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• Large excitement for machine learning in particle 
physics: 

• Particle tagging / signal selection
• Low level reconstruction / calibration
• Simulation

… and many more

Motivation
Inspire Search:

("machine learning" or "deep 
learning" or neural) and (hep-ex 
or hep-ph or hep-th)

GK, Plehn (eds), et al, The Machine 
Learning Landscape of Top Taggers, 
1902.09914
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Supervised Learning
Attempt to infer some target (truth label):  
classification (jet flavour tagging) or 
regression (energy calibration) 

Use training data with known labels 
(often from Monte Carlo simulation)

Unsupervised
No target, learn the probability 
distribution (directly from data)

X

observable features 
such as kinematics, 
tracks,…

y  

truth label  
(e.g. top or QCD)

Learn to  
predict

y’ = fθ(X)

X

Learn to  
predict:

p(X) = fθ(X) p(X)
probability  

density

Two* types of problem:

*There also exists a number of other 
less-than-supervised approaches (weakly  
supervised learning, semi-supervised 
learning, …) Not so important for now.

Top jet probability

y’  
Maximize likelihood p(X)
(minimize -log p(x))



2007.14400
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Most early works fall under this category.

Crucially important for large number of 
tasks.

Need: 

• Higger accuracy (easy to measure, 
many results)

• Better stability (domain adaptation 
issue)

• More control over uncertainties

• Resource efficient implementations

• Experimental integration

• …

Supervised

2012.08526
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Predict jet
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Predict jet
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Unsupervised

Part II (Anja): 
How can we efficiently 
sample from p(X)? 
Generative Models // Fast 
simulation

Exciting space for developing new ideas 
(also including all other forms of less-than-supervised learning). 

 
Topic of our talks today.

Part I (Gregor):  
How can we use a learned 

p(X) to find new physics? 
Anomaly detection // 

Model independent 
searches
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Anomaly Searches



Physics Motivation

• Theoretical and experimental reasons to expect 
new physics beyond the Standard Model

• However, only negative results in searches

• Make sure that we do not miss potential 
discoveries at the LHC: 
Supplement traditional searches with  
model-independent* anomaly searches

7

What is the nature of dark 
matter & dark energy?

Why is there more matter than 
anti-matter?
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Figure 3: Left: SM phase diagram in terms of Higgs and top pole masses. The plane is
divided into regions of absolute stability, meta-stability, instability of the SM vacuum, and non-
perturbativity of the Higgs quartic coupling. The top Yukawa coupling becomes non-perturbative
for Mt > 230 GeV. The dotted contour-lines show the instability scale ⇤I in GeV assuming
↵3(MZ) = 0.1184. Right: Zoom in the region of the preferred experimental range of Mh and Mt

(the grey areas denote the allowed region at 1, 2, and 3�). The three boundary lines correspond
to 1-� variations of ↵3(MZ) = 0.1184±0.0007, and the grading of the colours indicates the size
of the theoretical error.

The quantity �e↵ can be extracted from the e↵ective potential at two loops [112] and is explicitly
given in appendix C.

4.3 The SM phase diagram in terms of Higgs and top masses

The two most important parameters that determine the various EW phases of the SM are the
Higgs and top-quark masses. In fig. 3 we update the phase diagram given in ref. [4] with our
improved calculation of the evolution of the Higgs quartic coupling. The regions of stability,
metastability, and instability of the EW vacuum are shown both for a broad range of Mh and
Mt, and after zooming into the region corresponding to the measured values. The uncertainty
from ↵3 and from theoretical errors are indicated by the dashed lines and the colour shading
along the borders. Also shown are contour lines of the instability scale ⇤I .

As previously noticed in ref. [4], the measured values of Mh and Mt appear to be rather
special, in the sense that they place the SM vacuum in a near-critical condition, at the border
between stability and metastability. In the neighbourhood of the measured values of Mh and
Mt, the stability condition is well approximated by

Mh > 129.6GeV + 2.0(Mt � 173.34GeV)� 0.5GeV
↵3(MZ)� 0.1184

0.0007
± 0.3GeV . (64)

The quoted uncertainty comes only from higher order perturbative corrections. Other non-

19

Is the electroweak 
vacuum stable?

Why is there more 
matter than anti-

matter?

How can the Higgs 
boson be light when the 
mass receives large 
quantum corrections?

What are the details of 
cosmic inflation?

What are the origins of 
the LHCb flavour 

anomaly?

Why are neutrinos massive?

*Tricky term, will discuss meaning 
of model-independence later



Dissecting the problem
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• Zero: What are anomalies

• First:  Build an anomaly scoring function a(X)

• Second: Design analysis strategy

• Third:  Interpret result 



What is an anomaly?



Point anomaly

• Outliers: Datapoints far away from regular distribution

• Examples:

• Background free searches  
(e.g. long lived particles)

• Detector malfunctions



And now?
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Color (Mass)

Co
un

t

Group anomaly

• Individual examples not anomalous, 
but interesting collective behaviour

• Examples:

• New physics searches, e.g. resonances



How to build anomaly score?
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• Anomaly score a should be high for 
anomalous (signal-like) 
and low for background-like events

• Some options:

• a(x) = (Semi-) Supervised
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• Train binary classifier network (using 
simulation) to discriminate:

• Standard Model background 
vs

• Cocktail of new physics models 

• Pros:

• Close to known methods, simple 
training

• Clear trade-off: width vs sensitivity

• Cons:

• Ambiguity on mixture choice

• Needs to account for residual 
difference between data/simulation

• Anomaly score a should be high for 
anomalous (signal-like) 
and low for background-like events

• Some options:

• a(x) = (Semi-) Supervised 

How to build anomaly score?
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CMS Collaboration, MUSiC: a model unspecific search for 
new physics in proton-proton collisions at sqrt(s)=13 TeV, 
2010.02984

•Systematically look for differences between 
background simulation and data

•MUSIC / General search

• Anomaly score a should be high for 
anomalous (signal-like) 
and low for background-like events

• Some options:

• a(x) = (Semi-) Supervised 

• a(x) = 1 / p(x|Background) 
(from simulation) 
 

How to build anomaly score?



How to build anomaly score?
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• Systematically look for differences between 
background simulation and data

• MUSIC / General search

• Use histograms of many variables in 
many dimensions to estimate 

• Potentially also improve via ML

• Pros:

• Very signal model independent

• Already delivering results

• Cons:

• Strongly depends on background 
simulation

• Large penalty from many histogram bins

• Anomaly score a should be high for 
anomalous (signal-like) 
and low for background-like events

• Some options:

• a(x) = (Semi-) Supervised 

• a(x) = 1 / p(x|Background) 
(from simulation) 
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• Search differences between different phase 
space regions in data

• Show example using autoencoders

• Anomaly score a should be high for 
anomalous (signal-like) 
and low for background-like events

• Some options:

• a(x) = (Semi-) Supervised 

• a(x) = 1 / p(x|Background) 
(from simulation) 
(from data) 

How to build anomaly score?



Example: Autoencoder

• Core idea:

• Train lossy compression algorithm on anomaly-free data 
(minimise L)

• Apply to data containing potential anomalies

• Expect quality to decrease for atypical examples:  
anomaly score

19

X X’ X’’
Encoder  

fɸ(x)
Decoder 

gθ(x’)

Input data 
e.g. images, high level 
observables, four 
vectors

Compressed 
representation 
Latent space Output data

(sane format as 
input)

L(x) = ||x� g✓(f�(x))||2
a(x) = L(x)



Apply to jet images

• Represent data as images
• Boosted top vs QCD jets (~600 GeV) 

1 jet = 1 image (40x40 pixels, color=energy)
• Train QCD only sample
• Evaluate on mixed top/QCD jet sample
• Tops detected as anomaly

Heimel, GK, Plehn, Thompson, QCD or What?, 1808.08979
Farina, Nakai, Shih, Searching for New Physics with Deep Autoencoders, 1808.08992

X’
Encoder 

fɸ(x)
Decoder 

gθ(x’)
Compressed 
representation 
Latent space



Limitations
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• If anomalies are much simpler (therefore 
easier to reconstruct): 
a(x) will still be lower, despite never encountered 
in training

• Observed with naive AE in QCD vs top

• Train on tops only; top still considered 
anomaly wrt/ QCD

Complexity
Only QCD for training

Only top for training

Tim Weber. MSc thesis. 
Hamburg, 2019

Top

Top

QCD

QCD

More anomalous

More anomalous



Limitations
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• If anomalies are much simpler (therefore 
easier to reconstruct): 
a(x) will still be lower, despite never encountered 
in training

• Observed with naive AE in QCD vs top

• Train on tops only; top still considered 
anomaly wrt/ QCD

Complexity

Hope that this can be overcome with alternative 
AE trainings: Stay tuned for update by Heidelberg 
group using mixture model latent space!

Work in progress by Barry 
Dillon et al

Mostly QCD for training

Mostly top for training

Top
QCD

Top

QCD

More anomalous

More anomalous



Limitations
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• If anomalies are much simpler (therefore 
easier to reconstruct): 
a(x) will still be lower, despite never encountered 
in training

• Observed with naive AE in QCD vs top

• Train on tops only; top still considered 
anomaly wrt/ QCD

Complexity

Hope that this can be overcome with alternative 
AE trainings: Stay tuned for update by Heidelberg 
group using mixture model latent space!

Topology
• Additional potential difficulty if data space 

has a non-trivial global topology.  
See 2102.08380 for more

Work in progress by Barry 
Dillon et al

Mostly QCD for training

Mostly top for training

Top
QCD

Top

QCD

More anomalous

More anomalous



Sample

Brief aside on generative models: 
Variational autoencoder
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• The decoder maps a latent 
space distribution X’ to realistic  
examples

• Control over latent space:

• Decode X’ to generate new examples

X X’ X’’
Encoder 

fɸ(x)
Decoder 

gθ(x’)μ,σ

x0 ⇠ N (µ,�)

• Achieve by:

• Make X’ Gaussian, encoder learns paramaters 
μ,σ

• Add term to loss so that (μ,σ) approach 
standard normal (0,1)



25

• Search differences between different 
phase space regions in data

• Show example using autoencoders

• Pros:

• Relatively signal model independent

• Intuitive to construct and train

• Cons:

• Little control over sensitivity

• Some model assumptions needed for 
construction

• Anomaly score a should be high for 
anomalous (signal-like) 
and low for background-like events

• Some options:

• a(x) = (Semi-) Supervised 

• a(x) = 1 / p(x|Background) 
(from simulation) 
(from data) 

How to build anomaly score?
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• Systematically look for differences between 
different phase space regions in data

• Show two examples:

•Mixed sample training

• Anomaly score a should be high for 
anomalous (signal-like) 
and low for background-like events

• Some options:

• a(x) = (Semi-) Supervised 

• a(x) = 1 / p(x|Background) 
(from simulation) 
(from data) 

•a(x) = p(x|Signal) / p(x|Background)

How to build anomaly score?
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Sideband approach
Key assumptions:

• There exists one feature so that:

• Background distribution is smooth

• Signal distribution is localised 
(and very small wrt/ background)

#
- Background

Events in ( known physics)
data

- signal
( new physics)-

-

Mass for other smooth observable)
sidebands

signal
Region"÷¥ "

Mass ( or other smooth observable)

• Use sidebands to train anomaly score.

• Test signal region for new physics.

• Scan over different signal regions (trial factor)

• (Other ways to define anomaly-free regions in data 
possible as well. Not thoroughly explored yet)
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• Distinguishing mixed samples is equivalent to signal/
background classification assuming

• Signal/background in both mixed samples are from 
same source

• Sufficiently different mixed samples

• Translated to anomaly detection:

• Train to distinguish signal region and sideband

• Only use inputs independent of variable used to 
define these regions
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –

Metodiev, Nachman, Thaler, Classification without labels: Learning 
from mixed samples in high energy physics, 1708.02949
Collins, Howe, Nachman, Anomaly Detection for Resonant New 
Physics with Machine Learning,1805.02664

Example: Mixed Sample training 
(aka CWola hunting)
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• Systematically look for differences between 
different phase space regions in data

• Show two examples:

•Mixed sample training
• density estimation

• Pros:

• Relatively signal model independent

• Cheap to train

• Cons:

• Sensitive to correlations

• Some model assumptions needed for 
construction

• Anomaly score a should be high for 
anomalous (signal-like) 
and low for background-like events

• Some options:

• a(x) = (Semi-) Supervised 

• a(x) = 1 / p(x|Background) 
(from simulation) 
(from data) 

•a(x) = p(x|Signal) / p(x|Background)

How to build anomaly score?
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• Anomaly score a should be high for  
anomalous (signal-like) 
and low for background-like events

• Some options:

• a(x) = (Semi-) Supervised 

• a(x) = 1 / p(x|Background) 
(from simulation) 
(from data) 

•a(x) = p(x|Signal) / p(x|Background)

How to build anomaly score?
• Systematically look for differences between 

different phase space regions in data

• Show two examples:

• Mixed sample training

•density estimation



Example: Density Estimation

31

LS/B =
p(x|anomaly)

p(x|normal)

Per Neyman-Pearson: Likelihood-ratio is 
optimal test statistic 
Unfortunatly, p(x|anomaly) is not available 



Example: Density Estimation

LS/B =
p(x|anomaly)

p(x|normal)

Per Neyman-Pearson: Likelihood-ratio is 
optimal test statistic 
Unfortunatly, p(x|anomaly) is not available 

LD/B =
p(x)

p(x|normal)
Build data/background ratio: 



Example: Density Estimation
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LS/B =
p(x|anomaly)

p(x|normal)

Per Neyman-Pearson: Likelihood-ratio is 
optimal test statistic 
Unfortunatly, p(x|anomaly) is not available 

LD/B =
p(x)

p(x|normal)

LD/B ⇡ p(x)

p̃(x|normal)
Approximate background density using 
control measurement (e.g. sideband)

Build data/background ratio: 



Example: Density Estimation
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LS/B =
p(x|anomaly)

p(x|normal)

Per Neyman-Pearson: Likelihood-ratio is 
optimal test statistic 
Unfortunatly, p(x|anomaly) is not available 

LD/B =
p(x)

p(x|normal)

LD/B ⇡ p(x)

p̃(x|normal)
Approximate background density using 
control measurement (e.g. sideband)

Build data/background ratio: 

Expand p(x) = fnormal p(x|normal) + fanomaly p(x|anomaly)



Example: Density Estimation
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LS/B =
p(x|anomaly)

p(x|normal)

Per Neyman-Pearson: Likelihood-ratio is 
optimal test statistic 
Unfortunatly, p(x|anomaly) is not available 

LD/B =
p(x)

p(x|normal)

LD/B ⇡ p(x)

p̃(x|normal)
Approximate background density using 
control measurement (e.g. sideband)

Build data/background ratio: 

Expand p(x) = fnormal p(x|normal) + fanomaly p(x|anomaly)

LD/B ⇡ fnormal + fanomaly
p(x|anomaly)

p̃(x|normal)
And insert:



Example: Density Estimation
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LS/B =
p(x|anomaly)

p(x|normal)

Per Neyman-Pearson: Likelihood-ratio is 
optimal test statistic 
Unfortunatly, p(x|anomaly) is not available 

LD/B =
p(x)

p(x|normal)

LD/B ⇡ p(x)

p̃(x|normal)
Approximate background density using 
control measurement (e.g. sideband)

Build data/background ratio: 

Expand p(x) = fnormal p(x|normal) + fanomaly p(x|anomaly)

LD/B ⇡ fnormal + fanomaly
p(x|anomaly)

p̃(x|normal)
And instert:

• Data-Background likelihood is monotonous to 
Signal-Background likelihood if we can 
approximate background.  

•We can use this to construct an 
anomaly score



Normalising Flows
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Generate new samples

Evaluate probability/likelihood, train �ow

Simple
Distribution

u0

... Complex
Distribution...

• Goal: assign probability density to each datapoint

• Learn bijective transformation between data and a 
latent space with tractable probability

• Build from simple invertible transformations, 
tractable Jacobian

Thanks to T. Loesche

p(x) = p(f�1(x))
Y

i

����det
✓
@f�1

i

@x

◆���� =

p(u)
Y

i

����det
✓
@f i

@u

◆����
�1



ANODE
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• Use Masked Autoregressive Flow (1705.07057) to learn p 
(easy to invert NN with simple Jacobian)

• Compare extrapolated and in-region probability densities

• a(x) = R(x|m) = ratio of densities = LD/B

+/- 10% of
mass peak

train "inner model"
on SR

evaluate on
signal region

mjj

SB SB

SR

train "outer model"
on SB

evaluate on
signal region

Nachman, Shih, Anomaly Detection with 
Density Estimation, 2001.04990
Thanks to T. Loesche 
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• Systematically look for differences between 
different phase space regions in data

• Show two examples:

• Mixed sample training

•density estimation

• Pros:

• Relatively signal model independent

• Powerful

• Cons:

• Expensive to train

• Some model assumptions needed for 
construction

• Anomaly score a should be high for  
anomalous (signal-like) 
and low for background-like events

• Some options:

• a(x) = (Semi-) Supervised 

• a(x) = 1 / p(x|Background) 
(from simulation) 
(from data) 

•a(x) = p(x|Signal) / p(x|Background)

How to build anomaly score?



Moving on
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• Many strategies exist to construct anomaly scores 

• a(x) = "p(x|Signal)” → Semi-Supervised Cocktails

• a(x) = 1 / p(x|Background) → General Search, Autoencoders 

• a(x) = p(x|Signal) / p(x|Background) → CWoLA, Density Estimation

• How can we use them in a search?

MANY more ideas exist, see e.g. 2101.08320
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Application: ATLAS Di-Jet Search
• ATLAS carried out a search following CWoLa 

approach

•  A → BC resonance search 
no assumption on masses of A,B,C

• Resonance search in di-jet invariant mass 
using R=1.0 jets for B,C

• Split spectrum into discrete signal regions

• Use CWola method, cut on 10% and 1% 
most anomalous events

• Fit spectrum from sidebands

• Interpret results in W’ model

ATLAS Collaboration, Dijet resonance search with weak 
supervision using sqrt(s)=13 TeV pp collisions in the ATLAS 
detector, 2005.02983
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General
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Simulation Driven
• Similar to classical analyses

• high signal model independence

• downside of data/simulation difference

Data Driven
• Straightforward idea to combine with bump 

hunt (see ATLAS example)

• Other data-driven techniques (ABCD?) 
should be possible as well, currently less 
explored

• Big advantage of data-only search:  
No systematic uncertainties  
(except background estimation from data)



How to interpret results?
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Positive Result 
(some anomaly found)

• Characterise what we found.

• Of course, can compare with different 
models and see which one fits. 
(Also test for detector effects, of course) 

• Ideas to systematise this needed

• Publish events?

Negative Result 
(no anomaly found)

• Need to interpret resulting exlusion

• Of course, can run different models and 
test (systematic uncertainties enter here!) 

• Again, strategy for interpretation needed. 
Publish anomaly score for recasting?



Aside: Trigger

44

• Consider anomaly detection for CMS/ATLAS 
triggers

• Strategy: (Variational) autoencoder trained on 
SM cockatail

21 high level  
observables as input

Cerri, Nguyen, Pierini, Spiropulu, Vlimant, 
Variational Autoencoders for New Physics 
Mining at the Large Hadron Collider, 
1811.10276



Advertisment
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• For more on anomaly detection see: 
https://indico.desy.de/e/anomaly2020

• Public datasets available: 
https://lhco2020.github.io/homepage/

• Community paper with ~20 methods

Black Box 1
Kasieczka, Nachman, Shih (eds), et al, The LHC 
Olympics 2020: A Community Challenge for Anomaly 
Detection in High Energy Physics, 2101.08320
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Organization of Physics Analysis Groups at the LHC

SUSYTop
Higgs

SM

B physics

Exotics/
Exotica

B2G / 
HDBSModel 

Agnostic?
Supervised

Unsupervised

Semisupervised

Statistics 
forum ML 

forum

Measurement 
Groups

Search 
Groups

Supporting 
organizations

ATLAS CWoLa 

hunting search

ATLAS General 

Search / CMS MUSiC

Kasieczka, Nachman, Shih (eds), et al, The LHC 
Olympics 2020: A Community Challenge for Anomaly 
Detection in High Energy Physics, 2101.08320



Closing
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• Focused on new physics searches. 
Anomaly detection also considered for data quality 
monitoring, detector control, computing monitoring

• Improve power of anomaly detectors

• Extends to higher number of features

• Beyond images / high-level observables 

• How to properly encode normal physics / anomalous 
physics?

• Systematically understand sensitivity of different 
approaches

• Develop interpretation strategies 

• Widely apply to experimental data Thank you!

Anomaly  
Searches

Specific 
Searches



Backup
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MADE/MAF
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• Masked Autoregressive flow 
(1502.03509/1705.07057)

• Start with fully connected network, but drop 
connections so output a_j / mu_j are only 
connected to input x_1,..,x_j-1

• Autoregressive: no dependence of early features on 
late features

• -> Jacobian is upper triangular matrix and easily 
invertible

• Combine multiple such blocks

...x1 x2 xi-1 xi ... xN

...u1 u2 ui-1 ui ... uN

�i �i

complex
distribution

base
distribution
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Precision simulations with limited resources

L

Matrix element

Parton shower

Hadronization

Detector simulation
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Figure 2: Higgs boson rapidity distribution. Figures from Refs. [19, 20].

�(scale) �(PDF-TH) �(EW) �(t, b, c) �(1/mt) �(PDF) �(�s)

+0.10 pb
�1.15 pb ±0.56 pb ±0.49 pb ±0.40 pb ±0.49 pb ± 0.89 pb +1.25 pb

�1.26 pb

+0.21%
�2.37% ±1.16% ±1% ±0.83% ±1% ±1.85% +2.59%

�2.62%

Table 1: Status of the theory uncertainties on Higgs boson production in gluon fusion at
�

s = 13 TeV. The table is taken from Ref. [83] and the LHC Higgs WG1 TWiki, with �(trunc)

removed after the work of Ref. [18]. The value for �(EW) was a rough estimate when Ref. [83]

was published. Meanwhile the order of magnitude has been confirmed by the calculations of

Refs. [84–88].

Two-loop electroweak corrections to Higgs production in gluon fusion were

calculated in Refs. [89, 90, 78]. The mixed QCD-EW corrections which ap-

pear at two loops for the first time were calculated directly in Ref. [91], where

however the unphysical limit mZ , mW � mH was employed. In Refs. [84–86],

this restriction was lifted and the mixed QCD-EW corrections at order �2�2
s

were calculated, where the real radiation contributions were included in the soft

gluon approximation. It was found that the increase in the total cross section

between pure NLO QCD and NLO QCD+EW is about 5.3%. The calculation

of Ref. [86] has been confirmed by Ref. [87], where also the hard real radiation

was calculated, in the limit of small vector boson masses, corroborating the va-

10

[1807.11501] Cieri, Chen, Gehrmann, Glover, Huss

Speed = Precision
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Precision simulations with limited resources

L

Matrix element

Parton shower

Hadronization

Detector simulation

Speed = Precision
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How can we boost MC simulations

• ML 2.0 Generative models

! Can we simulate new data?

Fast evaluation

more events

=

higher order

Precision

Speed

modular

speed up
wrapper new concepts

Anja Butter Unsupervised Learning for Fun and Precision 3 / 28



Boosting standard event generation...

1. Generate phase space points

2. Calculate event weight

wevent = f (x1,Q2
)f (x2,Q2

) ⇥ M(x1, x2, p1, . . . pn) ⇥ J(pi (r))�1

3. Unweighting via importance sampling

! optimal for w ⇡ 1

Anja Butter Unsupervised Learning for Fun and Precision 4 / 28



Boosting standard event generation...

Matrix element

wevent = f (x1,Q2
)f (x2,Q2

) ⇥ M(x1, x2, p1, . . . pn) ⇥ J(pi (r))�1

PDF Phase space mapping
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Boosting standard event generation...

Matrix element

wevent = f (x1,Q2
)f (x2,Q2

) ⇥ M(x1, x2, p1, . . . pn) ⇥ J(pi (r))�1

- NNPDF since 2002(!)
- S. Carrazza, J. Cruz-Martinez
[1907.05075]

Phase space mapping
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Boosting standard event generation...

Figure 5: Comparison of a single neural network (left) vs. our ensemble approach (right)
in estimating the differential cross-section against y, where y is the minimum yij as ordered
by pT . Data is normalised to the maximum Njet bin value. Uncertainty bands denote
1 s.d. calculated over 20 trained models (red and green) and Monte Carlo error on the
Njet result (blue). – 13 –

- Amplitude estimation
- S. Badger, J. Bullock [2002.07516]
- J. Bendavid [1707.00028]

wevent = f (x1,Q2
)f (x2,Q2

) ⇥ M(x1, x2, p1, . . . pn) ⇥ J(pi (r))�1

- NNPDF since 2002(!)
- S. Carrazza, J. Cruz-Martinez
[1907.05075]

Phase space mapping
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Boosting standard event generation...

Figure 5: Comparison of a single neural network (left) vs. our ensemble approach (right)
in estimating the differential cross-section against y, where y is the minimum yij as ordered
by pT . Data is normalised to the maximum Njet bin value. Uncertainty bands denote
1 s.d. calculated over 20 trained models (red and green) and Monte Carlo error on the
Njet result (blue). – 13 –

- Amplitude estimation
- S. Badger, J. Bullock [2002.07516]
- J. Bendavid [1707.00028]

wevent = f (x1,Q2
)f (x2,Q2

) ⇥ M(x1, x2, p1, . . . pn) ⇥ J(pi (r))�1

- NNPDF since 2002(!)
- S. Carrazza, J. Cruz-Martinez
[1907.05075]
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Figure 4: Event weight distributions for sampling the total cross section for gg !n jets for
�

s = 1 TeV
with N = 106 points, comparing VEGAS optimisation, NN-based optimisation and an unoptimised
(“Uniform”) distribution. Note that we now use a logarithmic scale for the x axis. The inset plot
in (b) shows the peak region in more detail and using a linear scale.

an upcoming study [36], where increasing the final-state multiplicity (and hence the number of channels) in
V + jets production also leads to a rapid reduction in the gain factor.

However, the results for the top quarks and the 3-jet production are promising and indicate that con-
ventional optimisers such as VEGAS can potentially be outperformed by NN-based approaches also for more
complex problems in the future. To this end the computational challenges outlined above need to be ad-
dressed. In future research we will therefore aim to extend the range in final-state multiplicity while keeping
the training costs at an acceptable level, and—if successful—to implement the new sampling techniques
within the SHERPA general-purpose event generator framework. A starting point should be the further study
and comparison of alternative ways to integrate our NN approach within multi-channel sampling, beginning
with our ansatz and the one proposed in [36], to find out if the scaling behaviour can be optimised. On the
purely NN side, the exploration of possible extensions or alternatives to piecewise-quadratic coupling layers
is promising, such as [51]. Also adversarial training has the potential to reduce training times significantly.
The limitation of the statistical accuracy by a large number of zero-weight events found in the jet-production
examples furthermore suggests that it is worthwhile to investigate the construction of optimised importance
sampling maps that better respect common phase space cuts, or alternatively to modify the optimisation
procedure to further reduce the generation of points outside the fiducial phase space volume.

Acknowledgements
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Butter and Ramon Winterhalder for useful discussions.

This work has received funding from the European Unions Horizon 2020 research and innovation pro-
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- Learn phase space mapping (!
w ⇡ 1)
- Gao et al. [2001.10028]
- Bothmann et al. [2001.05478]
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... or training directly on event samples

Event generation

• Generating 4-momenta

• Z > ll , pp > jj , pp > tt̄+decay

[1901.00875] Otten et al. VAE & GAN

[1901.05282] Hashemi et al. GAN

[1903.02433] Di Sipio et al. GAN

[1903.02556] Lin et al. GAN

[1907.03764, 1912.08824] Butter et al. GAN

[1912.02748] Martinez et al. GAN

[2001.11103] Alanazi et al. GAN

[2011.13445] Stienen et al. NF

[2012.07873] Backes et al. GAN

[2101.08944] Howard et al. VAE

Detector simulation

• Jet images

• Fast calorimeter simulation

[1701.05927] de Oliveira et al. GAN

[1705.02355, 1712.10321] Paganini et al. GAN

[1802.03325, 1807.01954] Erdmann et al. GAN

[1805.00850] Musella et al. GAN

[ATL-SOFT-PUB-2018-001, ATLAS-SIM-2019-004,
ATL-SOFT-PROC-2019-007] ATLAS VAE & GAN

[1909.01359] Carazza and Dreyer GAN

[1912.06794] Belayneh et al. GAN

[2005.05334, 2102.12491] Buhmann et al. VAE

[2009.03796] Diefenbacher et al. GAN

[2009.14017] Lu et al.

NO claim to completeness!

Anja Butter Unsupervised Learning for Fun and Precision 5 / 28



Generative Adversarial Networks

Discriminator [D(xT ) ! 1, D(xG ) ! 0]

LD =
⌦
� logD(x)

↵
x⇠PTruth

+
⌦
� log(1�D(x))

↵
x⇠PGen

! �2 log 0.5

Generator [D(xG ) ! 1]

LG =
⌦
� logD(x)

↵
x⇠PGen

) Nash Equilibrium
) New statistically independent samples

Anja Butter Unsupervised Learning for Fun and Precision 6 / 28



What is the statistical value of GANned events?[2008.06545]

• Camel function

• Sample vs. GAN vs. 5 param.-fit

Evaluation on quantiles:

MSE
⇤
=

NquantX

j=1

✓
pj �

1

Nquant

◆2
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What is the statistical value of GANned events?[2008.06545]

• Camel function

• Sample vs. GAN vs. 5 param.-fit

Evaluation on quantiles:

MSE
⇤
=

NquantX

j=1

✓
pj �

1

Nquant

◆2

! Amplification factor 2.5

Sparser data ! bigger amplification
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How to GAN LHC events [1907.03764]

• tt̄ ! 6 quarks

• 18 dim output

• external masses fixed

• no momentum conservation

+ Flat observables X
– Systematic undershoot in tails [10-20% deviation]
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Special features
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mt [GeV]
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Solution: MMD kernel

MMD
2
(PT ,PG ) =

⌦
k(x , x 0)

↵
x,x0⇠PT

+
⌦
k(y , y 0)

↵
y ,y 0⇠PG

�2
⌦
k(x , y)

↵
x⇠PT ,y⇠PG
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Correlations

X

Anja Butter Unsupervised Learning for Fun and Precision 10 / 28



Correlations

X
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Reaching precision (preliminary)

1. Representation pT , ⌘, �

2. Momentum conservation

3. Resolve log pT

4. Regularization: spectral norm

5. Batch information

! 1% precision X

Next step automization

W + 2 jets

Anja Butter Unsupervised Learning for Fun and Precision 11 / 28



Information in distributions

Information in space distribution

(what we want)

=

Information in weight

(what we have)

Anja Butter Unsupervised Learning for Fun and Precision 12 / 28



The unweighting bottleneck

• High-multiplicity / higher-order ! unweighting e�ciencies < 1%

! Simulate conditions with naive Monte Carlo generator

ME by Sherpa, parton densities from LHAPDF, Rambo-on-diet

pp ! µ+µ� with mµµ > 50 GeV

10�33 10�28 10�23 10�18 10�13 10�8 10�3

weight

100

101

102

103

104

#
ev

en
ts

! unweighting e�cieny 0.2%

Anja Butter Unsupervised Learning for Fun and Precision 13 / 28



Training on weighted events

Information contained in distribution or event weights

�2 �1 0 1 2 3 4
x

10�4
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p(
x
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weights

data

�2 �1 0 1 2 3 4
x
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10�1

100

p(
x
)

weights

data

Train on

weighted events

Generate

unweighted events

LD =
⌦
� w logD(x)

↵
x⇠PTruth

+
⌦
� log(1� D(x))

↵
x⇠PGen

normalizing flow: B. Stienen, R. Verheyen [2011.13445]
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Training on weighted events

Information contained in distribution or event weights
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normalizing flow: B. Stienen, R. Verheyen [2011.13445]
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Training on weighted events

Information contained in distribution or event weights
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uwGAN results

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 �
d
�

d
p T

,µ
�

⇥10�1

Train

Unweighted

uwGAN

0 20 40 60 80 100
pT,µ� [GeV]

0.5

1.0

1.5

2.0

X
T
ru

th

10�4

10�3

10�2

10�1

1 �
d
�

d
m

µ
�

µ
+

Train

Unweighted

uwGAN

50 75 100 125 150 175 200 225 250
mµ�µ+ [GeV]

0.5

1.0

1.5

2.0

X
T
ru

th

Populates high energy tails

Large amplification wrt. unweighted data!
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Fast detector simulations

• Important R&D potential

NN evaluation ⇥100-1000
faster than GEANT4

Year

2020 2022 2024 2026 2028 2030 2032 2034

ye
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⋅
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S0
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=55)µRun 3 ( =88-140)µRun 4 ( =165-200)µRun 5 (

2020 Computing Model - CPU
Baseline
Conservative R&D
Aggressive R&D
Sustained budget model
(+10% +20% capacity/year)

LHCC common scenario
=200)µ(Conservative R&D, 

ATLAS Preliminary

• Same underlying techniques

[GAN, VAE, (NF)]

• Challenge:

High-dimensional output

 30⇥ 30⇥ 30
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BIB-AE PP

Bounded-Information-Bottleneck autoencoder with post processing
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BIB-AE PP

Bounded-Information-Bottleneck autoencoder with post processing

GEANT4 Simulation
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BIB-AE PP

Bounded-Information-Bottleneck autoencoder with post processing

Post Processor Network adjusts

energy to recover spectrum

! MIP bump

Anja Butter Unsupervised Learning for Fun and Precision 17 / 28



Can we invert the simulation chain?

What we

want to know

What we

measure or simulate

wish list: ⇤ multi-dimensional

⇤ bin independent

⇤ statistically well defined

Anja Butter Unsupervised Learning for Fun and Precision 18 / 28



Invertible networks

�
xpart

� Pythia,Delphes:g!
 ����������������!

 unfolding:ḡ

�
xdet

�

[1808.04730] L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner,

E. W. Pellegrini, R. S. Klessen, L. Maier-Hein, C. Rother, U. Köthe

+ Bijective mapping

+ Tractable Jacobian

+ Fast evaluation in both directions

+ Arbitrary networks s and t
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Inverting detector e↵ects
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multi-dimensional X bin independent X statistically well defined ?
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• pp ! ZW ! (ll)(jj)

• Train: parton ! detector

• Evaluate: parton  detector
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Including stochastical e↵ects

✓
xp
rp

◆
Pythia,Delphes:g!

 ����������������!
 unfolding:ḡ

✓
xd
rd

◆

Sample rd for fixed detector event

How often is Truth included in distribution quantile?
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• Problem: arbitrary balance of many loss functions
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Taking a di↵erent angle

Given an event xd , what is the probability distribution at parton level?

! sample over r , condition on xd

xp
g(xp,f (xd ))!

 ����������������!
 unfolding: ḡ(r ,f (xd ))

r

! Training: Maximize posterior over model parameters

L = �hlog p(✓|xp, xd)ixp⇠Pp,xd⇠Pd

= �hlog p(xp|✓, xd)ixp⇠Pp,xd⇠Pd
� log p(✓) + const.  Bayes

= �
⌧
log p(ḡ(xp, xd)) + log

����
@ḡ(xp, xd)

@xp

����

�
� log p(✓) change of var

=
⌦
0.5||ḡ(xp, f (xd))||22 � log |J|

↵
xp⇠Pp,xd⇠Pd

� log p(✓)

! Jacobian of bijective mapping
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Cross check distributions
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Condition INN on detector data [2006.06685]

xp
g(xp,f (xd ))!

 ����������������!
 unfolding: ḡ(r ,f (xd ))

r

Minimizing L =
⌦
0.5||ḡ(xp , f (xd )))||22 � log |J|

↵
xp⇠Pp ,xd⇠Pd

� log p(✓)
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multi-dimensional X bin independent X statistically well defined X
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Inverting the full event I

• pp > WZ > qq̄l+l� + ISR

! ISR leads to large fraction of 2/3/4 jet events

• Train and test on exclusive channels
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Inverting the full event II

pp > WZ > qq̄l+l� + ISR

Train on inclusive dataset

Evaluate

exclusive 2/3/4 jet channels
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We can use ML ...

... to enable precision simulations in forward direction

... to turn weighted into unweighted events

... to invert the simulation chain statistically

... for fun and precision :)
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