

Motivation

- Large excitement for machine learning in particle physics:
- Particle tagging / signal selection
- Low level reconstruction / calibration
- Simulation
... and many more

GK, Plehn (eds), et al, The Machine Learning Landscape ofTop Taggers,

Two* types of problem:

Supervised Learning

Attempt to infer some target (truth label): classification (jet flavour tagging) or regression (energy calibration)

Use training data with known labels (often from Monte Carlo simulation)

Unsupervised

No target, learn the probability distribution (directly from data)

Maximize likelihood $\mathbf{p}(\mathbf{X})$ (minimize -log $\mathbf{p (x))}$

> *There also exists a number of other less-than-supervised approaches (weakly supervised learning, semi-supervised learning, ...) Not so important for now.

Supervised

Most early works fall under this category.
Crucially important for large number of tasks.

Need:

- Higger accuracy (easy to measure, many results)
- Better stability (domain adaptation issue)
- More control over uncertainties
- Resource efficient implementations
- Experimental integration

Unsupervised

Exciting space for developing new ideas (also including all other forms of less-than-supervised learning).

Anomaly Searches

Physics Motivation

- Theoretical and experimental reasons to expect new physics beyond the Standard Model
- However, only negative results in searches
- Make sure that we do not miss potential discoveries at the LHC:
Supplement traditional searches with model-independent* anomaly searches
*Tricky term, will discuss meaning of model-independence later

Why are neutrinos massive?

What is the nature of dark matter \& dark energy?

Why is there more matter than anti-matter?

Why is there more matter than antimatter?

How can the Higgs boson be light when the

What are the details of cosmic inflation? mass receives large quantum corrections?

Dissecting the problem

- Zero: What are anomalies
- First: Build an anomaly scoring function $\mathbf{a}(X)$
- Second: Design analysis strategy
- Third: Interpret result

What is an anomaly?

Point anomaly

- Outliers: Datapoints far away from regular distribution
- Examples:
- Background free searches (e.g. long lived particles)
- Detector malfunctions

And now?

Group anomaly

Group anomaly

$\stackrel{1}{5}$
0
0

- Individual examples not anomalous, but interesting collective behaviour
- Examples:
- New physics searches, e.g. resonances

How to build anomaly score?

- Anomaly score a should be high for anomalous (signal-like)
and low for background-like events
- Some options:
- $a(x)=$ (Semi-) Supervised

How to build anomaly score?

- Anomaly score a should be high for anomalous (signal-like)
and low for background-like events
- Some options:
- $\mathbf{a}(x)=$ (Semi-) Supervised
- Train binary classifier network (using simulation) to discriminate:
- Standard Model background vs
- Cocktail of new physics models
- Pros:
- Close to known methods, simple training
- Clear trade-off: width vs sensitivity
- Cons:
- Ambiguity on mixture choice
- Needs to account for residual difference between data/simulation

How to build anomaly score?

- Anomaly score a should be high for anomalous (signal-like)
and low for background-like events
- Some options:
- $a(x)=$ (Semi-) Supervised
- $a(x)=I / p(x \mid$ Background $)$ (from simulation)
- Systematically look for differences between background simulation and data
- MUSIC / General search

How to build anomaly score?

- Anomaly score a should be high for anomalous (signal-like)
and low for background-like events
- Some options:
- $a(x)=$ (Semi-) Supervised
- $\mathbf{a}(\mathbf{x})=\mathrm{I} / \mathrm{p}(\mathrm{x} \mid$ Background $)$ (from simulation)
- Systematically look for differences between background simulation and data
- MUSIC / General search
- Use histograms of many variables in many dimensions to estimate
- Potentially also improve via ML
- Pros:
- Very signal model independent
- Already delivering results
- Cons:
- Strongly depends on background simulation
- Large penalty from many histogram bins

How to build anomaly score?

- Anomaly score a should be high for anomalous (signal-like)
and low for background-like events
- Some options:
- Search differences between different phase space regions in data
- Show example using autoencoders
- $a(x)=$ (Semi-) Supervised
- $\mathbf{a}(\mathbf{x})=\mathbf{I} / \mathbf{p}(\mathbf{x} \mid$ Background $)$
(from simulation)
(from data)

Example:Autoencoder

Input data e.g. images, high level observables, four vectors

$$
\begin{array}{r}
\mathcal{L}(x)=\left\|x-g_{\theta}\left(f_{\phi}(x)\right)\right\|_{2} \\
a(x)=\mathcal{L}(x)
\end{array}
$$

- Core idea:
- Train lossy compression algorithm on anomaly-free data (minimise L)
- Apply to data containing potential anomalies
- Expect quality to decrease for atypical examples:
anomaly score

Apply to jet images

- Represent data as images
- Boosted top vs QCD jets ($\sim 600 \mathrm{GeV}$) I jet = I image (40x40 pixels, color=energy)
- Train QCD only sample
- Evaluate on mixed top/QCD jet sample - Tops detected as anomaly

Heimel, GK, Plehn, Thompson, QCD or What?, I808.08979
Farina, Nakai, Shih, Searching for New Physics with Deep Autoencoders, I808.08992

Limitations

Complexity

- If anomalies are much simpler (therefore easier to reconstruct):
$a(x)$ will still be lower, despite never encountered in training
- Observed with naive AE in QCD vs top
- Train on tops only; top still considered anomaly wrt/ QCD

Limitations

Complexity

- If anomalies are much simpler (therefore easier to reconstruct):
$a(x)$ will still be lower, despite never encountered in training
- Observed with naive AE in QCD vs top
- Train on tops only; top still considered anomaly wrt/ QCD

Hope that this can be overcome with alternative AE trainings: Stay tuned for update by Heidelberg group using mixture model latent space!

Mostly QCD for training

Mostly top for training
s by Barry
Dillon et al

Limitations

Complexity

- If anomalies are much simpler (therefore easier to reconstruct):
$a(x)$ will still be lower, despite never encountered in training
- Observed with naive AE in QCD vs top
- Train on tops only; top still considered anomaly wrt/ QCD

Hope that this can be overcome with alternative AE trainings: Stay tuned for update by Heidelberg group using mixture model latent space!

Topology

- Additional potential difficulty if data space has a non-trivial global topology. See 2102.08380 for more

Mostly QCD for training

Brief aside on generative models: Variational autoencoder

- The decoder maps a latent space distribution X' to realistic examples
- Control over latent space:
- Decode X' to generate new examples
- Achieve by:
- Make X' Gaussian, encoder learns paramaters μ, σ
- Add term to loss so that (μ, σ) approach standard normal $(0,1)$

How to build anomaly score?

- Anomaly score a should be high for anomalous (signal-like)
and low for background-like events
- Some options:
- $a(x)=$ (Semi-) Supervised
- $\mathbf{a}(\mathbf{x})=\mathrm{I} / \mathrm{p}(\mathbf{x} \mid$ Background $)$
(from simulation)
(from data)
- Search differences between different phase space regions in data
- Show example using autoencoders
- Pros:
- Relatively signal model independent
- Intuitive to construct and train
- Cons:
- Little control over sensitivity
- Some model assumptions needed for construction

How to build anomaly score?

- Anomaly score a should be high for anomalous (signal-like)
and low for background-like events
- Some options:
- $a(x)=$ (Semi-) Supervised
- $a(x)=I / p(x \mid$ Background $)$
(from simulation)
(from data)
$\bullet a(x)=p(x \mid$ Signal $) / p(x \mid$ Background $)$
- Systematically look for differences between different phase space regions in data
- Show two examples:
- Mixed sample training

Sideband approach

Key assumptions:

- There exists one feature so that:
- Background distribution is smooth
- Signal distribution is localised (and very small wrt/ background)

- Use sidebands to train anomaly score.
- Test signal region for new physics.
- Scan over different signal regions (trial factor)
- (Other ways to define anomaly-free regions in data possible as well. Not thoroughly explored yet)

Example: Mixed Sample training (aka CWola hunting)

$$
L_{M_{1} / M_{2}}=\frac{p_{M_{1}}}{p_{M_{2}}}=\frac{f_{1} p_{S}+\left(1-f_{1}\right) p_{B}}{f_{2} p_{S}+\left(1-f_{2}\right) p_{B}}=\frac{f_{1} L_{S / B}+\left(1-f_{1}\right)}{f_{2} L_{S / B}+\left(1-f_{2}\right)}
$$

- Distinguishing mixed samples is equivalent to signal/ background classification assuming
- Signal/background in both mixed samples are from same source
- Sufficiently different mixed samples
- Translated to anomaly detection:
- Train to distinguish signal region and sideband

Metodiev, Nachman, Thaler, Classification without labels: Learning from mixed samples in high energy physics, 1708.02949
Collins, Howe, Nachman, Anomaly Detection for Resonant New
Physics with Machine Learning, I 805.02664

- Only use inputs independent of variable used to define these regions

How to build anomaly score?

- Anomaly score a should be high for anomalous (signal-like)
and low for background-like events
- Some options:
- $a(x)=$ (Semi-) Supervised
- $a(x)=1 / p(x \mid$ Background $)$
(from simulation)
(from data)
- $\mathbf{a}(\mathbf{x})=\mathbf{p}(\mathbf{x} \mid$ Signal $) / \mathbf{p}(\mathbf{x} \mid$ Background $)$
- Systematically look for differences between different phase space regions in data
- Show two examples:
- Mixed sample training
- density estimation
- Pros:
- Relatively signal model independent
- Cheap to train
- Cons:
- Sensitive to correlations
- Some model assumptions needed for construction

How to build anomaly score?

- Anomaly score a should be high for anomalous (signal-like)
and low for background-like events
- Some options:
- $a(x)=$ (Semi-) Supervised
- $a(x)=I / p(x \mid$ Background $)$ (from simulation)
(from data)
$\bullet a(x)=p(x \mid$ Signal $) / p(x \mid$ Background $)$
- Systematically look for differences between different phase space regions in data
- Show two examples:
- Mixed sample training
- density estimation

Example: Density Estimation

Per Neyman-Pearson: Likelihood-ratio is optimal test statistic
Unfortunatly, $p(x \mid a n o m a l y)$ is not available

$$
L_{S / B}=\frac{p(x \mid \text { anomaly })}{p(x \mid \text { normal })}
$$

Example: Density Estimation

Per Neyman-Pearson: Likelihood-ratio is optimal test statistic
Unfortunatly, $p(x \mid a n o m a l y)$ is not available

Build data/background ratio:

$$
\begin{aligned}
L_{S / B} & =\frac{p(x \mid \text { anomaly })}{p(x \mid \text { normal })} \\
L_{D / B} & =\frac{p(x)}{p(x \mid \text { normal })}
\end{aligned}
$$

Example: Density Estimation

Per Neyman-Pearson: Likelihood-ratio is optimal test statistic
Unfortunatly, $p(x \mid a n o m a l y)$ is not available

Build data/background ratio:

$$
L_{S / B}=\frac{p(x \mid \text { anomaly })}{p(x \mid \text { normal })}
$$

$$
L_{D / B}=\frac{p(x)}{p(x \mid \text { normal })}
$$

Approximate background density using control measurement (e.g. sideband)

$$
L_{D / B} \approx \frac{p(x)}{\tilde{p}(x \mid \text { normal })}
$$

Example: Density Estimation

Per Neyman-Pearson: Likelihood-ratio is optimal test statistic
Unfortunatly, $p(x \mid a n o m a l y)$ is not available

$$
L_{S / B}=\frac{p(x \mid \text { anomaly })}{p(x \mid \text { normal })}
$$

Build data/background ratio:

$$
L_{D / B}=\frac{p(x)}{p(x \mid \text { normal })}
$$

Approximate background density using control measurement (e.g. sideband)

$$
L_{D / B} \approx \frac{p(x)}{\tilde{p}(x \mid \text { normal })}
$$

Expand $\quad p(x)=f_{\text {normal }} p(x \mid$ normal $)+f_{\text {anomaly }} p(x \mid$ anomaly $)$

Example: Density Estimation

Per Neyman-Pearson: Likelihood-ratio is optimal test statistic
Unfortunatly, $p(x \mid a n o m a l y)$ is not available
Build data/background ratio:

$$
L_{S / B}=\frac{p(x \mid \text { anomaly })}{p(x \mid \text { normal })}
$$

$$
L_{D / B}=\frac{p(x)}{p(x \mid \text { normal })}
$$

Approximate background density using control measurement (e.g. sideband)

$$
L_{D / B} \approx \frac{p(x)}{\tilde{p}(x \mid \text { normal })}
$$

Expand $\quad p(x)=f_{\text {normal }} p(x \mid$ normal $)+f_{\text {anomaly }} p(x \mid$ anomaly $)$
And insert: $\quad L_{D / B} \approx f_{\text {normal }}+f_{\text {anomaly }} \frac{p(x \mid \text { anomaly })}{\tilde{p}(x \mid \text { normal })}$

Example: Density Estimation

Per Neyman-Pearson: Likelihood-ratio is
optimal test statistic
Unfortunatly, p(x|anomaly) is not available

$$
L_{S / B}=\frac{p(x \mid \text { anomaly })}{p(x \mid \text { normal })}
$$

- Data-Background likelihood is monotonous to Signal-Background likelihood if we can approximate background.
- We can use this to construct an anomaly score

And instert:

$$
L_{D / B} \approx f_{\text {normal }}+f_{\text {anomaly }} \frac{p(x \mid \text { anomaly })}{\tilde{p}(x \mid \text { normal })}
$$

Normalising Flows

- Goal: assign probability density to each datapoint
- Learn bijective transformation between data and a latent space with tractable probability
- Build from simple invertible transformations, tractable Jacobian

$$
\begin{array}{r}
p(\boldsymbol{x})=p\left(\boldsymbol{f}^{-1}(\boldsymbol{x})\right) \prod_{i}\left|\operatorname{det}\left(\frac{\partial \boldsymbol{f}_{i}^{-1}}{\partial \boldsymbol{x}}\right)\right|= \\
p(\boldsymbol{u}) \prod_{i}\left|\operatorname{det}\left(\frac{\partial \boldsymbol{f}_{i}}{\partial \boldsymbol{u}}\right)\right|^{-1}
\end{array}
$$

Generate new samples

Evaluate probability/likelihood, train flow

ANODE

- Use Masked Autoregressive Flow (I705.07057) to learn p (easy to invert NN with simple Jacobian)
- Compare extrapolated and in-region probability densities
- $a(x)=R(x \mid m)=$ ratio of densities $=L_{D / B}$

Nachman, Shih, Anomaly Detection with
Density Estimation, 2001.04990 m_{ij} [TeV]
Thanks to T. Loesche

How to build anomaly score?

- Anomaly score a should be high for anomalous (signal-like)
and low for background-like events
- Some options:
- $a(x)=$ (Semi-) Supervised
- $a(x)=1 / p(x \mid$ Background $)$
(from simulation)
(from data)
- $\mathbf{a}(\mathbf{x})=\mathbf{p}(\mathbf{x} \mid$ Signal $) / \mathbf{p}(\mathbf{x} \mid$ Background $)$
- Systematically look for differences between different phase space regions in data
- Show two examples:
- Mixed sample training
- density estimation
- Pros:
- Relatively signal model independent
- Powerful
- Cons:
- Expensive to train
- Some model assumptions needed for construction

Moving on

- Many strategies exist to construct anomaly scores
- $\mathrm{a}(\mathrm{x})=$ " $\mathrm{p}(\mathrm{x} \mid$ Signal $)$ " \rightarrow Semi-Supervised Cocktails
- $\mathrm{a}(\mathrm{x})=\mathrm{I} / \mathrm{p}(\mathrm{x} \mid$ Background $) \rightarrow$ General Search, Autoencoders
- $a(x)=p(x \mid$ Signal $) / p(x \mid$ Background $) \rightarrow$ CWoLA, Density Estimation
- How can we use them in a search?

Application:ATLAS Di-Jet Search

- ATLAS carried out a search following CWoLa approach
- $A \rightarrow B C$ resonance search no assumption on masses of $\mathrm{A}, \mathrm{B}, \mathrm{C}$
- Resonance search in di-jet invariant mass using $R=1.0$ jets for B, C
- Split spectrum into discrete signal regions
- Use CWola method, cut on 10% and I\% most anomalous events
- Fit spectrum from sidebands
- Interpret results in W' model

General

Simulation Driven

- Similar to classical analyses
- high signal model independence
- downside of data/simulation difference

Data Driven

- Straightforward idea to combine with bump hunt (see ATLAS example)
- Other data-driven techniques (ABCD?) should be possible as well, currently less explored
- Big advantage of data-only search:

No systematic uncertainties
(except background estimation from data)

How to interpret results?

Positive Result (some anomaly found)

Negative Result (no anomaly found)

- Characterise what we found.
- Of course, can compare with different models and see which one fits.
(Also test for detector effects, of course)
- Ideas to systematise this needed
- Publish events?
- Need to interpret resulting exlusion
- Of course, can run different models and test (systematic uncertainties enter here!)
- Again, strategy for interpretation needed. Publish anomaly score for recasting?

21 high level observables as input

Aside:Trigger

- Consider anomaly detection for CMS/ATLAS triggers
- Strategy: (Variational) autoencoder trained on SM cockatail

Cerri, Nguyen, Pierini, Spiropulu, Vlimant, Variational Autoencoders for New Physics Mining at the Large Hadron Collider,

Advertisment

The LHC Olympics 2020

A Community Challenge for Anomaly
Detection in High Energy Physics

Gregor Kasieczka (ed), ${ }^{1}$ Benjamin Nachman (ed), ${ }^{2,3}$ David Shih (ed), ${ }^{4}$ Oz Amram, ${ }^{5}$ Anders Andreassen, ${ }^{6}$ Kees Benkendorfer, ${ }^{2,7}$ Blaz Bortolato, ${ }^{8}$ Gustaaf Brooijmans, ${ }^{9}$ Florencia Canelli, ${ }^{10}$ Jack H. Collins, ${ }^{11}$ Biwei Dai, ${ }^{12}$ Felipe F. De Freitas, ${ }^{13}$ Barry M. Dillon, ${ }^{8,14}$ loan-Mihail Dinu, ${ }^{5}$ Zhongtian Dong, ${ }^{15}$ Julien Donini, ${ }^{16}$ Javier Duarte, ${ }^{17}$ D. A. Faroughy ${ }^{10}$ Julia Gonski, ${ }^{9}$ Philip Harris, ${ }^{18}$ Alan Kahn, ${ }^{9}$ Jernej F. Kamenik, ${ }^{8,19}$ Charanjit K. Khosa, ${ }^{20,30}$ Patrick Komiske, ${ }^{21}$ Luc Le Pottier, ${ }^{2,22}$ Pablo Martín-Ramiro, ${ }^{2,23}$ Andrej Matevc, ${ }^{8,19}$ Eric Metodiev, ${ }^{21}$ Vinicius Mikuni, ${ }^{10}$ Inês Ochoa, ${ }^{24}$ Sang Eon Park, ${ }^{18}$ Maurizio Pierini, ${ }^{25}$ Dylan Rankin, ${ }^{18}$ Veronica Sanz, ${ }^{20,26}$ Nilai Sarda, ${ }^{27}$ Uros̆ Seljak, ${ }^{2,3,12}$ Aleks Smolkovic, ${ }^{8}$ George Stein, ${ }^{2,12}$ Cristina Mantilla Suarez, ${ }^{5}$ Manuel Szewc, ${ }^{28}$ Jesse Thaler, ${ }^{21}$ Steven Tsan, ${ }^{17}$ Silviu-Marian Udrescu, ${ }^{18}$ Louis Vaslin, ${ }^{16}$ Jean-Roch Vlimant, ${ }^{29}$ Daniel Williams, ${ }^{9}$ Mikaeel Yunus ${ }^{18}$

Kasieczka, Nachman, Shih (eds), et al, The LHC
Olympics 2020:A Community Challenge for Anomaly
Detection in High Energy Physics, 2101.08320

- For more on anomaly detection see: https://indico.desy.de/e/anomaly2020
- Public datasets available: https://lhco2020.github.io/homepage/
- Community paper with ~ 20 methods

Advertisment

Closing

- Focused on new physics searches.

Anomaly detection also considered for data quality monitoring, detector control, computing monitoring

- Improve power of anomaly detectors
- Extends to higher number of features
- Beyond images / high-level observables
- How to properly encode normal physics / anomalous physics?
- Systematically understand sensitivity of different approaches
- Develop interpretation strategies
- Widely apply to experimental data

Thank you!

Backup

MADE/MAF

- Masked Autoregressive flow (I502.03509/I705.07057)
- Start with fully connected network, but drop connections so output a_ / mu_j are only connected to input $x _I, .,, x _-1$
- Autoregressive: no dependence of early features on late features
- -> Jacobian is upper triangular matrix and easily invertible
- Combine multiple such blocks

$$
\begin{aligned}
& p(x)=\prod_{i} p\left(x_{i} \mid x_{1: i-1}\right) \\
& p\left(x_{i} \mid x_{1: i-1}\right)=\mathcal{N}\left(x_{i} \mid \mu_{i},\left(\exp \alpha_{i}\right)^{2}\right) \\
& \mu_{i}=f_{\mu_{i}}\left(x_{1: i-1}\right) \\
& \alpha_{i}=f_{\alpha_{i}}\left(x_{1: i-1}\right)
\end{aligned}
$$

Unsupervised Learning for Fun and Precision
 KITP - Precision21
 Anja Butter \& Gregor Kasieczka

ITP, Universität Heidelberg

Precision simulations with limited resources

[1807.11501] Cieri, Chen, Gehrmann, Glover, Huss

Precision simulations with limited resources

ATLAS Preliminary
2020 Computing Model -CPU: 2030: Aggressive R\&D

Speed $=$ Precision

How can we boost MC simulations

- ML 2.0 Generative models
\rightarrow Can we simulate new data?

modular speed up

new concepts

Boosting standard event generation...

1. Generate phase space points
2. Calculate event weight

$$
w_{\text {event }}=f\left(x_{1}, Q^{2}\right) f\left(x_{2}, Q^{2}\right) \times \mathcal{M}\left(x_{1}, x_{2}, p_{1}, \ldots p_{n}\right) \times J\left(p_{i}(r)\right)^{-1}
$$

3. Unweighting via importance sampling
\rightarrow optimal for $w \approx 1$

Boosting standard event generation...

... or training directly on event samples

Event generation

- Generating 4-momenta
- $Z>I I, p p>j j, p p>t \bar{t}+$ decay
[1901.00875] Otten et al. VAE \& GAN
[1901.05282] Hashemi et al. GAN
[1903.02433] Di Sipio et al. GAN
[1903.02556] Lin et al. GAN
[1907.03764, 1912.08824] Butter et al. GAN
[1912.02748] Martinez et al. GAN
[2001.11103] Alanazi et al. GAN
[2011.13445] Stienen et al. NF
[2012.07873] Backes et al. GAN
[2101.08944] Howard et al. VAE

Detector simulation

- Jet images
- Fast calorimeter simulation
[1701.05927] de Oliveira et al. GAN
[1705.02355, 1712.10321] Paganini et al. GAN
[1802.03325, 1807.01954] Erdmann et al. GAN
[1805.00850] Musella et al. GAN
[ATL-SOFT-PUB-2018-001, ATLAS-SIM-2019-004, ATL-SOFT-PROC-2019-007] ATLAS VAE \& GAN
[1909.01359] Carazza and Dreyer GAN
[1912.06794] Belayneh et al. GAN
[2005.05334, 2102.12491] Buhmann et al. VAE
[2009.03796] Diefenbacher et al. GAN
[2009.14017] Lu et al.

NO claim to completeness!

Generative Adversarial Networks

Discriminator $\left[D\left(x_{r}\right) \rightarrow 1, D\left(x_{0}\right) \rightarrow 0\right]$

$$
L_{D}=\langle-\log D(x)\rangle_{x \sim P_{\text {Tuth }}}+\langle-\log (1-D(x))\rangle_{x \sim P_{\text {Gen }}} \rightarrow-2 \log 0.5
$$

Generator $\left[D\left(x_{0}\right) \rightarrow 1\right]$

$$
\begin{aligned}
L_{G}= & \langle-\log D(x)\rangle_{x \sim P_{G e n}} \\
& \Rightarrow \text { Nash Equilibrium } \\
& \Rightarrow \text { New statistically independent samples }
\end{aligned}
$$

What is the statistical value of GANned events? [poososss)

- Camel function
- Sample vs. GAN vs. 5 param.-fit

Evaluation on quantiles:

$$
\mathrm{MSE}^{*}=\sum_{j=1}^{N_{\text {quant }}}\left(p_{j}-\frac{1}{N_{\text {quant }}}\right)^{2}
$$

What is the statistical value of GANned events? [poososss)

- Camel function
- Sample vs. GAN vs. 5 param.-fit

Evaluation on quantiles:

$$
\mathrm{MSE}^{*}=\sum_{j=1}^{N_{\text {quant }}}\left(p_{j}-\frac{1}{N_{\text {quant }}}\right)^{2}
$$

\rightarrow Amplification factor 2.5

$$
\text { Sparser data } \rightarrow \text { bigger amplification }
$$

How to GAN LHC events ${ }_{[1907.0364]}$

- $t \bar{t} \rightarrow 6$ quarks
- 18 dim output
- external masses fixed
- no momentum conservation

+ Flat observables \checkmark
- Systematic undershoot in tails [10-20\% deviation]

Special features

Solution: MMD kernel

$$
\mathrm{MMD}^{2}\left(\mathrm{P}_{T,} \mathrm{P}_{G}\right)=\left\langle k\left(x, x^{\prime}\right)\right\rangle_{x, x^{\prime} \sim P_{T}}+\left\langle k\left(y, y^{\prime}\right)\right\rangle_{y, y^{\prime} \sim P_{G}}-2\langle k(x, y)\rangle_{x \sim P_{T, y} \sim P_{G}}
$$

Correlations

Correlations

Reaching precision (preliminary)

1. Representation p_{T}, η, ϕ

$$
\text { W + } 2 \text { jets }
$$

2. Momentum conservation
3. Resolve $\log p_{T}$
4. Regularization: spectral norm
5. Batch information
$\rightarrow 1 \%$ precision \checkmark

Next step automization

Information in distributions

The unweighting bottleneck

- High-multiplicity / higher-order \rightarrow unweighting efficiencies $<1 \%$
\rightarrow Simulate conditions with naive Monte Carlo generator ME by Sherpa, parton densities from LHAPDF, Rambo-on-diet

$$
p p \rightarrow \mu^{+} \mu^{-} \text {with } m_{\mu \mu}>50 \mathrm{GeV}
$$

\rightarrow unweighting efficieny 0.2%

Training on weighted events

Information contained in distribution or event weights

Train on weighted events

Training on weighted events

Information contained in distribution or event weights

Train on weighted events

Generate unweighted events

$$
L_{D}=\langle-w \log D(x)\rangle_{x \sim P_{\text {Truth }}}+\langle-\log (1-D(x))\rangle_{x \sim P_{G e n}}
$$

Training on weighted events

Information contained in distribution or event weights

Train on weighted events

Generate unweighted events

$$
L_{D}=\langle-w \log D(x)\rangle_{x \sim P_{\text {Truth }}}+\langle-\log (1-D(x))\rangle_{x \sim P_{G e n}}
$$

normalizing flow: B. Stienen, R. Verheyen [2011.13445]

uwGAN results

Populates high energy tails
Large amplification wrt. unweighted data!

Fast detector simulations

- Important R\&D potential NN evaluation $\times 100-1000$ faster than GEANT4

- Same underlying techniques [GAN, VAE, (NF)]
- Challenge: High-dimensional output

$$
\leftarrow 30 \times 30 \times 30
$$

BIB-AE PP

Bounded-Information-Bottleneck autoencoder with post processing

BIB-AE PP

Bounded-Information-Bottleneck autoencoder with post processing

GEANT4

Simulation

BIB-AE PP

Bounded-Information-Bottleneck autoencoder with post processing

Post Processor Network adjusts energy to recover spectrum \rightarrow MIP bump

Can we invert the simulation chain?

wish list:
multi-dimensionalbin independentstatistically well defined

Invertible networks

[1808.04730] L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner,
E. W. Pellegrini, R. S. Klessen, L. Maier-Hein, C. Rother, U. Köthe

+ Bijective mapping
+ Tractable Jacobian
+ Fast evaluation in both directions
+ Arbitrary networks s and t

Inverting detector effects

- $p p \rightarrow Z W \rightarrow(I I)(j j)$
- Train: parton \rightarrow detector
- Evaluate: parton \leftarrow detector

multi-dimensional \checkmark bin independent \checkmark statistically well defined ?

Including stochastical effects

$$
\binom{x_{p}}{r_{p}} \stackrel{\text { PYTHIA,DELPHES: } g \rightarrow}{\leftarrow \text { unfolding }: \bar{g}}\binom{x_{d}}{r_{d}}
$$

Sample r_{d} for fixed detector event How often is Truth included in distribution quantile?

- Problem: arbitrary balance of many loss functions

Taking a different angle

Given an event x_{d}, what is the probability distribution at parton level? \rightarrow sample over r, condition on x_{d}

$$
x_{p} \underset{\leftarrow \text { unfolding: } \bar{g}\left(r, f\left(x_{d}\right)\right)}{g\left(x_{p}, f\left(x_{d}\right)\right) \rightarrow} r
$$

Taking a different angle

Given an event x_{d}, what is the probability distribution at parton level?
\rightarrow sample over r, condition on x_{d}

$$
x_{p} \underset{\leftarrow \text { unfolding: } \bar{g}\left(r, f\left(x_{d}\right)\right)}{g\left(x_{p}, f\left(x_{d}\right)\right) \rightarrow} r
$$

\rightarrow Training: Maximize posterior over model parameters

$$
\begin{aligned}
L & =-\left\langle\log p\left(\theta \mid x_{p}, x_{d}\right)\right\rangle_{x_{p} \sim P_{p}, x_{d} \sim P_{d}} \\
& =-\left\langle\log p\left(x_{p} \mid \theta, x_{d}\right)\right\rangle_{x_{p} \sim P_{p}, x_{d} \sim P_{d}}-\log p(\theta)+\text { const. } \leftarrow \text { Bayes } \\
& =-\left\langle\log p\left(\bar{g}\left(x_{p}, x_{d}\right)\right)+\log \right| \frac{\partial \bar{g}\left(x_{p}, x_{d}\right)}{\partial x_{p}}| \rangle-\log p(\theta) \leftarrow \text { change of var } \\
& =\langle 0.5|\left|\bar{g}\left(x_{p}, f\left(x_{d}\right)\right) \|_{2}^{2}-\log \right| J| \rangle_{x_{p} \sim P_{p}, x_{d} \sim P_{d}}-\log p(\theta)
\end{aligned}
$$

\rightarrow Jacobian of bijective mapping

Cross check distributions

Condition INN on detector data raoos orses

Minimizing $\left.\left.L=\langle 0.5| \mid \bar{g}\left(x_{p}, f\left(x_{d}\right)\right)\right) \|_{2}^{2}-\log |J|\right\rangle_{x_{p} \sim P_{p}, x_{d} \sim P_{d}}-\log p(\theta)$

multi-dimensional \checkmark bin independent \checkmark statistically well defined \checkmark

Inverting the full event I

- $p p>W Z>q \bar{q} I^{+} I^{-}+\mathrm{ISR}$
\rightarrow ISR leads to large fraction of $2 / 3 / 4$ jet events
- Train and test on exclusive channels

Inverting the full event II

$$
p p>W Z>q \bar{q} I^{+} I^{-}+\mathrm{ISR}
$$

Train on inclusive dataset

Evaluate
exclusive $2 / 3 / 4$ jet channels

We can use ML ...

... to enable precision simulations in forward direction
... to turn weighted into unweighted events
... to invert the simulation chain statistically

$$
\ldots \text { for fun and precision :) }
$$

