, d}
$$

Flavor structure:

leptonic mixing

quark mixing

Open Questions - Theoretical

Smallness of neutrino mass:

$$
m_{v} \ll m_{e, u, d}
$$

Fermion mass and hierarchy
problem $m=$ Many (22) free parameters in the Yukawa sector of SM

Flavor structure:

leptonic mixing

quark mixing

Smallness of neutrino masses

What is the operator for neutrino mass generation?

- Majorana vs Dirac
- scale of the operator
- suppression mechanism

Neutrino Mass beyond the SM

- SM: effective low energy theory

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{\mathcal{O}_{5 D}}{M}+\frac{\mathcal{O}_{6 D}}{M^{2}}+\ldots \quad \text { new physics effects }
$$

- only one dim-5 operator: most sensitive to high scale physics Weinberg 1979

- $\mathrm{m}_{\mathrm{v}} \sim\left(\Delta \mathrm{m}^{2} \mathrm{~atm}\right)^{1 / 2} \sim 0.1 \mathrm{eV}$ with $v \sim 100 \mathrm{GeV}, \lambda \sim \mathrm{O}(1) \Rightarrow \mathrm{M} \sim 10^{14} \mathrm{GeV}$
- Lepton number violation \Rightarrow Majorana fermions

Grand Unification Naturally Accommodates Seesaw

origin of the heavy scale $\Rightarrow U(1)_{B-L}$
exotic mediators \Rightarrow predicted in many GUT theories, e.g. SO(10)

Minkowski, I977; Yanagida, I979;
Gell-Mann, Ramond, Slansky, I979;
Mohapatra, Senjanovic, 198।

$$
\left.\begin{array}{rl}
16 & =(3,2,1 / 6) \sim\left(\begin{array}{lll}
u & u & u \\
d & d & d
\end{array}\right] \\
& +\left(3^{*}, 1,-2 / 3\right) \sim\left(u^{c} u^{c} u^{c}\right) \\
& +\left(3^{*}, 1,1 / 3\right) \\
& +(1,2,-1 / 2)
\end{array}\right) \sim\left(\begin{array}{l}
d^{c} \\
d^{c}
\end{array} d^{c}\right) .
$$

Dirac Neutrinos and SUSY Breaking

- naturally small Dirac neutrino masses? $Y_{v} L H V$
- before SUSY breaking: absence of neutrino masses
- after SUSY breaking: realistic effective Dirac neutrino masses generated

Arkani-Hamed, Hall, Murayama, Tucker-Smith, Weiner (2001)

Dirac Neutrinos and SUSY Breaking

- Can be realized in MSSM with discrete $\mathbb{Z}_{M}^{R} \mathrm{R}$ symmetries
- Dirac neutrinos, with naturally small masses M.C. C., M. Ratz, C. Staudt, P. Vaudrevange (2012)
- $\Delta \mathrm{L}=2$ operators forbidden to all orders \Rightarrow no neutrinoless double beta decay
- New signature: lepton number violation $\Delta \mathrm{L}=4$ operators, $\left(\mathrm{V}_{\mathrm{R}}\right)^{4}$, allowed \Rightarrow new LNV processes, e.g.
- neutrinoless quadruple beta decay

Heeck, Rodejohann (2013)

Origin of Flavor Mixing and Mass Hierarchy

- Several models have been constructed based on
- GUT Symmetry [SU(5), SO(10)] \oplus Family Symmetry GF
- Recently, models based on discrete family symmetry groups have been constructed
- A_{4} (tetrahedron)
- T^{\prime} (double tetrahedron)
- S_{3} (equilateral triangle)
- S_{4} (octahedron, cube)
- A5 (icosahedron, dodecahedron)
- Δ_{27}
- Q6

Tri-bimaximal Neutrino Mixing

- Latest Global Fit (3б)

$$
\begin{aligned}
\sin ^{2} \theta_{23}=0.437(0.374-0.626) & {\left[\theta^{\mathrm{lep}} 23 \sim 41.2^{\circ}\right] } \\
\sin ^{2} \theta_{12}=0.308(0.259-0.359) & {\left[\theta^{\mathrm{lep}}{ }_{12} \sim 33.7^{\circ}\right] } \\
\sin ^{2} \theta_{13}=0.0234(0.0176-0.0295) & {\left[\theta^{\mathrm{lep}}{ }_{13} \sim 8.80^{\circ}\right] }
\end{aligned}
$$

- Tri-bimaximal Mixing Pattern

$$
U_{T B M}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & \sqrt{1 / 3} & 0 \\
-\sqrt{1 / 6} & \sqrt{1 / 3} & -\sqrt{1 / 2} \\
-\sqrt{1 / 6} & \sqrt{1 / 3} & \sqrt{1 / 2}
\end{array}\right) \quad \sin ^{2} \theta_{\mathrm{atm}, \mathrm{TBM}}=1 / 2 \quad \sin ^{2} \theta_{\odot, \mathrm{TBM}}=1 / 3
$$

Neutrino Mass Matrix from A4

$$
M_{\nu}=\frac{\lambda v^{2}}{M_{x}}\left(\begin{array}{ccc}
2 \xi_{0}+u & -\xi_{0} & -\xi_{0} \\
-\xi_{0} & 2 \xi_{0} & u-\xi_{0} \\
-\xi_{0} & u-\xi_{0} & 2 \xi_{0}
\end{array}\right)
$$

2 free parameters

relative strengths \Rightarrow CG's

- always diagonalized by TBM matrix, independent of the two free parameters

$$
U_{\mathrm{TBM}}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right)
$$

Origin of CP Violation

- CP violation \Leftrightarrow complex mass matrices
$\bar{U}_{R, i}\left(M_{u}\right)_{i j} Q_{L, j}+\bar{Q}_{L, j}\left(M_{u}^{\dagger}\right)_{j i} U_{R, i} \xrightarrow{\text { eP }} \bar{Q}_{L, j}\left(M_{u}\right)_{i j} U_{R, i}+\bar{U}_{R, i}\left(M_{u}\right)_{i j}^{*} Q_{L, j}$
- Conventionally, CPV arises in two ways:
- Explicit CP violation: complex Yukawa coupling constants Y
- Spontaneous CP violation: complex scalar VEVs <h>

- Complex CG coefficients in certain discrete groups \Rightarrow explicit CP violation
- CPV in quark and lepton sectors purely from complex CG coefficients

CG coefficients in non-Abelian discrete symmetries \Rightarrow relative strengths and phases in entries of Yukawa matrices \Rightarrow mixing angles and phases (and mass hierarchy)

Group Theoretical Origin of CP Violation

Basic idea | Discrete |
| :---: |
| symmetry G |

- if Z_{3} symmetric $\Rightarrow\left\langle\Delta_{1}\right\rangle=\left\langle\Delta_{2}\right\rangle=\left\langle\Delta_{3}\right\rangle \equiv\langle\Delta\rangle$ real
- Complex effective mass matrix: phases determined by group theory

$$
\begin{gathered}
\text { complex CG } \\
\text { coefficients of } \\
G
\end{gathered}
$$

$$
M=\left(\begin{array}{cc}
\mathrm{L}_{1} & \mathrm{~L}_{2}
\end{array}\right)
$$

Novel Origin of CP (Time Reversal) Violation

complex CGs \Rightarrow CP symmetry cannot be defined for certain groups

CP Violation from Group Theory!

Group Theoretical Origin of CP Violation

complex CGs $\boldsymbol{i} \boldsymbol{G}$ and physical CP transformations do not commute

$$
\begin{aligned}
& \Phi(x) \stackrel{\widetilde{C^{P}}}{\longmapsto} U_{\mathrm{CP}} \Phi^{*}(\mathcal{P} x) \\
& \rho_{r_{i}}(u(g))=U_{r_{i}} \rho_{r_{i}}(g)^{*} U_{r_{i}}^{\dagger} \quad \forall g \in G \text { and } \forall i \\
& \begin{array}{l}
u \text { has to be a class-inverting, } \\
\quad \text { involutory automorphism of } \mathrm{G} \\
\Rightarrow \text { non-existence of such automorphism } \\
\quad \text { in certain groups } \\
\Rightarrow \text { calculable physical CP violation in } \\
\text { generic setting }
\end{array}
\end{aligned}
$$

examples: $\mathrm{T}_{7}, \Delta(27), \ldots .$.

Novel Origin of CP (Time Reversal) Violation

- more generally, for discrete groups that do not have class-inverting, involutory automorphism, CP is generically broken by complex CG coefficients (Type I Group)
- Non-existence of such automorphism \Leftrightarrow physical CP violation

Summary

- Fundamental origin of fermion mass hierarchy and flavor mixing still not known
- Neutrino masses: evidence of physics beyond the SM
- Dirac vs Majorana? - should remain open minded!
- naturally light Dirac neutrinos from discrete R-symmetry
- suppressed nucleon decays and naturally small mu term
- Symmetries:
- can provide an understanding of the pattern of fermion masses and mixing
- Grand unified symmetry + discrete family symmetry \Rightarrow predictive power
- Symmetry Tests \Rightarrow Correlations, Correlations, Correlations!!!
- mixing parameters, LFV, proton (nucleon) decay, neutron-antineutron oscillation

Summary

- Discrete Groups (of Type I) affords a Novel origin of CP violation:
- Complex CGs \Rightarrow Group Theoretical Origin of CP Violation
- NOT all outer automorphisms correspond to physical CP transformations
- Condition on automorphism for physical CP transformation

$$
\begin{aligned}
& \rho_{\boldsymbol{r}_{i}}(u(g))=U_{\boldsymbol{r}_{i}} \rho_{\boldsymbol{r}_{i}}(\boldsymbol{g})^{*} U_{\boldsymbol{r}_{i}}^{\dagger} \quad \forall \boldsymbol{g} \in G \text { and } \forall i \\
& \text { M.-C.C, M. Fallbacher, K.T. Mahanthappa, M. Ratz, A.Trautner, NPB (20।4) }
\end{aligned}
$$

class inverting, involutory automorphisms

physical CP transformations

Conclusion \& Outlook

(Type I) Discrete groups afford a new origin of CP violation:

26th International Workshop on
Weak Interactions and Neutrinos
(WIN 2017)

University of California, Irvine, June 19-24, 2017

Local Organizers:
Mu-Chun Chen (muchunc@uci.edu)
Michael Smy (msmy@uci.edu)
http://www.physics.uci.edu/WIN2017

Neutrinos

Weak Interactions Flavor and CP Violation Astroparticle Physics

Backup Slides

Examples

> M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Type I: all odd order non-Abelian groups

group	$\mathbb{Z}_{5} \rtimes \mathbb{Z}_{4}$	T_{7}	$\Delta(27)$	$\mathbb{Z}_{9} \rtimes \mathbb{Z}_{3}$
SG	$(20,3)$	$(21,1)$	$(27,3)$	$(27,4)$

- Type IIA: dihedral and all Abelian groups

group	S_{3}	Q_{8}	A_{4}	$\mathbb{Z}_{3} \rtimes \mathbb{Z}_{8}$	$\mathrm{~T}^{\prime}$	S_{4}	A_{5}
SG	$(6,1)$	$(8,4)$	$(12,3)$	$(24,1)$	$(24,3)$	$(24,12)$	$(60,5)$

- Type IIB

group	$\Sigma(72)$	$\left(\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{4}\right) \rtimes \mathbb{Z}_{4}$
SG	$(72,41)$	$(144,120)$

Example for a type I group: $\Delta(27)$

- decay asymmetry in a toy model
- prediction of CP violating phase from group theory

Toy Model based on $\Delta(27)$

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Field content

	fermions				
field	S	X	Y	Ψ	Σ
$\Delta(27)$	$\mathbf{1}_{0}$	$\mathbf{1}_{1}$	$\mathbf{1}_{3}$	$\mathbf{3}$	$\mathbf{3}$
$U(1)$	$q_{\Psi}-q_{\Sigma}$	$q_{\Psi}-q_{\Sigma}$	0	q_{Ψ}	q_{Σ}

- Interactions

$$
q_{\Psi}-q_{\Sigma} \neq 0
$$

$\mathscr{L}_{\text {toy }}=F^{i j} S \bar{\Psi}_{i} \Sigma_{j}+G^{i j} X \bar{\Psi}_{i} \Sigma_{j}+H_{\Psi}^{i j} Y \bar{\Psi}_{i} \Psi_{j}+H_{\Sigma}^{i j} Y \bar{\Sigma}_{i} \Sigma_{j}+$ h.c.

Toy Model based on $\Delta(27)$

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Particle decay $Y \rightarrow \bar{\Psi} \Psi$
interference of

with

Decay Asymmetry

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Decay asymmetry

$$
\begin{aligned}
\varepsilon_{Y \rightarrow \bar{\Psi} \Psi} & =\frac{\Gamma(Y \rightarrow \bar{\Psi} \Psi)-\Gamma\left(Y^{*} \rightarrow \bar{\Psi} \Psi\right)}{\Gamma(Y \rightarrow \bar{\Psi} \Psi)+\Gamma\left(Y^{*} \rightarrow \bar{\Psi} \Psi\right)} \\
& \propto \operatorname{Im}\left[I_{S}\right] \operatorname{Im}\left[\operatorname{tr}\left(F^{\dagger} H_{\Psi} F H_{\Sigma}^{\dagger}\right)\right]+\operatorname{Im}\left[I_{X}\right] \operatorname{Im}\left[\operatorname{tr}\left(G^{\dagger} H_{\Psi} G H_{\Sigma}^{\dagger}\right)\right] \\
& =|f|^{2} \operatorname{Im}\left[I_{S}\right] \operatorname{Im}\left[h_{\Psi} h_{\Sigma}^{*}\right]+|g|^{2} \operatorname{Im}\left[I_{X}\right] \operatorname{Im}\left[\omega h_{\Psi} h_{\Sigma}^{*}\right] . \\
& \bigwedge_{\text {one-loop integral } I_{S}=I\left(M_{S}, M_{Y}\right)}^{\text {one-loop integral } I_{X}=I\left(M_{X}, M_{Y}\right)}
\end{aligned}
$$

- properties of ε
- invariant under rephasing of fields
- independent of phases of f and g
- basis independent

Decay Asymmetry

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Decay asymmetry

$$
\varepsilon_{Y \rightarrow \bar{\Psi} \Psi}=|f|^{2} \operatorname{Im}\left[I_{S}\right] \operatorname{Im}\left[h_{\Psi} h_{\Sigma}^{*}\right]+|g|^{2} \operatorname{Im}\left[I_{X}\right] \operatorname{Im}\left[\omega h_{\Psi} h_{\Sigma}^{*}\right]
$$

- cancellation requires delicate adjustment of relative phase $\varphi:=\arg \left(h_{\Psi} h_{\Sigma}^{*}\right)$
- for non-degenerate M_{S} and M_{X}. $\quad \operatorname{Im}\left[I_{S}\right] \neq \operatorname{Im}\left[I_{X}\right]$
- phase φ unstable under quantum corrections
- for $\operatorname{Im}\left[I_{S}\right]=\operatorname{Im}\left[I_{X}\right] \&|f|=|g|$
- phase φ stable under quantum corrections
- relations cannot be ensured by an outer automorphism (i.e. GCP) of $\Delta(27)$
- require symmetry larger than $\Delta(27)$

model based on $\Delta(27)$ violates CP!

Spontaneous CP Violation with Calculable CP Phase

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

field	X	Y	Z	Ψ	Σ	ϕ
$\Delta(27)$	$\mathbf{1}_{1}$	$\mathbf{1}_{3}$	$\mathbf{1}_{8}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}_{0}$
$\mathrm{U}(1)$	$2 q_{\Psi}$	0	$2 q_{\Psi}$	q_{Ψ}	$-q_{\Psi}$	0

$\Delta(27) \subset \operatorname{SG}(54,5):\left\{\begin{array}{lll}(X, Z) & : & \text { doublet } \\ \left(\Psi, \Sigma^{C}\right) & : & \text { hexaplet } \\ \phi & : & \text { non-trivial 1-dim. representation }\end{array}\right.$
non-trivial $\langle\phi\rangle$ breaks $\operatorname{SG}(54,5) \rightarrow \Delta(27)$

$$
\text { Type IIA } \rightarrow \text { Type I }
$$

Ler allowed coupling leads to mass splitting $\mathscr{L}_{\text {toy }}^{\phi} \supset M^{2}\left(|X|^{2}+|Z|^{2}\right)+\left[\frac{\mu}{\sqrt{2}}\langle\phi\rangle\left(|X|^{2}-|Z|^{2}\right)+\right.$ h.c. $]$
\Rightarrow CP asymmetry with calculable phases

$$
\left.\varepsilon_{Y \rightarrow \bar{\Psi} \Psi} \propto|g|^{2}\left|h_{\Psi}\right|^{2} \operatorname{Im}[\omega]\left(\operatorname{Im}\left[I_{X}\right]-\operatorname{Im} \mid I_{Z}\right\rfloor\right)
$$

Group theoretical origin of CP violation!

Example: $\operatorname{SU}(5)$ Compatibility $\Rightarrow \top^{\prime}$ Family Symmetry

M.-C.C, K.T. Mahanthappa $(2007,2009)$

- Double Tetrahedral Group T': double covering of A4
- Symmetries $\Rightarrow 10$ parameters in Yukawa sector $\Rightarrow 22$ physical observables
- Symmetries \Rightarrow correlations among quark and lepton mixing parameters

$$
\theta_{13} \simeq \theta_{c} / 3 \sqrt{2} \longleftarrow \begin{gathered}
c \epsilon^{\prime} \text { of } \\
\text { sU(5) \& } T^{\prime}
\end{gathered} \quad \begin{gathered}
\text { no free } \\
\text { parameters! }
\end{gathered}
$$

CP Transformation

- Canonical CP transformation

- Generalized CP transformation

$$
\begin{aligned}
& \Phi(x) \stackrel{\widetilde{C P}}{\longmapsto} U_{\mathrm{CP}} \Phi^{*}(\mathcal{P} x) \\
& \\
& \text { unitary matrix }
\end{aligned}
$$

Generalized CP Transformation

setting w/ discrete symmetry G

G and CP transformations do not commute

ry generalized CP transformation Feruglio, Hagedorn, Ziegler (2013); Holthausen, Lindner, Schmidt (2013)
invariant contraction/coupling in A_{4} or T^{\prime}

$$
\left[\phi_{\mathbf{1}_{2}} \otimes\left(x_{\mathbf{3}} \otimes y_{\mathbf{3}}\right)_{\mathbf{1}_{1}}\right]_{\mathbf{1}_{0}} \propto \phi\left(x_{1} y_{1}+\omega^{2} x_{2} y_{2}+\omega x_{3} y_{3}\right)
$$

$$
\omega=\mathrm{e}^{2 \pi i / 3}
$$

cono canical CP transformation maps $A_{4} / \mathrm{T}^{\prime}$ invariant contraction to something non-invariant
\Leftrightarrow need generalized CP transformation $\widetilde{C P P_{P}}: \phi \stackrel{\widetilde{C^{\prime}}}{\longmapsto} \phi^{*}$ as usual but

$$
\left.\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \xrightarrow{\widetilde{C P}}\left(\begin{array}{c}
x_{1}^{*} \\
x_{3}^{*} \\
x_{2}^{*}
\end{array}\right) \&\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right) \xrightarrow{\widetilde{\widetilde{C P}}} \underset{\longrightarrow}{y_{1}^{*}} \begin{array}{l}
y_{1}^{*} \\
y_{2}^{*}
\end{array}\right)
$$

The Bickerstaff-Damhus automorphism (BDA)

- Bickerstaff-Damhus automorphism (BDA) u

$$
\begin{gather*}
\rho_{\boldsymbol{r}_{i}}(u(g))=U_{\boldsymbol{r}_{i}} \rho_{\boldsymbol{r}_{i}}(g)^{*} U_{\boldsymbol{r}_{i}}^{\dagger} \quad \forall g \in G \text { and } \forall i \\
\text { unitary \& symmetric }
\end{gather*}
$$

- BDA vs. Clebsch-Gordan (CG) coefficients

Twisted Frobenius-Schur Indicator

- How can one tell whether or not a given automorphism is a BDA?
- Frobenius-Schur indicator:

$$
\begin{aligned}
& \mathrm{FS}\left(\boldsymbol{r}_{i}\right):=\frac{1}{|G|} \sum_{g \in G} \chi_{\boldsymbol{r}_{i}}\left(g^{2}\right)=\frac{1}{|G|} \sum_{g \in G} \operatorname{tr}\left[\rho_{\boldsymbol{r}_{i}}(g)^{2}\right] \\
& \mathrm{FS}\left(\boldsymbol{r}_{i}\right)= \begin{cases}+1, & \text { if } \boldsymbol{r}_{i} \text { is a real representation, } \\
0, & \text { if } \boldsymbol{r}_{i} \text { is a complex representation, } \\
-1, & \text { if } \boldsymbol{r}_{i} \text { is a pseudo-real representation. }\end{cases}
\end{aligned}
$$

- Twisted Frobenius-Schur indicator Bickerstaff, Damhus (1985); Kawanaka, Matsuyama (1990)

$$
\begin{aligned}
\mathrm{FS}_{u}\left(\boldsymbol{r}_{i}\right) & =\frac{1}{|G|} \sum_{g \in G}\left[\rho_{\boldsymbol{r}_{i}}(g)\right]_{\alpha \beta}\left[\rho_{\boldsymbol{r}_{i}}(u(g))\right]_{\beta \alpha} \\
\mathrm{FS}_{u}\left(\boldsymbol{r}_{i}\right) & = \begin{cases}+1 \quad \forall i, & \text { if } u \text { is a BDA, } \\
+1 \text { or }-1 \quad \forall i, & \text { if } u \text { is class-inverting and involutory, } \\
\text { different from } \pm 1, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Three Types of Finite Groups

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

Symmetry Relations

Quark Mixing			Lepton Mixing		
mixing parameters	best fit	30 range	mixing parameters	best fit	3σ range
$\theta^{a}{ }_{23}$	$2.36{ }^{\circ}$	$2.25{ }^{\circ}-2.48^{\circ}$	$\theta^{\mathrm{e}}{ }_{23}$	41.2°	$35.1^{\circ}-52.6^{\circ}$
$\theta^{a}{ }_{12}$	12.88°	$12.75^{\circ}-13.01^{\circ}$	$\theta^{e}{ }_{12}$	$33.6{ }^{\circ}$	$30.6{ }^{\circ}-36.8^{\circ}$
$\theta^{a}{ }_{13}$	0.21°	$0.17^{\circ}-0.25^{\circ}$	$\theta^{e}{ }_{13}$	$8.9{ }^{\circ}$	$7.5^{\circ}-10.2^{\circ}$

- QLC-I $\quad \theta_{\mathrm{c}}+\theta_{\text {sol }} \cong 45^{\circ} \quad$ Raicala, ${ }^{\circ} 04 ;$ Smirrov, Minakata, ${ }^{\circ} 04$
(BM)
- QLC-II $\tan ^{2} \theta_{\text {sol }} \cong \tan ^{2} \theta_{\text {sol, }}$,8M $+\left(\theta_{c} / 2\right)^{*} \cos \delta_{e}$

Ferrandis, Pakvasa; Dutta, Mimura; M.-C.C., Mahanthappa (TBM)

$$
\theta_{13} \cong \theta_{\mathrm{c}} / 3 \sqrt{ } 2
$$

- testing symmetry relations: a more robust way to distinguish different classes of models

> measuring leptonic mixing parameters to the precision of those in quark sector

