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RHIC physics & plasma insabilities

Ideal hydrodynamics applicable at RHIC for pT . 1.5− 2 GeV,
starting from early times τ . 1 fm/c (Heinz, AIP Conf. Proc. 739)

Requires rapid isotropization (Arnold et al., PRL 94)

Plasma instabilities have been suggested as process that can provide
fast isotropization

⇒ Understanding the early applicability of hydrodynamics means
understanding fast isotropization due to plasma instabilities.
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Ideal hydrodynamics applicable at RHIC for pT . 1.5− 2 GeV,
starting from early times τ . 1 fm/c (Heinz, AIP Conf. Proc. 739)

Requires rapid isotropization (Arnold et al., PRL 94)

Plasma instabilities have been suggested as process that can provide
fast isotropization

⇒ Understanding the early applicability of hydrodynamics means
understanding fast isotropization due to plasma instabilities.

Numerical approaches:

1 Soft classical gauge fields + hard classical particles (Arnold, Moore,

Yaffe; Rebhan, Romatschke Strickland; Dumitru, Nara, Strickland; Bödeker,

Rummukainen )

2 Classical statistical gauge field evolution (Romatschke, Venugopalan; this

work)
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Approach

Setup:

Classical statistical limit of pure SU(2)- gauge theory

Static geometry, i. e. no expansion

Lattice discretization of the fields

Anisotropic initial conditions

Classical statistical approximation reliable for high occupation
numbers (Aarts, Berges, PRL 88; Arrizabalaga, Smit, Tranberg, JHEP 0410;

Berges, Gasenzer, PRA 76)
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Implementation

Use common lattice discretization scheme

Link variables: Ux,µ := e igaAµ(x)

Plaquette variables: Ux,µν := Ux,µU(x+µ̂),νU−1
(x+ν̂),µU−1

x,ν

Dynamics from Wilson- lattice action in Minkowski- spacetime:

S = βs

X
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X
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where
β0 :=

2γtr
�

g2
0

, βs :=
2tr

�

γg2
s

, γ :=
as

at

We use temporal axial gauge A0 ≡ 0 and g0 = gs = 1.
Variation w. r. t. spatial links ⇒ Equations of motion
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Initial conditions

Compute physical quantities (e. g. correlators) according to

〈A(t, x)A(t ′, y) 〉 =

∫
DA(t0)DȦ(t0) P [A(t0), Ȧ(t0)] A(t, x)A(t ′, y)

Initial probability functional P [A(t0), Ȧ(t0)]:

〈Aa
j (0,p)Ab

k (0,−p) 〉 ∼ Cδabδjk exp
{
−p2

x + p2
y

2∆2
x

− p2
z

2∆2
z

}
δ(Ȧ(t0))

N.B.:

∆x � ∆z (distribution δ(pz )− like on the lattice)

∂t A(t = 0) ≡ 0 ⇒ Gauss constraint fulfilled

Amplitude C determined from fixed average energy density ε
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Characteristic time scales (I)

T33(t, x) =
1
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 Fourier transform w. r. t. x and obtain T33(t,p).
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Characteristic time scales (I)

ξ(t) := log10
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Characteristic time scales (I)

Narrow band of
low-momentum modes
unstable initially:
primary instabilities

Later, fast growth in a
broad range in the UV:
secondary instabilities

Findings qualitatively
similar to parametric
resonance in scalar field
theory

Inverse growth rates yield
characteristic time scales
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Characteristic time scales (II)

Inverse maximum growth rates (for
|A(t,p)|2):

ε 1/γ
(pr)
max 1/γ

(sec)
max

30 GeV/fm3 1.0 fm/c 0.3 fm/c
1 GeV/fm3 2.6 fm/c 0.8 fm/c
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Characteristic time scales (II)

Inverse maximum growth rates (for
|A(t,p)|2):

ε 1/γ
(pr)
max 1/γ

(sec)
max

30 GeV/fm3 1.0 fm/c 0.3 fm/c
1 GeV/fm3 2.6 fm/c 0.8 fm/c

Obtain γ−1 ∼ O(1 fm/c) for primary instabilities

1/γ
(pr)
max = 0.1 fm/c would require unrealistic ε ∼ 300 TeV/fm3
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’Bottom-up isotropization’

Plotted is

∣∣∣
T33(t,p||)

T⊥(t,p⊥)

∣∣∣
|p|| |=|p⊥ |

versus time.

Instabilities drive the
system towards an
isotropic state

IR- regime
(p . ε1/4 ' 1 GeV)
quickly becomes isotropic

The UV-sector only
isotropizes at very late
times when the approach
cannot be trusted
anymore.
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’Bottom-up isotropization’

Plotted is

∣∣∣
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T⊥(t,p⊥)
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versus time.

Instabilities drive the
system towards an
isotropic state

IR- regime
(p . ε1/4 ' 1 GeV)
quickly becomes isotropic

The UV-sector only
isotropizes at very late
times when the approach
cannot be trusted
anymore.

 ”bottom-up isotropization”



RHIC physics & plasma instabilities Classical statistical gauge theory on the lattice Numerical results Conclusions & Summary

Diagramatic analysis of secondaries (I)

Correlation function F ab
µν (x , y) := 〈Aa

µ(x)Ab
ν(y) 〉 obeys a 2PI-

evolution equation:

[D−1
0 ]γµFγν(x , y) =

∫ x0

t0

dzΠγ
(ρ)µ(x , z) Fγν(z , y)

−
∫ y0

t0

dzΠγ
(F )µ(x , z) ργν(z , y)

(ρ : −Poisson bracket) (Berges, PRD 70)

Try to identify times when certain diagrams make O(1)- con-
tributions to the correlation function F ab

µν (x0, y0,p) in analogy
to parametric resonance in scalar theories (Berges and Serreau, PRL

91) .
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Diagramatic analysis of secondaries (II)
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Same p || ẑ chosen in both
panels.
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Diagramatic analysis of secondaries (II)
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F (t, t,p)/F (t = 0, t ′ = 0,p)

Lower panel:
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Onset of secondaries coincides
with fluctuation effects be-
coming large, analogous to
parametric resonance in scalar
theories.
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Time evolution of spatial Wilson loops

t = 5ε−1/4
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transverse plane only

Later, longitudinal loops
obey an area law, too.

Spatial string tension
√
κ

becomes isotropic
√
κ→ 0.14 ε1/4 at late

times

Expect κ 6= 0 in
equilibrium (Manousakis,

Polonyi, PRL 58)
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Time evolution of spatial Wilson loops

t = 20ε−1/4

0.01

0.10

1.00

 0  100  200  300  400

W
T

Area

t ε1/4 = 20 

0.01

0.10

1.00

 0  100  200  300  400

W
L

t ε1/4 = 20 

Initially, area law in the
transverse plane only

Later, longitudinal loops
obey an area law, too.

Spatial string tension
√
κ

becomes isotropic
√
κ→ 0.14 ε1/4 at late

times

Expect κ 6= 0 in
equilibrium (Manousakis,

Polonyi, PRL 58)



RHIC physics & plasma instabilities Classical statistical gauge theory on the lattice Numerical results Conclusions & Summary

Time evolution of spatial Wilson loops

t = 160ε−1/4
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Conclusions & Summary

Characteristic time scales of plasma instabilities:
1/γmax ∼ 1 fm/c

’Bottom-up isotropization’ of the IR- sector
p . 1 GeV

UV- sector remains anisotropic till late times

Is this sufficient for hydrodynamics?
Are quantum corrections important for the UV-
modes?
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Thanks for your attention.
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Appendix: Volume and cutoff independence
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Checking for possible volume and cutoff sensitivities of the results.
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