Neutron Star Binaries

David Neilsen, Matthew Anderson, Eric Hirschmann (Brigham Young University)
Luis Lehner, Patrick Motl, Joel Tohline (Louisiana State University)
Steven Liebling (Long Island University)
Carlos Palenzuela (Albert-Einstein-Institut)

Interplay Between Numerical Relativity and Data Analysis
KITP, January 2008

Introduction

- Neutron star systems + Magnetic fields (NS-NS, NS-BH)
- Numerical approach
- Adaptive mesh refinement with shadow hierarchy
- Generalized harmonic formulation for Einstein equations
- High-resolution shock-capturing methods for MHD equations. (FD scheme with PPM)
- Initial data
- Superposed boosted stars (TOV, rigidly or differentially rotating)
- Seeded poloidal magnetic fields
- Magnetized star data (Novak)
- Binary data with generalized EOS from UWM

Neutron star merger I

- Superposed TOV stars

$$
\begin{aligned}
& M=0.89 M_{\odot} \\
& R=16.3 \mathrm{~km}
\end{aligned}
$$

- Gamma-law EOS, Gamma=2
- Orbital radius $\sim 3 R$, initially eccentric orbit
- Boundaries at 80 and $124 R$
- Prompt collapse to BH
- Simulations beyond BH continuing

Neutron star merger II

- Superposed TOV stars

$$
\begin{aligned}
& M=0.89 M_{\odot} \\
& R=16.3 \mathrm{~km}
\end{aligned}
$$

- Gamma=2 EOS
- Orbital radius $\sim 2 R$
- Differentially rotating intermediate star
- Delayed collapse to BH

$$
\Omega(r)=\frac{\Omega_{c}}{1+A r^{2} \sin ^{2} \theta}
$$

Neutron star merger II

```
t= 1.00
max = 0.050904755
min = 1.0000000e-08
```


Preliminary mergers with MHD

- Same setup as previous case

$$
\begin{aligned}
& t=0.00 \\
& \max =\quad 0.0522191 \\
& \min =\quad 1.00000 \mathrm{e}-08
\end{aligned}
$$

- Seeded poloidal magnetic field

$$
B=10^{15} \text { Gauss }
$$

- Magnetic field allows for redistribution of angular momentum
- Delay in merger time owing to magnetic interactions and different post-merger evolution

Under-resolved waveforms with MHD

12 m 2 , red=nomag

Mode comparison

Neutron star and Kerr black hole

Boson stars

- BS-BS and BS-aBS mergers
- Medium and high angular momentae
- BS interactions at small distances

Summary and outlook

- Now evolving NS-NS, NS-BH binaries
- Wave extraction in wave zone and will correct for gauge effects
- Generalized equations of state
- Parameter space explorations (magnetic field, spin, EOS, etc)
- Photons (down the road)
- Radiation transfer
- Radiation transport

