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RHIC physics & plasma insabilities

@ Ideal hydrodynamics applicable at RHIC for p7 < 1.5 — 2 GeV,
starting from early times 7 < 1 fm/c (Heinz, AIP Conf. Proc. 739)

@ Requires rapid isotropization (Arnold et al., PRL 94)

@ Plasma instabilities have been suggested as process that can provide
fast isotropization

= Understanding the early applicability of hydrodynamics means
understanding fast isotropization due to plasma instabilities.
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= Understanding the early applicability of hydrodynamics means
understanding fast isotropization due to plasma instabilities.

Numerical approaches:

© Soft classical gauge fields + hard classical particles (Arnold, Moore,
Yaffe; Rebhan, Romatschke Strickland; Dumitru, Nara, Strickland; Bodeker,

Rummukainen )

@ Classical statistical gauge field evolution (Romatschke, Venugopalan; this

work)
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Classical statistical gauge theory on the lattice

Approach

Setup:
o Classical statistical limit of pure SU(2)- gauge theory
@ Static geometry, i. e. no expansion
o Lattice discretization of the fields
@ Anisotropic initial conditions
Classical statistical approximation reliable for high occupation

numbers (Aarts, Berges, PRL 88; Arrizabalaga, Smit, Tranberg, JHEP 0410;
Berges, Gasenzer, PRA 76)



Classical statistical gauge theory on the lattice

Implementation

Use common lattice discretization scheme

Link variables: Wy = e'&?Au(x)
Plaquette variables:  Ux.uv := Ux.u Uiy w Uiy gy, Unor

(x+2), ’

Dynamics from Wilson- lattice action in Minkowski- spacetime:

1
S:/ng g {2”]1”(UX7’J+U:U } /60§ § {Zt]ltr X0I+UIOI)_1}
X i
i<j

where
2ytrl 2trl as
Bo = 5 Ps = s V=
80 Vg2 at

We use temporal axial gauge Ag =0 and gop = gs = 1.
Variation w. r. t. spatial links = Equations of motion



Classical statistical gauge theory on the lattice

Initial conditions

Compute physical quantities (e. g. correlators) according to

(At x)A(ty)) =/DA(to)DA(to)P[A(to)aA(to)] At x)A(t',y)

N.B.:
o A, > A, (distribution d(p;)— like on the lattice)
@ 0:A(t =0) =0 = Gauss constraint fulfilled

@ Amplitude C determined from fixed average energy density e
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Numerical results

Characteristic time scales (1)
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~~ Fourier transform w. r. t. x and obtain T33(t,p).
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Characteristic time scales (1)

107 + ]
o+ *
+ s

Rl
o ]
10° PR e e P R ]

5 L L

| Pressure_(t, p) / Pressure; (0, p) |

0 50 100 150
At-€1/4
3 3
12, 2+ (T Ty 1A(ep) )
£(t) = logsg

Sq 2 (Zi i 14k a) )



Numerical results

Characteristic time scales (1)
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@ Inverse growth rates yield
characteristic time scales



Numerical results

Characteristic time scales (I1)
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Numerical results

Characteristic time scales (I1)
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Obtain v~ ~ O(1 fm/c) for primary instabilities
1/’}/max = 0.1 fm/c would require unrealistic € ~ 300 TeV/fm>



Numerical results

'Bottom-up isotropization’

@ Instabilities drive the
system towards an
isotropic state

@ IR- regime
(p < /% ~1GeV)
quickly becomes isotropic

| Pressure, {t, p) / Pressure+(t, p) |

@ The UV-sector only
isotropizes at very late
times when the approach
cannot be trusted

T33(t, p||) anymore.

TL(t,pL) !l I=lpL|

Plotted is

versus time.
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'Bottom-up isotropization’

@ Instabilities drive the
system towards an
isotropic state

@ IR- regime
(p < /% ~1GeV)
quickly becomes isotropic

| Pressure, {t, p) / Pressure+(t, p) |

@ The UV-sector only
isotropizes at very late
times when the approach

Plotted is cannot be trusted
T33(t,py|) anymore.
TL(t,pL) ey I=lpL| ~ "bottom-up isotropization”

versus time.



Numerical results

Diagramatic analysis of secondaries (1)

Correlation function Fj,’j(x,y) = (AZ(X)AS(y)} obeys a 2PI-
evolution equation:
0

(05 () = / dzN) | (x,2) Fru(z.)
0

_ v
/;0 dzn(F) (x,z)pw(z,y)

(p : —Poisson bracket) (Berges, PRD 70)

Try to identify times when certain diagrams make O(1)- con-
tributions to the correlation function Fab(xo,yo, p) in analogy
to parametric resonance in scalar theories (Berges and Serreau, PRL
91) .



Numerical results

Diagramatic analysis of secondaries (1)

Correlation function Fj,’j(x,y) = (AZ(X)AS(y)} obeys a 2PI-
evolution equation:
0

(05 () = / dzN) | (x,2) Fru(z.)
0

y
_/t" dZI_I’(YF)“(X,Z)p,YV(Z,y)

0
(p : —Poisson bracket) (Berges, PRD 70)
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Numerical results

Diagramatic analysis of secondaries (Il)

Upper panel:
F(t,t,p)/F(t=0,t' =0,p)
3 Lower panel:
£ diagram(t, t, p)
p=039 - F(t7 t7 p) "€
Same p||2 chosen in both
2 R 2
£ panels.
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Diagramatic analysis of secondaries (Il)

Upper panel:

F(t,t,p)/F(t=0,t' =0,p)

109 / Lower panel:

F(t,p)/F(t=0,p)

diagram(t, t, p)
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Onset of secondaries coincides
with fluctuation effects be-
coming large, analogous to
parametric resonance in scalar
i % 100 150 ) theories.
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Numerical results

Time evolution of spatial Wilson loops
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times

Expect kK # 0 in
equilibrium (Manousakis,
Polonyi, PRL 58)
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Conclusions & Summary

o Characteristic time scales of plasma instabilities:
1/Ymax ~ 1 fm/c

o 'Bottom-up isotropization’ of the IR- sector
p<1GeV

o UV- sector remains anisotropic till late times

Is this sufficient for hydrodynamics?

Are quantum corrections important for the UV-
modes?
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Thanks for your attention.



Conclusions & Summary

Appendix: Volume and cutoff independence

2
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[ A(t.p) At

N=128, a=0.25a,,

N=64, a=0.5a3,
N=32, a=az,
N=16, a=2a¥

0 50 100 150 200 250 300 350 400

tlagy]

Checking for possible volume and cutoff sensitivities of the results.
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