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Motivation
Observation

Binaries: more common than single stars

Disks: common among young binaries

Planets: At least 5 extrasolar planets in binaries

m
Standard Scenario of Planet Formation

Single Star + Protoplanetary Disk ⇒ Planetary System

⇓
A Theory for Planet Formation in Binaries

Binary + Protoplanetary Disk ⇒ Planetary System
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Low-Mass PMS Binaries
Frequency

fbinary >∼ 0.5 for systems with M1 + M2 <∼ 3M�

Properties

• Mass ratio of secondary to primary 0 <∼ M2/M1 <∼ 1

• Orbital characteristics:
– 1day <∼ P <∼ 108days with 〈P 〉 ' 105days

(10−2AU <∼ a <∼ 104AU with 〈a〉 ' 102AU)
– 0 <∼ e <∼ 1 and emax increases with P

• Disk frequency fdisk ' 0.5
– circumstellar disk for a >∼ a few AU
– circumbinary disk for a <∼ a few AU



Previous Studies
Planetesimal Dynamics

Heppenheimer (1978)
• perturbation by secondary and gas drag
• 2-D, no self-gravity

Marzari & Scholl (2000)
• perturbation by secondary, gas drag, and collision
• 2-D, no self-gravity

Planetesimal Accretion

Barbieri, Marzari, & Scholl (2002)

Quintana et al. (2002)
• late accretion stage from protoplanets to planets



Equation of Motion for Planetesimals
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Eccentricity Vector

e = (ex, ey) = (e cos $, e sin $) = (k, h)

e : eccentricity
$ : longitude of pericenter

e

e

e

ω∼
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y y

x
ω∼

pericenter



Relative Velocity and Eccentricity
Relative Velocity

|vij | = |vj − vi| ' |ej − ei|vK = |eij |vK ' σevK

Eccentricity Dispersion

σe =
√

〈|ei|2〉 − |〈ei〉|2

controls
• the growth mode
• the growth time scale



Numerical Experiments
Model

x

y

a’

m’

m

primary m

secondary m′, a′, e′, i′ = 0, $′, n′

planetesimal mp, a, e, i, $, Ω, n

m = m′ = M�, a′ = 25[AU], e′ = 0.5
(α Cen model)

Initial Conditions
N = 1000, mp = 1024g
a = 1AU(∆a = 0.1AU), σe = 2σi

(minimum-mass disk model: Σ = 10gcm−2)

Method of Calculation
4th-order Hermite integrator with GRAPE-6



Disturbing Function of Secondary
Assumptions

a/a′ � 1 ,mp � m + m′, e, i � 1

Disturbing Function
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Lagrange’s Planetary Equation
New Variables

h = e sin $, k = e cos$

p = sin
i

2
sin Ω, q = sin

i

2
cos Ω

Linearized Planetary Equation
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Solution to Planetary Equation

p

h

k

e
f

ω∼

e

e

ω∼’

ep proper eccentricity
ef forced eccentricity
ip proper inclination
if = 0 forced inclination

{

h = ep sin(At + $p) + ef sin $′

k = ep cos(At + $p) + ef cos $′


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Animations
No Self-Gravity Case

Self-Gravity Case



Evolution of Eccentricity

blue green black

secondary ○ ○ ×

self-gravity ○ × ○
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Evolution of Eccentricity

black blue green

σe 0.005 0.02 0.03



Time Scales
Time Scale of Shear

Tshear '
2π

dA

da
∆a

=
16π

9
G−1/2m′−1a′3(1 − e′2)3/2m1/2a−1/2∆a−1

Time Scale of Two-Body Relaxation

Trelax ' σ3

√
2πG2nmm2

p ln Λ
' m3/2σ4

e√
2πG1/2Σmpa1/2 ln Λ

nm number density
Σ surface mass desnsity



Condition for Orbital Alignment

Preliminary
Mean Orbital Separation

∆a =
1

2πans
=

mp

2πaΣ

Condition

Trelax � Tshear

⇓

σe < σcrit
e ∝ m−1/4m′−1/4a′3/4(1 − e′2)3/8Σ1/2a1/4



Summary
� �

Towards a Theory for Planet Formation in Binaries
� �

⇓� �
Planetesimal Dynamics� �� �

Planetesimal orbits perturbed by
secondary and self-gravity

⇓
Orbital alignment of planetesimals

⇓
Small relative velocity between planetesimals
(same relative velocity as the single star case)

⇓
Same growth mode and time scale

as the single star case
� �



Things to Do
Near Future (While at KITP?)

• To perform more simulations with other parameters
• To derive the condition for orbital alignment
• To include gas drag

Next Step

• To include accretion

Application

• Satellite-ring interaction
• Eccentric ring
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