Impact of a CP violating Higgs: LHC, EDMs and Cogenesis

Yue Zhang (Caltech)

KITP workshop on *particlegenesis*, 22 May 2014

Jing Shu, YZ, 1304.0773 Clifford Cheung, YZ, 1306.4321 Satoru Inoue, Michael Ramsey-Musolf, YZ, 1403.4257

Higgs Boson Properties

- 125 GeV, looks like SM Higgs Great triumph.
- Where to look next?

Motivations for CPV

- Higgs boson may be a CP even-odd mixture.
- Well motivated: may account for origin of baryon asymmetry (and dark matter) in the universe.
 - Electroweak baryogenesis / Electroweak Cogenesis.
- Constraints from experimental data.
 - LHC Higgs search: rates, direct ...
 - Electric dipole moments.

Higgs Couplings

- SM, one Higgs doublet theory always $\mathcal{L} \sim (v+h)^n$
- Beyond SM, renormalizable model

$$\mathcal{L} = \frac{m_f}{v} \bar{f}(v + c_f h + \tilde{c}_f i\gamma_5 h)f + \frac{M_W^2}{v}(v + 2ah)W_\mu W^\mu$$

• Calculable effective interactions (d=5)

$$\mathcal{L}_{\text{eff}} = c_g h G^{a\mu\nu} G^a_{\mu\nu} + \tilde{c}_g h G^{a\mu\nu} \tilde{G}^a_{\mu\nu}$$
$$+ c_\gamma h F^{a\mu\nu} F^a_{\mu\nu} + \tilde{c}_\gamma h F^{a\mu\nu} \tilde{F}^a_{\mu\nu}$$

Higgs Couplings

• SM, one Higgs doublet theory always $\mathcal{L} \sim (v+h)^n$

• Beyond SM, renormalizable model CP odd $m_{f,\overline{f}}$

$$\mathcal{L} = \frac{m_f}{v} \bar{f}(v + c_f h + \tilde{c}_f i\gamma_5 h)f + \frac{m_W}{v}(v + 2ah)W_\mu W^\mu$$

• Calculable effective interactions (d=5)

$$\mathcal{L}_{\text{eff}} = c_g h G^{a\mu\nu} G^a_{\mu\nu} + \tilde{c}_g h G^{a\mu\nu} \tilde{G}^a_{\mu\nu}$$
$$+ c_\gamma h F^{a\mu\nu} F^a_{\mu\nu} + \tilde{c}_\gamma h F^{a\mu\nu} \tilde{F}^a_{\mu\nu}$$

Higgs Couplings

• SM, one Higgs doublet theory always $\mathcal{L} \sim (v+h)^n$

Beyond SM, renormalizable model

$$\mathcal{L} = \frac{m_f}{v} \bar{f}(v + c_f h + \tilde{c}_f i\gamma_5 h)f + \frac{M_W^2}{v}(v + 2ah)W_\mu W^\mu$$

• Calculable effective interactions (d=5)

$$\mathcal{L}_{\text{eff}} = c_g h G^{a\mu\nu} G^a_{\mu\nu} + \tilde{c}_g h G^{a\mu\nu} \tilde{G}^a_{\mu\nu} + c_\gamma h F^{a\mu\nu} F^a_{\mu\nu} + \tilde{c}_\gamma h F^{a\mu\nu} \tilde{F}^a_{\mu\nu}$$

Search in golden channel

• Parametrize the amplitude

$$A(h \to ZZ) = v^{-1} \epsilon_1^{*\mu} \epsilon_2^{*\nu} \left(a_1 g_{\mu\nu} M_Z^2 + a_3 \epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} \right)$$

• So far only a rather weak bound.

$$f_{a3} = \frac{|a_3|^2}{|a_1|^2 + |a_3|^2} < 0.58 @ 95\%$$
C.L.

• a_3 from dimension 6 operator $H^{\dagger}HZ_{\mu\nu}\tilde{Z}^{\mu\nu}/\Lambda^2$, loop suppressed in renormalizable models.

Indirect measurement

• Higgs production and decay rates at LHC

$$\begin{split} \Gamma(h \to f\bar{f}) &\sim |\mathbf{c}_{f}|^{2} + |\tilde{\mathbf{c}}_{f}|^{2} \\ &\text{incoherent contributions} \\ \Gamma(h \to \gamma\gamma) &\sim |c_{\gamma}(\mathbf{c}_{f}, \mathbf{a})|^{2} + |\tilde{c}_{\gamma}(\tilde{\mathbf{c}}_{f})|^{2} \\ \sigma(gg \to h) &\sim \Gamma(h \to gg) \sim |c_{g}(\mathbf{c}_{f})|^{2} + |\tilde{c}_{g}(\tilde{\mathbf{c}}_{f})|^{2} \end{split}$$

• Sizable CPV effects from EW scale fermion, *e.g.*, top quark, etc.

Electric dipole moment

• Electric dipole moments (calculable parts)

Early universe

- Effective coupling $m_f \bar{f} \left[v + c_f \frac{h}{v} + \left(\xi + \tilde{c}_f \frac{h}{v} \right) i \gamma_5 \right] f$
- Up to linear terms in h and ξ

$$m_f e^{i\left(\boldsymbol{\xi} + \tilde{\boldsymbol{c}}_f \frac{h}{v}\right)} \bar{f}_L \left[v + \boldsymbol{c}_f \frac{h}{v} \right] f_R + \text{h.c.}$$

 $\sim \left(\boldsymbol{\xi} + \tilde{\boldsymbol{c}}_{\boldsymbol{f}} \frac{h}{v} \right) F \tilde{F}$

 $h \xrightarrow{\sim} \gamma \gamma \text{ (CPV)}$

 $\tilde{c}_t(\xi)$

Zero T

• Integrate out f_L , which is charged under SU(2)

Chemical potential for B number $(\partial_t \xi) \cdot n_B$

Type-II 2HDM

- Yukawa $\mathcal{L}_Y = \bar{Q}Y_U(i\tau_2)\phi_2^*U + \bar{Q}Y_d\phi_1D$
- Higgs potential $+\bar{Q}Y'_U\phi_1U+\bar{Q}Y'_d(i\tau_2)\phi_2^*D$

$$\begin{split} V &= \frac{\lambda_1}{2} (\phi_1^{\dagger} \phi_1)^2 + \frac{\lambda_2}{2} (\phi_2^{\dagger} \phi_2)^2 + \lambda_3 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) \\ &+ \lambda_4 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) + \frac{1}{2} \left[\lambda_5 (\phi_1^{\dagger} \phi_2)^2 + \lambda_6 (\phi_1^{\dagger} \phi_2) (\phi_1^{\dagger} \phi_1) + \lambda_7 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_2) + \text{h.c.} \right] \\ &- \frac{1}{2} \left\{ m_{11}^2 (\phi_1^{\dagger} \phi_1) + \left[m_{12}^2 (\phi_1^{\dagger} \phi_2) + \text{h.c.} \right] + m_{22}^2 (\phi_2^{\dagger} \phi_2) \right\}, \end{split}$$

Type-II 2HDM

- Yukawa $\mathcal{L}_Y = \bar{Q}Y_U(i\tau_2)\phi_2^*U + \bar{Q}Y_d\phi_1D$
- Higgs potential

$$\begin{split} V &= \frac{\lambda_1}{2} (\phi_1^{\dagger} \phi_1)^2 + \frac{\lambda_2}{2} (\phi_2^{\dagger} \phi_2)^2 + \lambda_3 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) \\ &+ \lambda_4 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) + \frac{1}{2} \left[\lambda_5 (\phi_1^{\dagger} \phi_2)^2 + \lambda_6 (\phi_1^{\dagger} \phi_2) (\phi_1^{\dagger} \phi_1) + \lambda_7 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_2) + \text{h.c.} \right] \\ &- \frac{1}{2} \left\{ m_{11}^2 (\phi_1^{\dagger} \phi_1) + \left[m_{12}^2 (\phi_1^{\dagger} \phi_2) + \text{h.c.} \right] + m_{22}^2 (\phi_2^{\dagger} \phi_2) \right\}, \end{split}$$

 $+\bar{Q}Y_U'\phi_1U+\bar{Q}Y_d'(i\tau_2)\phi_2^*D$

• Natural flavor conservation, an approximate Z_2

Type-II 2HDM

- Yukawa $\mathcal{L}_Y = \bar{Q}Y_U(i\tau_2)\phi_2^*U + \bar{Q}Y_d\phi_1D$
- Higgs potential
- $$\begin{split} V &= \frac{\lambda_1}{2} (\phi_1^{\dagger} \phi_1)^2 + \frac{\lambda_2}{2} (\phi_2^{\dagger} \phi_2)^2 + \lambda_3 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) \\ &+ \lambda_4 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) + \frac{1}{2} \left[\lambda_5 (\phi_1^{\dagger} \phi_2)^2 + \lambda_6 (\phi_1^{\dagger} \phi_2) (\phi_1^{\dagger} \phi_1) + \lambda_7 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_2) + \text{h.c.} \right] \\ &- \frac{1}{2} \left\{ m_{11}^2 (\phi_1^{\dagger} \phi_1) + \left[m_{12}^2 (\phi_1^{\dagger} \phi_2) + \text{h.c.} \right] + m_{22}^2 (\phi_2^{\dagger} \phi_2) \right\}, \end{split}$$

 $+\bar{Q}Y_U'\phi_1U+\bar{Q}Y_U'(i\tau_2)\phi_2^*D$

- Natural flavor conservation, an approximate Z_2
- Complex parameters λ_5 , m_{12}^2

only one CP violating phase

Only one CPV source

• **General vevs:**
$$\langle \phi_1 \rangle = \begin{pmatrix} 0 \\ v \cos \beta / \sqrt{2} \end{pmatrix}, \quad \langle \phi_2 \rangle = \begin{pmatrix} 0 \\ v \sin \beta e^{i\xi} / \sqrt{2} \end{pmatrix}$$

Mass eigenstates

 $\begin{array}{l} \textbf{125 GeV} \quad \begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = \begin{pmatrix} -s_{\alpha}c_{\alpha_b} & c_{\alpha}c_{\alpha_b} & s_{\alpha_b} \\ s_{\alpha}s_{\alpha_b}s_{\alpha_c} - c_{\alpha}c_{\alpha_c} & -s_{\alpha}c_{\alpha_c} - c_{\alpha}s_{\alpha_b}s_{\alpha_c} & c_{\alpha_b}s_{\alpha_c} \\ s_{\alpha}s_{\alpha_b}c_{\alpha_c} + c_{\alpha}s_{\alpha_c} & s_{\alpha}s_{\alpha_c} - c_{\alpha}s_{\alpha_b}c_{\alpha_c} & c_{\alpha_b}c_{\alpha_c} \end{pmatrix} \begin{pmatrix} H_1 \\ H_2 \\ H_2 \\ A \end{pmatrix} \end{array}$

Only one CPV source

• General vevs:
$$\langle \phi_1 \rangle = \begin{pmatrix} 0 \\ v \cos \beta / \sqrt{2} \end{pmatrix}, \quad \langle \phi_2 \rangle = \begin{pmatrix} 0 \\ v \sin \beta e^{i\xi} / \sqrt{2} \end{pmatrix}$$

Mass eigenstates

 $\begin{array}{l} \textbf{125 GeV} \quad \begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = \begin{pmatrix} -s_{\alpha}c_{\alpha_b} & c_{\alpha}c_{\alpha_b} & s_{\alpha_b} \\ s_{\alpha}s_{\alpha_b}s_{\alpha_c} - c_{\alpha}c_{\alpha_c} & -s_{\alpha}c_{\alpha_c} - c_{\alpha}s_{\alpha_b}s_{\alpha_c} & c_{\alpha_b}s_{\alpha_c} \\ s_{\alpha}s_{\alpha_b}c_{\alpha_c} + c_{\alpha}s_{\alpha_c} & s_{\alpha}s_{\alpha_c} - c_{\alpha}s_{\alpha_b}c_{\alpha_c} & c_{\alpha_b}c_{\alpha_c} \end{pmatrix} \begin{pmatrix} H_1 \\ H_2 \\ H_2 \\ A \end{pmatrix} \end{array}$

• Both ξ and α_b , α_c depends on the only CPV source - the phase mismatch $\text{Im} \left[\lambda_5^* (m_{12}^2)^2\right]$

Higgs couplings

• Type II 2HDM with CPV

$$c_{t} = \frac{\cos\alpha\cos\alpha_{b}}{\sin\beta}, \quad c_{b} = -\frac{\sin\alpha\cos\alpha_{b}}{\cos\beta} \qquad a = \cos\alpha_{b}\sin(\beta - \alpha)$$
$$\tilde{c}_{t} = -\cot\beta\sin\alpha_{b}, \quad \tilde{c}_{b} = -\tan\beta\sin\alpha_{b}$$
$$\mathcal{L} = \frac{m_{f}}{v}\bar{f}(v + c_{f}h + \tilde{c}_{f}i\gamma_{5}h)f + \frac{M_{W}^{2}}{v}(v + 2ah)W_{\mu}W^{\mu}$$

Global Fit to Higgs data

- Strong constraint on CPC angle: $\alpha \approx \beta \pi/2$
- For $\tan \beta \lesssim 1$, non-zero CPV angle $\alpha_b \neq 0$ can give better fit.

Global Fit to Higgs data

• CPV can give: relatively enhanced $h \to \gamma \gamma$ rate, suppressed $h \to V b \bar{b}$

A special direction

- An interesting case: $\alpha \rightarrow \beta \pi/2$ with non-zero α_b, α_c
- When $\tan\beta\approx 1$, couplings become

$$c_t = c_b = a = \cos \alpha_b$$
 $\tilde{c}_t = \tilde{c}_b = -\sin \alpha_b$

• Sizable α_b is allowed - can still fit the LHC rate data well.

A special direction

- An interesting case: $\alpha \rightarrow \beta \pi/2$ with non-zero α_b, α_c
- When $\tan\beta\approx 1$, couplings become

$$c_t = c_b = a = \cos \alpha_b$$
 $\tilde{c}_t = \tilde{c}_b = -\sin \alpha_b$

- Sizable α_b is allowed can still fit the LHC rate data well.
- Real decoupling limit, second doublet mass goes
 to infinity: α_b, α_c → 0, α → β − π/2

Electron EDM

 H_1, H_2 ×

less important

Electron EDM

less important

less important

• Strongest cancellation around $\tan\beta\sim 1$

eEDM vs Higgs Fit

 α

• Before ACME result $d_e < 1.25 \times 10^{-27} e \,\mathrm{cm} @ 95\% \,\mathrm{C.L.}$

Hudson et al, Nature 473, 493 (2011)

eEDM vs Higgs Fit

• ACME result: $d_e < 1.025 \times 10^{-28} e \,\mathrm{cm} @ 95\% \,\mathrm{C.L.}$

• Higgs data and EDMs are complementary.

ACME Collaboration, 1310.7534

Beyond lightest Higgs

They also contribute to EDMs via CPV in the scalar sector.

- Remember there is only one CPV phase.
- Heavy Higgs are more important at large $\tan\beta$

Satoru Inoue, Michael Ramsey-Musolf, Y.Z., arXiv:1403.4257

The role of heavy Higgs

- The cancelation near $\tan\beta \sim 1$ persists.
- New cancelation regime at $\tan\beta \sim 10-20$.
- Beware of uncertainties in neutron/atomic EDM. Satoru Inoue, Michael Ramsey-Musolf, Y.Z., arXiv:1403.4257

The role of heavy Higgs

- The cancelation near $\tan\beta \sim 1$ persists.
- New cancelation regime at $\tan\beta \sim 10-20$.
- Beware of uncertainties in neutron/atomic EDM.

Satoru Inoue, Michael Ramsey-Musolf, Y.Z., arXiv:1403.4257

Dorsch, Huber, No, 1305.6610 Fromme, Huber, Seniuch, hep-ph/0605242

- Still need B violating process: sphaleron process.
- If in equilibrium, all $\Gamma \gg H$, final asymmetry is determined by $\mu = \partial_t \xi \sim t^{-1} \ll 10^{-10} T$
- First order EW phase transition, possible in 2HDM.

Dorsch, Huber, No, 1305.6610 Fromme, Huber, Seniuch, hep-ph/0605242

CP violation $\mathcal{L} \sim \lambda_q h e^{i\xi} \bar{q}_R q_L + \text{c.c.}$

 $P_{q_L \to q_R} - P_{q_R^c \to q_L^c} \propto h \frac{d\xi}{dt}$

Redistribute particle numbers

CP violation $\mathcal{L} \sim \lambda_q h e^{i\xi} \bar{q}_R q_L + \text{c.c.}$

Redistribute particle numbers

Cheung, Y.Z., arXiv:1306.4321, JHEP

 $P_{q_L \to q_R} - P_{q_R^c \to q_L^c} \propto h \frac{d\xi}{dt}$

CP violation $\mathcal{L} \sim \lambda_q h e^{i\xi} \bar{q}_R q_L + \text{c.c.}$

Redistribute particle numbers

Cheung, Y.Z., arXiv:1306.4321, JHEP

 $P_{q_L \to q_R} - P_{q_R^c \to q_L^c} \propto h \frac{d\xi}{dt}$

CP violation $\mathcal{L} \sim \lambda_q h e^{i\xi} \bar{q}_R q_L + \text{c.c.}$

Baryon number violation

Cheung, Y.Z., arXiv:1306.4321, JHEP

 $P_{q_L \to q_R} - P_{q_R^c \to q_L^c} \propto h \frac{d\xi}{dt}$

CP violation $\mathcal{L} \sim \lambda_q h e^{i\xi} \bar{q}_R q_L + \text{c.c.}$

Baryon number violation

Connections

Cogenesis

- Observation: $\Omega_B \sim \Omega_{DM}$.
- Today's baryon number in our universe is preserved due to an approximate global symmetry $U(1)_{\rm B}$.
- Dark matter could also has an asymmetry today, defined by another approximate global symmetry $U(1)_{\rm DM}$.
- Same source of CP violation Higgs!

CPV for DM-genesis

Order parameters

 $U(1)_{DM}$

Electroweak scale

time

Order parameters

 $U(1)_{DM}$

Electroweak scale

time

Order parameters

me

Cheung, Y.Z., arXiv:1306.4321, JHEP

Electroweak scale

Restore two symmetries

In a single step

Electroweak phase transition

 $U(1)_{\rm B}, U(1)_{\rm DM}$ breaking $\langle S \rangle \neq 0$ $\langle H \rangle = 0$

- Dark matter sector helps triggering strong first order EW phase transition.
- No effect on Higgs coupling to fermions/gauge bosons.

Phenomenology

- Eliminate symmetric part of DM via Higgs portal.
- Weak scale ADM candidate, no light mediator.
- To be tested by future direct detection experiments.

- Direct CPV: azimuthal phase shift:
 - Higgs decays (also heavy Higgs decays) $h \rightarrow ZZ^* \rightarrow 2\ell^+ 2\ell^ h \rightarrow \tau^+ \tau^- \rightarrow 2\pi 2\nu, 2\rho 2\nu$ Whitbeck, Moriond QCD 2013 Harnik, Martin, Okui, Primolando, Yu, 1308.1094
 - production $pp \rightarrow h + 2j, ht\bar{t}$ Klamke, Zeppenfeld, '07 Gunion, He, '96
- Virtual Higgs effects
 - $t\overline{t}$ production and leptonic decay: p_T distribution of charge lepton asymmetry.

Schmidt, Peskin '92

Conclusion

- The I25 GeV Higgs boson could be a CP mixture. Currently O(1) CP phase consistent with data.
 - EDMs are powerful probes, barring uncertainties.
 - Future direct test at colliders.
- We construct a simple model of Electroweak Cogenesis. Make a stronger case for studying CPV associated with the Higgs boson.
 - Also measure the 2HDM portal to ADM.