SECULAR EVOLUTION OF COUPLED PLANET-DISC SYSTEMS

Gordon Ogilvie

IoA / DAMTP, University of Cambridge

with Steve Lubow
Space Telescope Science Institute

KITP, UCSB

15th March 2004

PLANET-DISC SYSTEMS

Protoplanetary system in intermediate phase

Disc partitioned into annuli

$$m_{\rm p} \sim m_{\rm d} \ll M_{\star}$$

Time-scales (e.g. for Jupiter):

dynamical

$$\Omega^{-1} \sim 10^1 \, \mathrm{yr}$$

secular

$$\frac{M_{\star}}{m_{\rm p}}\Omega^{-1} \sim 10^4 \, {\rm yr}$$

viscous / migration (?)

$$\frac{r^2}{\nu} \sim 10^7 \, {\rm yr}$$

Neglect accretion and migration: how do e and i evolve?

Focus on i for illustrative purposes (safer ground!)

EXISTING THEORIES

e and i of a gap-opening companion are both excited and damped by resonant interactions with the disc

- Goldreich & Tremaine (1980)
 - e is damped (delicate balance)
- Borderies, Goldreich & Tremaine (1984)
 - i is excited (delicate balance)
- Goldreich & Sari (2003)
 - e can be excited (ECR saturation: O & L 2003; Masset)

Can this be seen in planet-disc simulations?

PHILOSOPHY

Direct numerical simulations:

- particle dynamics, gas dynamics, MHD
- fully nonlinear
- increasingly powerful and important

(Semi-) analytic approaches:

- interpretative framework
- isolate different physical aspects
- suggest targeted experiments
- historical connections

Continuum celestial mechanics

ullet e and i for a disc

ECCENTRICITY AND INCLINATION IN A DISC

Generally, disturbances propagate through a gaseous disc

- inertia, pressure, buoyancy, self-gravitation, ...
- damped by linear or nonlinear mechanisms, or turbulence

Warped accretion discs (1975–)

- case III (Keplerian, $\alpha \lesssim H/r$): Papaloizou & Lin (1995)
- propagates as a non-dispersive wave
- damped by viscosity (or MHD turbulence)
- ullet self-gravitation important when $Q\sim 1$

Eccentric accretion discs

- propagates as a dispersive wave
- damping / excitation very subtle (2D / 3D, relaxation, ...)
- ullet self-gravitation important when $Q \sim r/H!$

Asymptotic nonlinear theories (O 2001, 2004)

- 3D → 1D evolutionary equations
- test problems

SUMMARY OF LAPLACE-LAGRANGE THEORY

Central star, mass M_{\star}

n planets, masses $m_i \ll M_{\star}$, in nearly Keplerian orbits

Complex inclination variable

$$W = l_x + il_y, \qquad |W| \ll 1$$

Secular inclination dynamics

$$J_i \frac{\mathrm{d}W_i}{\mathrm{d}t} = \mathrm{i} \sum_j C_{ij} (W_j - W_i)$$

$$J_i = m_i r_i^2 \Omega_i, \qquad C_{ij} = G m_i m_j K(r_i, r_j)$$

Linear dynamical system, analyse into normal modes

PLANET-DISC SYSTEMS

Disc partitioned into annuli

Neglect accretion and migration: how does i evolve?

Disc angular momentum equation

$$\Sigma r^2 \Omega \frac{\partial W}{\partial t} = {
m external \ torque \ density} + \frac{1}{2\pi r} \frac{\partial \mathscr{G}}{\partial r}$$

Internal torque (cf. Papaloizou & Lin 1995)

$$\frac{\partial \mathcal{G}}{\partial t} + \left(\frac{\kappa^2 - \Omega^2}{\Omega^2}\right) \frac{\mathrm{i}\Omega}{2} \mathcal{G} + \alpha \Omega \mathcal{G} = \frac{\pi}{2} \Sigma H^2 r^3 \Omega^3 \frac{\partial W}{\partial r}$$

Linear dynamical system

Planet i

$$J_{pi} \frac{dW_{pi}}{dt} = i \sum_{j} Gm_{pi} m_{pj} K(r_{pi}, r_{pj}) (W_{pj} - W_{pi})$$
$$+i \sum_{k} \int_{a_k}^{b_k} Gm_{pi} \Sigma_k K(r_{pi}, r) (W_{dk} - W_{pi}) 2\pi r dr$$

Disc k

$$\Sigma_{k} r^{2} \Omega \frac{\partial W_{dk}}{\partial t} = \frac{1}{2\pi r} \frac{\partial \mathcal{G}_{k}}{\partial r}$$

$$+ i \sum_{l} G m_{pi} \Sigma_{k} K(r, r_{pi}) (W_{pi} - W_{dk})$$

$$+ i \sum_{l} \int_{a_{l}}^{b_{l}} G \Sigma_{k} \Sigma'_{l} K(r, r') (W'_{dl} - W_{dk}) 2\pi r' dr'$$

Internal torque of disc k

$$\frac{\partial \mathcal{G}_k}{\partial t} + \left(\frac{\kappa^2 - \Omega^2}{\Omega^2}\right) \frac{\mathrm{i}\Omega}{2} \mathcal{G}_k + \alpha \Omega \mathcal{G}_k = \frac{\pi}{2} \Sigma_k H^2 r^3 \Omega^3 \frac{\partial W_{\mathrm{d}k}}{\partial r}$$

Boundary conditions

$$\mathscr{G}_k(a_k) = \mathscr{G}_k(b_k) = 0$$

Conservation laws

Horizontal angular momentum

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\sum_{i} J_{\mathrm{p}i} W_{\mathrm{p}i} + \sum_{k} \int_{a_{k}}^{b_{k}} \Sigma_{k} r^{2} \Omega W_{\mathrm{d}k} 2\pi r \,\mathrm{d}r \right] = 0$$

Vertical angular momentum

$$\frac{\mathrm{d}}{\mathrm{d}t}(-L_z) = -\sum_k \int_{a_k}^{b_k} \frac{2\alpha |\mathscr{G}_k|^2}{\pi \Sigma_k H^2 r^3 \Omega^2} \mathrm{d}r$$

with angular momentum deficit

$$-L_{z} = \sum_{i} \frac{1}{2} J_{pi} |W_{pi}|^{2}$$

$$+ \sum_{k} \int_{a_{k}}^{b_{k}} \left(\frac{1}{2} \Sigma_{k} r^{2} \Omega |W_{dk}|^{2} + \frac{|\mathcal{G}_{k}|^{2}}{2\pi^{2} \Sigma_{k} H^{2} r^{4} \Omega^{3}} \right) 2\pi r \, dr$$

$$\geq 0$$

Note

$$\cos i \approx 1 - \frac{i^2}{2} = 1 - \frac{1}{2}|W|^2$$

Mean-motion resonances

Many resonances expected in a continuous disc

Local growth of inclination corresponds to a resonant torque

(Borderies, Goldreich & Tremaine 1984; Lubow 1992)

$$J_{\mathbf{p}} \frac{\mathrm{d}W_{\mathbf{p}}}{\mathrm{d}t} = \dots + 2\pi s_{\mathbf{res}} \frac{Gm_{\mathbf{p}}^{2}}{M_{\star}} \Sigma r(W_{\mathbf{p}} - W) \bigg|_{r = r_{\mathbf{res}}}$$

$$\Sigma r^2 \Omega \frac{\partial W}{\partial t} = \dots + s_{\text{res}} \frac{G m_{\text{p}}^2}{M_{\star}} \Sigma (W - W_{\text{p}}) \delta (r - r_{\text{res}})$$

AMD can either grow or decay:

$$\frac{\mathrm{d}}{\mathrm{d}t}(-L_z) = -\sum_{k} \int_{a_k}^{b_k} \frac{2\alpha |\mathcal{G}_k|^2}{\pi \Sigma_k H^2 r^3 \Omega^2} \mathrm{d}r$$

$$+ \sum_{\mathrm{res}} 2\pi s_{\mathrm{res}} \frac{Gm_{\mathrm{p}}^2}{M_*} \Sigma r |W - W_{\mathrm{p}}|^2 \Big|_{r = r_{\mathrm{res}}}$$

Normal modes

Rigidly precessing patterns:

$$W_{\mathrm{p}i} = \hat{W}_{\mathrm{p}i} \,\mathrm{e}^{\mathrm{i}\omega t}, \qquad W_{\mathrm{d}k} = \hat{W}_{\mathrm{d}k}(r) \,\mathrm{e}^{\mathrm{i}\omega t}$$

Linear eigenvalue problem:

- integro-differential equations
- discretize and solve numerically

1 trivial mode

$$W_{pi} = W_{dk} = \text{constant}$$

Infinite number of non-trivial modes, damped by viscosity

Low-order modes:

- nearly rigid behaviour if mode period ≫ sound travel time
- retrograde precession
- weakly damped

e.g. Jupiter in a 100 AU disc

e.g. Hot Jupiter (0.05 AU) in a 100 AU disc

Resonance strengths

To be summed, weighted by $\Sigma r |W-W_{
m p}|^2$

Borderies, Goldreich & Tremaine (1984) – planetary rings:

- neglect warping of rings
- inclination always grows

Lubow & Ogilvie (2001) – protoplanetary systems:

- compute global modes including warping and MMRs
- viscous damping typically prevails ($\alpha \gtrsim 10^{-3}$)

Typical time-dependent behaviour

Incline mobile planet with respect to flat disc

Inappropriate to measure $\mathrm{d}i/\mathrm{d}t$; monitor AMD instead

Non-mobile planet: different (erroneous) results

Similar behaviour expected for e

KEY POINTS / TOPICS FOR DISCUSSION

- e and i are shared properties of the planet–disc system
- AMD (including wave contribution) is a positive-definite measure of the bending disturbance
- AMD is conserved in secular exchanges but grows or decays as a result of competition between MMRs and disc-based dissipation
- (B)GT calculations of de/dt, di/dt need to be revisited:
 - damping / excitation in the disc
 - modified weighting of resonant torques
- eccentricity dynamics of the disc is very subtle:
 - 2D/3D
 - viscous / turbulent
 - NSG / SG
 - bias of polar grids?
- high resolution required to see ECR saturation and eccentricity growth