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Motivations for going into the subject

The situation
Many interesting phenomena in particle physics and
cosmology require the description of systems out of
thermal equilibrium.

Very often, such nonequilibrium situations are treated
by means of (approximations to) Boltzmann equations.

However, Boltzmann equations are only a classical
approximation to the quantum thermalization process
described by Kadanoff-Baym equations.

An obvious question
How reliable are Boltzmann equations as compared to
Kadanoff-Baym equations?
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Boltzmann Equation

for a spatially homogeneous system in the framework of a
real scalar Φ4 quantum field theory:

∂tn (t , k) =
λ2π

48

∫
d3p

(2π)3

∫
d3q

(2π)3

∫
d3r

[
1

EkEpEqEr

× δ (k + p − q − r) δ (Ek + Ep − Eq − Er )

×
(
(1 + nk) (1 + np) nqnr︸ ︷︷ ︸

gain term

− nknp (1 + nq) (1 + nr)︸ ︷︷ ︸
loss term

)]

Momentum conservation Energy conservation

Isotropy: 9 dimensional integral =⇒ 2 dimensional integral.
Important for numerics! [Dolgov, Hansen, Semikoz (1997)]
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Complete Schwinger-Keldysh Propagator

Definition

G (x , y) = 〈TC {Φ (x) Φ (y)}〉

The index C denotes time ordering along the closed
Schwinger-Keldysh real-time contour.

Decomposition [Aarts, Berges (2001)]

G (x , y) = GF (x , y)− i
2

signC

(
x0 − y0

)
G% (x , y)

Statistical propagator =⇒ effective particle number
Spectral function =⇒ thermal mass, decay width
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Effective Energy and Particle Number Densities

Free-field ansatz [Berges (2002)]

Effective kinetic energy density:

ω2 (t , k) =

(
∂x0∂y0GF

(
x0, y0, k

)
GF (x0, y0, k)

)
x0=y0=t

Effective particle number density:

n (t , k) = ω (t , k) GF (t , t , k)− 1
2

Advantages of these definitions

They furnish a particle number density which thermalizes.

They do not rely on any quasi-particle assumption.

They comprise conserved charges, if present in the theory.



Boltzmann
Kinetics

vs. Quantum
Dynamics

Markus
Michael Müller

Motivations

Boltzmann
Kinetics

Quantum
Dynamics

Comparison
of Numerical
Solutions

Conclusions
and Outlook

Kadanoff-Baym Equations

for a spatially homogeneous and isotropic system in the framework of a
real scalar Φ4 quantum field theory:h

∂2
x0 + k2 + M2

“
x0

”i
GF

“
x0, y0, k

”
=

y0Z
0

dz0 ΠF

“
x0, z0, k

”
G%

“
z0, y0, k

”

−
x0Z

0

dz0 Π%

“
x0, z0, k

”
GF

“
z0, y0, k

”

Effective mass: M2 `
x0´

= m2 +

Nonlocal self-energy: Π
`
x0, z0, k

´
=

Internal lines represent the complete Schwinger-Keldysh propagator!
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Initial Conditions
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All initial conditions correspond to the
same (conserved) average energy density.
The initial conditions IC1 and IC2 correspond to the
same initial total particle number.

[Manfred Lindner, MMM (2006)]
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Universality

Kadanoff-Baym Boltzmann
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[Manfred Lindner, MMM (2006)]
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Chemical Equilibration

Kadanoff-Baym Boltzmann
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[Manfred Lindner, MMM (2006)]
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Separation of Time Scales

Kadanoff-Baym Boltzmann
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[Manfred Lindner, MMM (2006)]
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Generalization to fermionic theories
SU(2)L × SU(2)R × U(1)B−L symmetric Yukawa model

λ (ΦaΦa)
2 + iηΨ̄Φa

(
σaPR − σ†

aPL

)
Ψ

Effective scalar mass:

M2
(

x0
)

= m2 +

Nonlocal Self Energies:

scalars: Π
(

x0, z0, k
)

=

fermions: Σ
(

x0, z0, k
)

=
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Generalization to fermionic theories
Cont.

Kadanoff-Baym Equations [Manfred Lindner, MMM (2008)]

Full universality [Berges et al. (2003)]

Quantum-chemical equilibration [Berges et al. (2003)]

Prethermalization [Berges et al. (2004)]

Boltzmann equations [Manfred Lindner, MMM (2008); MMM (2006)]

Restricted universality
Classical, but no quantum-chemical equilibration
No separation of time scales
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Conclusions

Quantum Dynamics (Kadanoff-Baym equations)

take memory and off-shell effects into account.

respect full universality.

include chemical equilibration.

separate time scales between kinetic and chemical equilibration.

Classical Kinetics (Standard Boltzmann equations)

do not take memory and off-shell effects into account
(molecular chaos for quasi-particles).

comprise fake constants of motion.

respect only a restricted universality.

do not include quantum chemical equilibration, and therefore

cannot separate time scales between kinetic and chemical
equilibration.
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Outlook
Renormalization of the 2PI effective action for a real scalar λΦ4/4! theory at
three-loop order

Standard approximate perturbative renormalization

A18: λ = 18, m2
B = −6.87 m2

R

A24: λ = 24, m2
B = −9.49 m2

R

Exact nonperturbative renormalization at zero temperature

E18: λR = 18, λB = 37.18, m2
B = −14.39 m2

R

E24: λR = 24, λB = 63.43, m2
B = −25.14 m2
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