Existing anomalies @ CMS

Tulika Bose

University of Wisconsin-Madison

May 20th, 2021

Hunting for new physics

- Precision measurements of SM processes
 - Understand SM backgrounds, look for deviations or anomalies
- Searches/measurements of rare SM processes
 - Take advantage of the large LHC datasets and look for (significant) enhancement from beyond-the-SM (BSM) particles

SM as a tool for discovery

- Direct searches for BSM particles
 - Go in new directions with new models, challenging topologies, enlarged parameter space → innovate!

Explore new frontiers: Go beyond the SM

Take advantage of state-of-the-art analysis methods, data mining, machine learning, new technologies, upgraded detectors...

Achieved by...

Good collaboration between theorists and experimentalists!

Theorist: comes up with (sometimes crazy) idea

Experimentalist: debunks theory

THE TRUTH IS OUT THERE

Inspired by P. Q. Hung @ Moriond EWK

LHC/HL-LHC Program

Excellent performance by the LHC and the experiments: ~140 fb⁻¹ good for analysis during Run 2

But 95% of the total LHC data still to come (and be studied)!

Standard Model reigns supreme

The legacy from Run 1 and Run 2

Exotic landscape ~10 years ago

Searches for new massive resonances (di-leptons), di-jet resonances approaching ~ 1TeV

Exotic landscape circa 2021

Focus now on complex topologies and weakly coupled phenomenon

Search strategies

Rich and diverse search landscape

- Big inclusive searches complemented by dedicated searches that target gaps in coverage
- Incorporate machine learning for Higgs, b, charm, top tagging
- Improve lepton reconstruction/ID for low p_T leptons; improve analysis techniques
 Challenging topologies

e.g. consider taus in stop decay chains (traditional searches veto taus or don't focus on them

A lot of ground covered in Run 2; more luminosity awaits in Run 3

Run 1 and Run 2 legacy ?

Exploring anomalies

Dijet Mass = 8.4 TeV

Low-mass di-photon search

- Search for low-mass di-photon resonance in the 70 – 110 GeV mass range
- Dataset: 35.9 fb⁻¹ @ 13 TeV (2016) + combination with Run 1 analysis
- Clean final state topology (2 isolated γ)
- Large smoothly decreasing background (continuum)
 - Reducible (jet-jet, γ-jet w/ jet faking photon)
 - Irreducible ($\gamma\gamma$)
- Based on standard H-> γγ analysis
 - Lower E_T, a bit more aggressive selection criteria
 - Edge of the trigger acceptance
 - Important Z → e+e- background (stricter electron veto, include DY in bkg model)

Run 1 analysis limited to 80 – 110 GeV range due to the trigger

Low-mass di-photon search

Signal

Parametric model extracted from simulation : H→ γγ standard samples for different higgs masses.

Background

Drell-Yan Parametric model extracted from simulation : Z→e+e-

Continuum background extracted

Low-mass di-photon search

Low mass search in µµbj

- Search for resonances in the 12 70 GeV mass range $\mu\mu$ bj final state
- Dataset: 19.7 fb⁻¹ @8 TeV, 35.9 fb⁻¹ @ 13 TeV (2016)
- 2 mutually exclusive categories:
 - **SR1**: a b quark jet in the central region (|η| ≤ 2.4) and at least one jet in the forward region (|η| > 2.4)
 - SR2: two jets in the central region, at least one of which is identified as a b quark jet, no jets in the forward region, and low missing transverse momentum

Event	SR1	SR2
category	Additional forward jet	Additional central jet
Muons	OS, $p_{\rm T} > 25 { m GeV}$, $ \eta < 2.1$	
$m_{\mu\mu}$	$m_{\mu\mu} > 12{ m GeV}$	
b-tagged jet	$p_{ m T}>30{ m GeV}$, $ \eta \leq 2.4$	
Additional jet	$p_{ m T} > 30{ m GeV}$, $2.4 < \eta < 4.7$	$p_{ m T}>30{ m GeV}$, $ \eta \leq 2.4$
Jet veto	No other jets $p_{\rm T} > 30 {\rm GeV}$, $ \eta \le 2.4$	No jets $p_{\rm T} > 30 {\rm GeV}$, $2.4 < \eta < 4.7$
$p_{ m T}^{ m miss}$	—	$<\!40\mathrm{GeV}$
$\Delta \phi(\mu \mu, jj)$		>2.5 rad 15

JHEP 11 (2018) 161

Low mass search in µµbj

8 TeV

Several cross-checks performed:

- Relaxed, tighter btagging selection
- Removed muon
 isolation
- Different trigger
- Change veto jet selection (30--> 25 GeV)
- Dropped pileup jet ID criteria...

Low mass search in µµbj

Low mass search in µµbj

Compatibility of 8 and 13 TeV results

If we assume an increase of the signal cross-section (e.g. by a factor of 1.5), the 8 and 13 TeV results are compatible within 2 σ

Assumes same signal efficiency at 8 and 13 TeV; signal acceptance could be different.

Also, a big increase in the pileup jets at 13 TeV in the forward region (\rightarrow reduction of signal in SR2 due to forward jet veto) 19

Compatibility of 8 and 13 TeV results

Heavy Higgs to ttbar

- gg \rightarrow A/H \rightarrow ttbar in 400-750 GeV, relative width $\Gamma/m = \{0.5-25\}\%$
- Dataset: 35.9 fb⁻¹ @ 13 TeV (2016)
- L+jets and LL channel
- Statistical analysis using 2D binned distributions of m_{tt} and angular observables

Heavy Higgs to ttbar

Pair production of stops decaying to top quarks and light flavor jets

• Explore a complementary phase-space to the "traditional" high-MET SUSY searches and focus on low-MET signatures of top squark decays.

- The primary topology feature of the signal is high jet multiplicity.
 - >= 7 jets, H_T >300 GeV, >1 bjet No MET requirement
- Requiring one lepton helps reduce QCD background.
- Jet multiplicity is hard to model at high multiplicity, so rely on data and fit the Njets distribution.

Pair production of stops decaying to top quarks and light flavor jets

Pair production of stops decaying to top quarks and light flavor jets

Search for $h \rightarrow a_1 a_1 \rightarrow \mu^+ \mu^- b \overline{b}$.

- Require 2 isolated muons with p_T > 20, 9 GeV
- 2 jets with p_T > 20, 15 GeV,
- MET < 60 GeV
- B-tag categories (Tight, Medium, Loose)

Phys. Lett. B 795 (2019) 398

Single VLQ T \rightarrow tH/Z

- All-hadronic final state
 - first constraints on T → tZ using hadronic decays of the Z boson with this production mode.
- Low mass search:
 - 0.6 1.2 TeV; >=5 narrow jets (resolved), 5-jet invariant mass signature, at least 3 b-tagged jets
- High mass:
 - > 1.0 TeV, boosted, 2 fat jets
- Explore T quark fractional widths ranging from narrow to 30%.

Single VLQ T \rightarrow tH/Z

High-mass analysis: ttbar from simulation, QCD background from control regions in data

Upper limits are set on the cross sections for the two production modes (pp \rightarrow Tbq and pp \rightarrow Ttq) with the two decay modes (tH and tZ) as well as their sum (tH+tZ), for four width values.

pp \rightarrow Tbq: T singlet model with $\kappa_W = \kappa_H = \kappa_Z$ pp \rightarrow Ttq, (TB) doublet model with $\kappa_H = \kappa_Z$ and $\kappa_W = 0$

29

Single VLQ T \rightarrow tH/Z

Going after the flavor anomalies

Searches for leptoquarks

Renewed interest in leptoquark searches, particularly 2nd & 3rd generation

Many channels starting to push sensitivity above the TeV scale, favored by B physics anomalies

Warrants investigation of new/more complicated final states or model phase space (e.g. bigger couplings/widths)

Searches adding and using 2017+2018 data in progress

Exploring lepton flavor anomalies

Four events are observed with mass above 3 TeV, two each in the ee and dimuon channels. Masses are 3.35 and 3.47 TeV in the ee channel and 3.07 and 3.34 TeV in the dimuon channel.

Exploring lepton flavor anomalies

Data parking and B physics

- During Run 2, CMS stored a large unbiased B hadron sample by tagging on the "opposite-side" B
 - 12 B events recorded
 - Up to 6 kHz additional rate to tape
- Data was "parked" (→ no prompt reconstruction) and processing delayed to times of lower load on the computing system
- Potential resource for investigating B flavor anomalies and searches for other exotic phenomena

Analyses ongoing – stay tuned!

Summary & Outlook

- The ~11 years of LHC operation has been one amazing ride!
 - Discovery of the Higgs boson
 - Now using the Higgs as a tool for discovery
 - Huge amounts of BSM parameter space ruled out
 - At the same time, innovative strategies for triggering, data-taking and analysis are providing access to previously unexplored territory!
 - Some interesting excesses being pursued with full Run 2 datasets (and Run 3 starting next year)
 - Tantalizing hints of new physics in the flavor sector
- An exciting time to develop and implement new ideas
 - Go in directions where no one has gone before!
- <u>95% of the total LHC data still to come (and be studied)!</u>

Existing Anomalies In The Current

ATLAS Run 2 Dataset

Simone Pagan Griso

May 21st, 2021 New Physics from Precision at High Energies - KITP

Introduction

• Vast physics program of measurements, searches for new physics and performance papers

- Each containing often a large number of signal regions / observables
- A number large enough that > 3σ statistical fluctuations are expected to occur
 - Although systematics play an important role and are often not as Guassian as we'd like

Introduction

· Despite large number of searches and measurements, most of the abstracts contain

is carried out on 139 fb⁻¹ of proton–proton collision data at $\sqrt{s} = 13$ TeV collected by the ATLAS detector at the LHC between 2015 and 2018. No significant deviation from the Standard Model background prediction is observed. Mass-dependent exclusion limits at the 95% confidence level are drawn on the single production cross-section of a vector-like *B* quark

data-taking periods. The search is conducted by examining the reconstructed invariant or transverse mass distributions of Wh and Zh candidates for evidence of a localised excess in the mass range of 220 GeV up to 5 TeV. No significant excess is observed and the results are interpreted in terms of constraints on the production cross-section times branching fraction

volumes and are compared with theoretical predictions at different levels of precision, based on a χ^2 /ndf and *p*-value computation. Overall, good agreement is observed between the unfolded data and the predictions.

- However, a small number of anomalies have been observed...
 - ... some are gone with more data,
 - ... some persist or appeared in the full run 2 dataset,
 - ... some are direct evidence of physics we don't fully understand (just maybe not necessarily beyond-SM)
- Tracking them allows to plan at the best for the future dataset increase and R&D needs

Type of anomalies

- Anomalies in direct searches
- Bump-hunting

٠

- Partially reconstructed final states
- Anomalies in indirect searches
 - Rare SM phenomena enhanced by BSM
 - Comparison of sensitive observables with SM predictions
 - Consistency within SM

. . .

- Measurements of "poorly-known" SM processes
 - e.g. non-perturbative regimes, measurements with much better experimental than theoretical accuracy,

Type of anomalies

- Anomalies in direct searches
- Bump-hunting

٠

•

٠

. . .

- Partially reconstructed final states
- Anomalies in indirect searches
- Rare SM phenomena enhanced by BSM
- Comparison of sensitive observables with SM predictions
- Consistency within SM
- Measurements of "poorly-known" SM processes
- e.g. non-perturbative regimes, measurements with much better experimental than theoretical accuracy,

 Likely the longest-living discrepancy in the LHC dataset :)

Bump Hunting

- Fully reconstructed BSM candidate final state
 - Measure candidate mass
 - Explore angular correlations to gather information on the particle's properties
- Large trial factor when scanning the full kinematic available region with good mass resolution

 $p_{global} = 1 - (1 - p_{local})^N$

(only valid for N ~equal significance regions)

YY resonance arXiv:2102.13405

- Look for spin-0 and spin-2 resonances
 - Scan mass, width (spin-0) or coupling (spin-2)
- Two high p_T isolated photons (> 35,25 GeV)
 - $E_T / m_{yy} > 0.3 (0.25)$ for (sub-)leading E_T photon
- Smooth background from non-resonant γγ
- Most significant excess for $m_{\gamma\gamma} \sim 684 \text{ GeV}$ local significance: 3.3 σ global significance: 1.3 σ

Good example of large trial factor

Other heavy scalar searches

- (36 fb^{-1}) HH (\rightarrow 4b) resonance arXiv:1804.06174
 - 4 b-tagged jets required with kinematic selections to enhance expected signal
 - Boosted (>0.8 TeV) and Resolved analyses
 - Most significant excess at M~280 GeV
 - local(global) significance: 3.6σ (2.3σ)

 $A \rightarrow TT$ arXiv:2002.12223

(139 fb⁻¹)

- T_{had}T_{had} and T_{lep}T_{had} final states
- Explores gluon-fusion and b-associated production (MSSM inspired)
- Most significant excess ~ 400 GeV

$A \rightarrow V H(bb)$

- Leptonic V decay, resolved or boosted $H \rightarrow bb$ reconstruction
- Analysis shows an interesting excess with 36 fb⁻¹ of data in the ZH → IIbb signal region
 - Local significance: 3.6σ, Global significance: 2.4σ
 - Driven by the 3 b-tags region (associated bbA production)
- Similar run-2 result looking for A → ZH → Ilbb (<u>only 1,2 b-tag regions</u>) → mild excess but difficult to compare fairly

$H \to aa \to bb\mu\mu$

- Balance of clean final state and high branching ratio
 - Single $(p_T^{\mu} > 27, 5 \text{ GeV}) / \text{di-lepton} (p_T^{\mu} > 15, 15 \text{ GeV})$ triggers
 - Two b-tagged jets ($p_T > 20$ GeV, $\epsilon^{b}=77\%$)
- Kinematic constrained applied via likelihood fit
 - Much poorer m_{bb} resolution $\rightarrow m_{\mu\mu}$ to constrains b-jet energy scale
 - Four-body mass required to be consistent with Higgs mass
- Boosted-Decision-Tree to enhance background suppression
 - Based on kinematic likelihood, mass combinations and angular information

- Main background from Drell-Yan + heavy-flavor and ttbar
 - ttbar: kinematic (shape) from simulation
 - DY: kinematic (shape) from 0 b-tag region
 - Kinematics corrected for 2 vs 0 b-tags via BDT-based event reweighting to better match all kinematic properties

Η

u⁺

$\textbf{B} \rightarrow \textbf{bH(bb)}$

- Targets single-production of vector-like quarks (B)
- H → bb reconstructed as single large-R jet (p_T > 480 GeV)
 - Track-jets matched to large-R jet used for b-tagging
 - One or two b-tagged sub-jets: ε^{b} =70%, ε^{c} =10%, ε^{light} =0.25%
- In total, requires (two) three identified b-jets
 - Isolated b-jet away from Higgs candidate and $p_T > 480 \text{ GeV}$
 - Note: explicit veto of events with isolated high p_T lepton

- Data-driven multi-jet background
- Mass of B candidate as final discriminant
 - Quite poor mass resolution
- Largest excess at m ~ 1.3 TeV
 - Local significance ~ 1.9σ
- Systematic uncertainty play an important role, but limited by statistics in background "B" region

(Meta-)stable charged particles

3.5

4

βγ

3

12

Partially-reconstructed final states

- Often results in final states with large MET \rightarrow great for trigger/background suppression
 - trial-factor either small or due to large number of optimized signal regions
- Relies on fine control of backgrounds' kinematic (often in tails) to extract the signal

 $(36 \text{ fb}^{-1}) \chi_1^{\pm} \chi_2^0 \rightarrow 2/3L + \text{MET} \text{ arXiv:1806.02293}_{T}$

- Recursive Jigsaw technique
- Includes boosted region to probe compressed scenarios

Signal region	SR3ℓ_ISR	
Total observed events	12	3.0σ
Total background events	3.9 ± 1.0	(local)
Other	$0.06^{+0.19}_{-0.06}$	
Triboson	0.08 ± 0.04	
Fit output, VV	3.8 ± 1.0	
Fit input, VV	3.4	

arXiv:1912.08479 ATLAS-CONF-2020-015 (139 fb⁻¹)

- Using more standard kinematic to map similar features
 - Reproduced the excess in 36/fb
 - Excess not confirmed
- Latest iteration released recently:
 - largest excess ~2.3σ in a targeted offshell-Z signal region
 - sensitivity to exclude

$\chi_1{}^{\pm 0}\chi_2{}^0 \rightarrow 2/3L + MET$

- Dedicated analysis for compressed scenarios
 - Very soft leptons: $p_T^e > 4.5$, $p_T^{\mu} > 3$ GeV
 - Isolated track to recover unidentified leptons as low as 1-2 GeV
- Several signal regions optimized for:
 - Production (direct EWKinos, VBF, sleptons)
 - MET and m(II) bins
- Excess with **local significance 2.7σ** in EWKino search
- However, the same region is also probed by the most recent result focused on "regular" 2L/3L signature and does not confirm it
 - Clear benefit in overlapping sensitivity within the final state and parameter space probed

$VV \rightarrow II/Iv/vv jj$

٠

٠

٠

- Probes several production modes
 - Classified using recursive NN
- Boosted hadronic V decays reconstructed ٠ as single large-R jet

15

m_T(vvJ) [GeV]

139 fb

arXiv:2004.14636

Type of anomalies

- Anomalies in direct searches
- Bump-hunting

٠

٠

- Partially reconstructed final states
- Anomalies in indirect searches
 - Rare SM phenomena enhanced by BSM
 - Comparison of sensitive observables with SM predictions
 - Consistency within SM
 - Measurements of "poorly-known" SM processes
 - e.g. non-perturbative regimes, measurements with much better experimental than theoretical accuracy, ...

 Likely the longest-living discrepancy in the LHC dataset :)

Rare SM processes

 (139 fb^{-1}) Four tops production ATLAS-CONF-2021-013

- σsm(tttt) ~12 fb
- Systematics play a dominant role
 - Signal modeling
 - tt+h.f. background
- Need data + theory improvements!

 $B^0(s) \rightarrow \mu \mu$ atlas-conf-2 020-049

Tiny SM expectation

 $\begin{array}{lll} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &=& (3.66 \pm 0.14) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &=& (1.03 \pm 0.05) \times 10^{-10} \end{array}$

- Recent ATLAS+CMS+LHCb combination
 - 2.4 σ compatibility w/ SM for $B_s \rightarrow \mu\mu$

Precision measurements

Probe consistency of the SM and very sensitive to e.g. loop-induced BSM contributions

(139 fb⁻¹) Higgs couplings ATLAS-CONF-2021-013

- Higgs production and decay modes
- $H \rightarrow \gamma \gamma$ mode:
 - slight tension: 1.9σ (global fit)
 - WH and WZ highly correlated (-41%)
- H → Zγ: 2.2σ "expected" excess.. towards observation!

- Lepton universality test
- Large W sample from top decays
 - eμ, μμ final states
- Probe unbiased muon (trigger on other lepton)
- Using muon impact parameter to distinguish muons promptly produced or from tau decay

18

Type of anomalies

- Anomalies in direct searches
- Bump-hunting

•

•

- Partially reconstructed final states
- Anomalies in indirect searches
- Rare SM phenomena enhanced by BSM
- Comparison of sensitive observables with SM predictions
- Consistency within SM

. . .

- Measurements of "poorly-known" SM processes
 - e.g. non-perturbative regimes, measurements with much better experimental than theoretical accuracy,

Proton's Strange PDF

- LHC precision measurements on W/Z+jets constraint proton's PDF
 - HERA data instrumental to our knowledge of PDF, but can't distinguish e.g. flavor of sea-quark \overline{d} vs \overline{s}
 - Usually combined with previous collider and low-energy experiments
- Particularly interesting puzzle on strange PDF, characterized by $R_s = \frac{s+\bar{s}}{\bar{u}+\bar{d}}$,
 - Strange PDF usually assumed suppressed from neutrino CC scattering with charm (R_s < 1)
 - ATLAS fit on generic W/Z+jets suggest an "unsuppressed" $s vs d (R_s \sim 1)$
 - ATLAS 7 TeV W+charm \rightarrow confirms unsuppression
 - CMS 7+13 TeV result points to the "usual" suppression
- New analyses under way to clarify this puzzle!

Conclusions

- Yes, no striking sign of beyond-SM physics yet in the Run 2 LHC dataset
- I've tried to review a few of the most interesting anomalies we currently have in our dataset
 - Some will need Run 3 data to clarify
 - Some can be clarified with ongoing full Run 2 dataset analysis
- We should not forget that we have plenty of measurements that clearly point to physics we haven't fully mastered, and they can be important in our understanding of LHC data!

BACKUP

Statistical fluctuations don't have a sign..

• EWK Zjj (deficit)

	Wilson	Includes	95% confidence	p-value (SM)	
	coefficient	$ \mathcal{M}_{ m d6} ^2$	Expected	Observed	
	c_W/Λ^2	no	[-0.30, 0.30]	[-0.19, 0.41]	45.9%
		yes	[-0.31, 0.29]	[-0.19, 0.41]	43.2%
-	\tilde{c}_W/Λ^2	no	[-0.12, 0.12]	[-0.11, 0.14]	82.0%
		yes	[-0.12, 0.12]	[-0.11, 0.14]	81.8%
	c_{HWB}/Λ^2	no	[-2.45, 2.45]	[-3.78, 1.13]	29.0%
		yes	[-3.11, 2.10]	[-6.31, 1.01]	25.0%
	$\tilde{c}_{HWB}/\Lambda^2$	no	[-1.06, 1.06]	[0.23, 2.34]	1.7%
		yes	[-1.06, 1.06]	[0.23, 2.35]	1.6%

Existing Anomalies In The Current

ATLAS Run 2 Dataset

Simone Pagan Griso

May 21st, 2021 New Physics from Precision at High Energies - KITP

Introduction

• Vast physics program of measurements, searches for new physics and performance papers

- Each containing often a large number of signal regions / observables
- A number large enough that > 3σ statistical fluctuations are expected to occur
 - Although systematics play an important role and are often not as Guassian as we'd like

Introduction

• Despite large number of searches and measurements, most of the abstracts contain

is carried out on 139 fb⁻¹ of proton–proton collision data at $\sqrt{s} = 13$ TeV collected by the ATLAS detector at the LHC between 2015 and 2018. No significant deviation from the Standard Model background prediction is observed. Mass-dependent exclusion limits at the 95% confidence level are drawn on the single production cross-section of a vector-like *B* quark

data-taking periods. The search is conducted by examining the reconstructed invariant or transverse mass distributions of Wh and Zh candidates for evidence of a localised excess in the mass range of 220 GeV up to 5 TeV. No significant excess is observed and the results are interpreted in terms of constraints on the production cross-section times branching fraction

volumes and are compared with theoretical predictions at different levels of precision, based on a χ^2 /ndf and *p*-value computation. Overall, good agreement is observed between the unfolded data and the predictions.

- However, a (not-so) small number of anomalies have been observed...
 - ... some are gone with more data,
 - ... some persist or appeared in the full run 2 dataset,
 - ... some are direct evidence of physics we don't fully understand (just maybe not necessarily beyond-SM)
- Tracking them allows to plan at the best for the future dataset increase and R&D needs

Type of anomalies

Gev

Σ weights / 2

Σ weights - Bkg 4

100

40 20

0

- Anomalies in direct searches ٠
 - **Bump-hunting**
 - Partially reconstructed final states
- Anomalies in indirect searches ٠
 - Rare SM phenomena enhanced by BSM
 - Comparison of sensitive observables with SM predictions
 - Consistency within SM

. . .

- Measurements of "poorly-known" SM processes ٠
 - e.g. non-perturbative regimes, measurements with much better experimental than theoretical accuracy,

Type of anomalies

∕ 0e<

Σ weights - Bkg

- Anomalies in direct searches
 - Bump-hunting
 - Partially reconstructed final states
- Anomalies in indirect searches
 - Rare SM phenomena enhanced by BSM
 - Comparison of sensitive observables with SM predictions
 - Consistency within SM

٠

- Measurements of "poorly-known" SM processes
- e.g. non-perturbative regimes, measurements with much better experimental than theoretical accuracy, ...

Data S/B Weighted

Sig+Bkg Fit (m_H=126.5 GeV) Bkg (4th order polynomial)

 Likely the longest-living discrepancy in the LHC dataset :)

Bump Hunting

- Fully reconstructed BSM candidate final state
 - Measure candidate mass
 - Explore angular correlations to gather information on the particle's properties
- Large trial factor when scanning the full kinematic available region with good mass resolution

$$p_{global} = 1 - (1 - p_{local})^N$$

(only valid for N ~equal significance regions)

YY resonance arXiv:2102.13405

- Look for spin-0 and spin-2 resonances
 - Scan mass, width (spin-0) or coupling (spin-2)
- Two high p_T isolated photons (> 35,25 GeV)
 - $E_T / m_{yy} > 0.3$ (0.25) for (sub-)leading E_T photon
- Smooth background from non-resonant γγ
- Most significant excess for $m_{yy} \sim 684 \text{ GeV}$ local significance: 3.3 σ global significance: 1.3 σ
- Good example of large trial factor

Other heavy scalar searches

٠

- (36 fb^{-1}) HH (\rightarrow 4b) resonance arXiv:1804.06174
 - 4 b-tagged jets required with kinematic selections to enhance expected signal
 - Boosted (>0.8 TeV) and Resolved analyses
 - Most significant excess at M~280 GeV
 - local(global) significance: 3.6σ (2.3σ)

 $A \rightarrow TT$ arXiv:2002.12223

139 fb⁻

$A \rightarrow V H(bb)$

- Leptonic V decay, resolved or boosted $H \rightarrow bb$ reconstruction
- Analysis shows an interesting excess with 36 fb⁻¹ of data in the ZH \rightarrow llbb signal region
 - Local significance: 3.6σ, Global significance: 2.4σ
 - Driven by the 3 b-tags region (associated bbA production)
- Similar run-2 result looking for A \rightarrow ZH \rightarrow llbb (<u>only 1,2 b-tag regions</u>) \rightarrow mild excess but difficult to compare fairly

$\textbf{H} \rightarrow \textbf{aa} \rightarrow \textbf{bb} \mu \mu$

- Balance of clean final state and high branching ratio
 - Single ($p_T^{\mu} > 27$, 5 GeV) / di-lepton ($p_T^{\mu} > 15$, 15 GeV) triggers
 - Two b-tagged jets ($p_T > 20$ GeV, $\epsilon^b=77\%$)
- Kinematic constrained applied via likelihood fit
 - Much poorer m_{bb} resolution $\rightarrow m_{\mu\mu}$ to constrains b-jet energy scale
 - Four-body mass required to be consistent with Higgs mass
- Boosted-Decision-Tree to enhance background suppression
 - Based on kinematic likelihood, mass combinations and angular information

- Main background from Drell-Yan + heavy-flavor and ttbar
 - ttbar: kinematic (shape) from simulation
 - DY: kinematic (shape) from 0 b-tag region
 - Kinematics corrected for 2 vs 0 b-tags via BDT-based event reweighting to better match all kinematic properties

139 fb

ATLAS-CONF-2021-00

Mar 25th, 202

B → bH(bb)

- Targets single-production of vector-like quarks (B)
- $H \rightarrow bb$ reconstructed as single large-R jet (p_T > 480 GeV)
 - Track-jets matched to large-R jet used for b-tagging
 - One or two b-tagged sub-jets: ϵ^{b} =70%, ϵ^{c} =10%, ϵ^{light} =0.25%
- In total, requires (two) three identified b-jets
 - Isolated b-jet away from Higgs candidate and $p_T > 480$ GeV
 - Note: explicit veto of events with isolated high p_T lepton

- Data-driven multi-jet background
- Mass of B candidate as final discriminant
 - Quite poor mass resolution
- Largest excess at m ~ 1.3 TeV
 - Local significance ~ 1.9σ
- Systematic uncertainty play an important role, but limited by statistics in background "B" region

139 fb

(Meta-)stable charged particles

- Charged, massive BSM particle with macroscopic lifetime
 - Heavily ionizing in the pixel detector \rightarrow measure dE/dx $\rightarrow \beta \gamma$
 - Inner tracker → particle momentum p
- Final discriminant: mass M ~ p / βγ
- Select events with large MET
 - used for triggering
 - common to many BSM signatures

- Data-driven background
- Cut-and-count in pre-determined mass windows
 - Determined based on expected resolution, which is largely model-independent driven by $\sigma(p)$, $\sigma(dE/dx)$
- Interesting excess at M ~ 600 GeV
 - Local significance: 2.4 σ (little trial factor)
 - Resolution compatible with expectations (not shown)
- Partial dataset \rightarrow expect follow up w/ Run 2 data!

36 fb⁻

arXiv:1808.04095
Partially-reconstructed final states

- Often results in final states with large MET \rightarrow great for trigger/background suppression
 - trial-factor either small or due to large number of optimized signal regions
- Relies on fine control of backgrounds' kinematic (often in tails) to extract the signal

 36 fb^{-1} X^{1[±]X^{2⁰} \rightarrow 2/3L + MET arXiv:1806.02293}

- Recursive Jigsaw technique
- Includes boosted region to probe compressed scenarios

Signal region	SR3ℓ_ISR	
Total observed events	12	3.0σ
Total background events	3.9 ± 1.0	(local)
Other	$0.06^{+0.19}_{-0.06}$	
Triboson	0.08 ± 0.04	
Fit output, VV	3.8 ± 1.0	
Fit input, VV	3.4	

arXiv:1912.08479 ATLAS-CONF-2020-015

- Using more standard kinematic to map similar features
 - Reproduced the excess in 36/fb
 - Excess not confirmed
- Latest iteration released recently:
 - largest excess ~2.3σ in a targeted offshell-Z signal region
 - sensitivity to exclude

$\chi_1{}^{\pm 0}\chi_2{}^0 \rightarrow 2/3L + MET$

- Dedicated analysis for compressed scenarios
 - Very soft leptons: $p_T^e > 4.5$, $p_T^\mu > 3$ GeV
 - Isolated track to recover unidentified leptons as low as 1-2 GeV
- Several signal regions optimized for:
 - Production (direct EWKinos, VBF, sleptons)
 - MET and m(II) bins
- Excess with **local significance 2.7σ** in EWKino search
- However, the same region is also probed by the most recent result focused on "regular" 2L/3L signature and does not confirm it
 - Clear benefit in overlapping sensitivity within the final state and parameter space probed

$VV \rightarrow II/Iv/vv jj$

q/q''V'a Probes several production modes VJoseph Contraction Classified using recursive NN Boosted hadronic V decays reconstructed X X as single large-R jet q'/q''' \bar{q}' gV70 GeV Data Leptonic V_e selection ATLAS $VBF - ZZ \rightarrow vv$ Z+jets √s=13 TeV, 139 fb⁻¹ W+jets ents / eptor eptor $X \rightarrow VV \rightarrow V_{\ell}V_{h}$ 2-leptor 10³ ZZ 0-lepton tī Large MET selection flow schematic ž VBF merged HP Diboson Single top • High/Low-Purity via jet 40 signal regions Event categorisation Uncertainty 10² Local significance substructure (D₂) VBF Cat. ggF/DY Cat. W/Z+jet background from MC, 2.8σ Signal regions $Z \rightarrow qq$ Signal regions 10 normalized in dedicated Crs Pase Pass High purity High pur V_h selection V_h selection Sherpa as baseline • Merged Merged Low purity Low purity • Scale variations, MG5 Fail Fail comparison 10-1 V_h selection Pass V_h selection Largest systematics: Pass Resolved Resolved Resolved Resolved • Large-R jet response (1- or 2-lep.) (1- or 2-lep.) Data/Postfit 1.2 8.0 8.0 ΔΔ • MC statistics Fail To control Fai To control region selection region selection • W/Z+jets modeling 0.6 1500 Excess stat. limited 2500

15

m_T(vvJ) [GeV]

Type of anomalies

- Anomalies in direct searches
 - Bump-hunting
 - Partially reconstructed final states
- Anomalies in indirect searches
 - Rare SM phenomena enhanced by BSM
 - Comparison of sensitive observables with SM predictions
 - Consistency within SM
- Measurements of "poorly-known" SM processes
 - e.g. non-perturbative regimes, measurements with much better experimental than theoretical accuracy, ...

 Likely the longest-living discrepancy in the LHC dataset :)

Rare SM processes

(139 fb^{-1}) Four tops production ATLAS-CONF-2021-013

- σsm(tttt) ~12 fb
- Systematics play a dominant role
 - Signal modeling
 - tt+h.f. background
- Need data + theory improvements!

Tiny SM expectation

 $\begin{array}{lll} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &=& (3.66 \pm 0.14) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &=& (1.03 \pm 0.05) \times 10^{-10} \end{array}$

- Recent ATLAS+CMS+LHCb combination
 - 2.4 σ compatibility w/ SM for $B_s \rightarrow \mu\mu$

17

Precision measurements

• Probe consistency of the SM and very sensitive to e.g. loop-induced BSM contributions

(139 fb⁻¹) Higgs couplings ATLAS-CONF-2021-013

- Higgs production and decay modes
- $H \rightarrow \gamma \gamma$ mode:
 - slight tension: 1.9σ (global fit)
 - WH and WZ highly correlated (-41%)
- $H \rightarrow Z\gamma$: 2.2 σ "expected" excess.. towards observation!

$$\mathbf{W} \rightarrow \mathbf{T}\mathbf{V} / \mathbf{W} \rightarrow \boldsymbol{\mu} \mathbf{V}$$
 arXiv:2007.14040

- Lepton universality test
- Large W sample from top decays
 - eμ, μμ final states
- Probe unbiased muon (trigger on other lepton)
- Using muon impact parameter to distinguish muons promptly produced or from tau decay

18

Type of anomalies

- Anomalies in direct searches
 - Bump-hunting

٠

- Partially reconstructed final states
- Anomalies in indirect searches
 - Rare SM phenomena enhanced by BSM
 - Comparison of sensitive observables with SM predictions
 - Consistency within SM

. . .

- Measurements of "poorly-known" SM processes
 - e.g. non-perturbative regimes, measurements with much better experimental than theoretical accuracy,

Proton's Strange PDF

- LHC precision measurements on W/Z+jets constraint proton's PDF
 - HERA data instrumental to our knowledge of PDF, but can't distinguish e.g. flavor of sea-quark \overline{d} vs \overline{s}
 - Usually combined with previous collider and low-energy experiments
- Particularly interesting puzzle on strange PDF, characterized by $R_s = \frac{s+\bar{s}}{\bar{u}+\bar{d}}$,
 - Strange PDF usually assumed suppressed from neutrino CC scattering with charm ($R_s < 1$)
 - ATLAS fit on generic W/Z+jets suggest an "unsuppressed" s vs d (R_s ~ 1)
 - ATLAS 7 TeV W+charm \rightarrow confirms unsuppression
 - CMS 7+13 TeV result points to the "usual" suppression
- New analyses under way to clarify this puzzle!

7.8 TeV

arXiv:1402.6263 arXiv:2101.05095

Conclusions

- Yes, no striking sign of beyond-SM physics yet in the Run 2 LHC dataset
- I've tried to review a few of the most interesting anomalies we currently have in our dataset
 - Some will need Run 3 data to clarify
 - Some can be clarified with ongoing full Run 2 dataset analysis
- We should not forget that we have plenty of measurements that clearly point to physics we haven't fully mastered, and they can be important in our understanding of LHC data!

BACKUP

Statistical fluctuations don't have a sign..

• EWK Zjj (deficit)

Wil	son	Includes	95% confidence interval [TeV $^{-2}$]		p-value (SM)
coeffi	cient	$ \mathcal{M}_{ m d6} ^2$	Expected	Observed	
c_W	$/\Lambda^2$	no	[-0.30, 0.30]	[-0.19, 0.41]	45.9%
		yes	[-0.31, 0.29]	[-0.19, 0.41]	43.2%
\tilde{c}_W	$/\Lambda^2$	no	[-0.12, 0.12]	[-0.11, 0.14]	82.0%
		yes	[-0.12, 0.12]	[-0.11, 0.14]	81.8%
c_{HW}	$_{B}/\Lambda^{2}$	no	[-2.45, 2.45]	[-3.78, 1.13]	29.0%
		yes	[-3.11, 2.10]	[-6.31, 1.01]	25.0%
\tilde{c}_{HW}	$_{B}/\Lambda^{2}$	no	[-1.06, 1.06]	[0.23, 2.34]	1.7%
		yes	[-1.06, 1.06]	[0.23, 2.35]	1.6%