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T(n̂)→ T(n̂ +∇φ(n̂))

φ(n̂) = −2
∫ χ∗

0 dχ fK(χ∗−χ)
fK(χ∗)fK(χ)Ψ(χn̂; η0 − χ)



LENSING POWER SPECTRUM

More details: Lewis and Challinor (astro-ph/0601594).

I Velocity dipole, with
v/c ≈ 0.00123 has deflection
RMS of 〈|∇φ|2〉1/2 = 3′.

I Large-scale structure in the
linear regime. Coherent over
300Mpc

7000Mpc ≈ 2o. Deflection per
“structure” of ∼ 0.3′ so RMS of
〈|∇φ|2〉1/2 ≈

√
50× 0.3′ = 2.4′.

I Power spectrum corrections
from non-linearity, although
Gaussian still a good
approximation.
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CMB LENS RECONSTRUCTION

I We want to reconstruct the lensing potential φ(n̂).
I How to get the large-scale lenses: start by decomposing the

lensing potential into convergence and shear modes:

−∇ijφ =

[
κ+ γ+ γ− − ω
γ− + ω κ− γ+

]
.

*0.5*0.25

γ+

*0.5*0.25

κ

*0.5*0.25

γ−
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CMB LENS RECONSTRUCTION

I Consider taking the power
spectrum of a small patch with
uniform κ.

κ=0+κ −κ

I To first order in κ we have
CTT

l = C̃TT
l + κ∆κ

l , where

∆κ
l =

[
l
∂C̃TT

l
∂l

+ 2C̃TT
l

]

I Look for ∆κ
l in (localized)

estimates of power spectrum,
stitch together to get κ(n̂).
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QUADRATIC CMB LENS RECONSTRUCTION

Suppose lenses are fixed, then CMB is still Gaussian, but becomes
statistically anisotropic. Averaging over CMB realizations have

∂〈T(~l1)T(~l2)〉CMB

∂φ(~l)
= ∆φ(~l1,~l2) =

1
2π
~l ·
[
~l1C̃TT

l1 +~l2C̃TT
l2

]
+O(φ2)

where~l =~l1 +~l2. As for κ, write down usual estimator as

φ̂(~l) = Nφφ
l

∫
d2~l1
2π

T̂(~l1)T̂(~l2)∆φ(~l1,~l2)Var−1(T(~l1)T(~l2))
1
2
.

This is the minimum-variance quadratic estimator of Hu 2001
(astro-ph/0105424).
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LENSING EFFECT ON THE POWER SPECTRUM
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At second order, lensing smooths the accoustic peaks of the power
spectrum. For interest, sometimes parameterize as AL.
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PLANCK SKY MAPS
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NOISE LEVELS / NOISE BUDGET
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TECHNICAL DETAILS:

I Point source shot-noise correction.
I Frequency- and map- cross-estimators.
I Bias-hardened estimators for both instrumental and foreground

contamination (Namikawa et. al. arxiv:1209.0091).
I Phase-dependent N(0) bias correction, motivated by likelihood:

Planck Collaboration: Gravitational lensing by large-scale structures with Planck

Note that our normalization function Rxφ
L is only approximate,

but we will verify its accuracy in Sect. 4. For the standard lens-
ing estimator of Okamoto & Hu (2003) (which uses the weight
function of Eq. 6), we use x = φ. This estimator is denoted sim-
ply as φ̂LM .

2.2. Lensing power spectrum estimation

We form estimates for the power spectrum of the lensing po-
tential by taking spectra of the lensing estimates from Sect. 2.1,
using a simple pseudo-C� estimator. In order to reduce mode
coupling, as well as to downweight regions near the analysis
boundary where the mean-field due to masking can be large, we
take the power spectrum from an apodized version of our lensing
estimate, given by

�φx
LM = P−1

L

�
dn̂Y∗LM(n̂) �M(n̂)


�

L�M�
YL�M� (n̂)PL� φ̂

x
L�M�

 , (14)

where �M(n̂) is an apodized version of the analysis mask M(n̂)
used in our filtering and PL ≡ L(L + 1) is an approximate pre-
whitening operation. The construction of �M(n̂) is described in
Sect. 3. Our fiducial apodization occurs over a band of approxi-
mately 5◦, and effectively reduces the sky fraction by 9%.

The power spectrum of �φ probes the 4-point function of
the observed CMB, which contains both disconnected and con-
nected parts. We model it as being due to a combination
of Gaussian CMB fluctuations, lensing effects and unresolved
point-source shot noise, and estimate the power spectrum of the
lensing potential with

ĈφφL,x =
f −1
sky,2

2L + 1

�

M

|�φx
LM |2 − ∆CφφL

���
N0

− ∆CφφL
���
N1
− ∆CφφL

���
PS
− ∆CφφL

���
MC
, (15)

where fsky,2 =
�

dn̂�M2(n̂)/4π is the average value of the square
of the apodizing mask. The first line of Eq. (15) isolates the con-
nected part of the CMB 4-point function, or trispectrum, which
would be zero for Gaussian fluctuations. The second line con-
tains corrections which isolate the part of the trispectrum which
is directly proportional to the non-Gaussianity induced by CφφL .
In the following paragraphs, we explain these terms in more de-
tail.

The first correction term ∆CφφL
���
N0

subtracts the (large) dis-
connected contribution to the power spectrum of�φ. To determine
this term, we use the data-dependent subtraction which emerges
for maximum-likelihood estimators of the CMB trispectrum
(Regan et al. 2010; see also Appendix D). For lensing, this pro-
cedure has the additional advantage of reducing the correlation
between different multipoles L � L� of the lens reconstruction
(Hanson et al. 2011), as well as reducing sensitivity to uncer-
tainties in our model of the CMB and noise covariance matrices
(Namikawa et al. 2012a). Writing the power spectrum of �φLM
explicitly as a function of the four inverse-variance filtered tem-
perature maps

C
�φ�φ
L,x[T̄ (1), T̄ (2), T̄ (3), T̄ (4)] ≡

f −1
sky,2

2L + 1

�

M

|�φx
LM |2, (16)

the disconnected contribution reads

∆CφφL,x
���
N0
=

�
−C

�φ�φ
L,x

�
T̄ (1)

mc, T̄
(2)
mc� , T̄

(3)
mc� , T̄

(4)
mc

�

+C
�φ�φ
L,x

�
T̄ (1)

mc, T̄
(2), T̄ (3)

mc, T̄
(4)
�
+C

�φ�φ
L,x

�
T̄ (1)

mc, T̄
(2), T̄ (3), T̄ (4)

mc

�

+C
�φ�φ
L,x

�
T̄ (1), T̄ (2)

mc, T̄
(3), T̄ (4)

mc

�
+C

�φ�φ
L,x

�
T̄ (1), T̄ (2)

mc, T̄
(3)
mc, T̄

(4)
�

−C
�φ�φ
L,x

�
T̄ (1)

mc, T̄
(2)
mc� , T̄

(3)
mc, T̄

(4)
mc�
� �

mc,mc�
, (17)

where T̄mc indicates a Monte-Carlo simulation of the corre-
sponding map. The ensemble average is taken over two sets of
independent realizations mc and mc�. Note that because of the
way we have used pairs of Monte-Carlo simulations and data
with independent CMB and noise realizations, the mean-field
correction is zero for all of the terms above.

The term ∆CφφL |N1 corrects for the “N(1)” bias due to sec-
ondary contractions of the lensing trispectrum (Hu 2001; Kesden
et al. 2003). It is only a large effect at L > 100, and so we calcu-
late it using a flat-sky expression as

∆Cφφ|L|,x
����
N1
=

1

Rxφ,(1)(2)
|L| Rxφ,(3)(4)

|L|

�
d2 l1

(2π)2

�
d2 l3

(2π)2

F(1)
|l1 |F

(2)
|l2 |F

(3)
|l3 |F

(4)
|l4 |W

x(l1, l2)W x(l3, l4)

×
�
Cφφ,fid.
|l1−l3 |W

φ(−l1, l3)Wφ(−l2, l4)

+Cφφ,fid.
|l1−l4 |W

φ(−l1, l4)Wφ(−l2, l3)
�
, (18)

where l1 + l2 = l3 + l4 = L and Cφφ,fid.
L is a fiducial model for

the lensing potential power spectrum. The W(l, l�) are flat-sky
analogues of the full-sky weight functions. The flat-sky lensing
weight function, for example, is

Wφ(l1, l2) = CTT
|l1 | l1 · L +CTT

|l2 | l2 · L. (19)

The N(1) term is proportional to the lensing potential power
spectrum, and so in principle it should be used to improve our
constraints on CφφL rather than subtracted as an additive bias.
However the statistical power of this term is relatively small
at Planck noise levels. From a Fisher matrix calculation, the
trispectrum contractions which source the N(1) term are only de-
tectable in the Planck data at 4σ significance, compared to the
approximately 25σ for the primary contractions. We choose sim-
ply to subtract the N(1) term from our power spectrum estimates.
There is a small cosmological uncertainty in the N(1) correction
due to uncertainty in the CφφL power spectrum, which we discuss
in Sect. 5.3.

The ∆CφφL
���
PS

term is a correction for the bias induced by the
non-Gaussianity of unresolved point sources, discussed in more
detail in Sect. 2.4.

Finally, the ∆CφφL
���
MC

term is a small correction that we ob-
tain by estimating ĈφφL following the procedure above on a num-
ber of lensed CMB realizations, and then subtracting the input
power spectrum. This term can be non-zero due to pseudo-C�
leakage effects from masking, which we have not accounted for
other than apodization, errors in our calculation of the N(1) term,
or errors in the normalization at the power spectrum level. We
will find that ∆CφφL

���
MC

is sufficiently small that in practice it
does not matter whether we account for it as a renormalization

6

I Renormalizable likelihood code, so uncertainty in CTT
` or B` for

lens reconstruction can be handled consistently with TT power
spectrum analysis.
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CONSISTENCY TESTS
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LOW MULTIPOLES:

Planck Collaboration: Gravitational lensing by large-scale structures with Planck

Our motivation for taking a fixed noise level is that with this ap-
proach, in regions sufficiently far from the mask boundary, our
filter asymptotes to the diagonal form of Eq. (B.1). This means
that the normalization of our lensing estimates can be well-
approximated analytically, which is very useful for the propa-
gation of systematic effects, and also that the normalization of
our lensing estimates does not vary across the sky with noise
level, which simplifies cross-correlation analysis. Our C−1 fil-
ter is therefore optimally accounting for masking effects, but not
for noise correlations and inhomogeneity. We estimate the sub-
optimality of neglecting these noise properties by calculating the
quantity

(S/N)use

(S/N)opt
=

�
Rφφ,use

L

�2
�
Rφφ,opt

L

�


�

�1�2

1
2

����Wφ�1�2L

����
2
�
Fuse
�1

Fuse
�2

�2

Fopt
�1

Fopt
�2



−1

(B.8)

where Fopt
� is the optimal filter and Fuse

� is the suboptimal filter
which we have actually used. This equation gives the S/N loss
as a function of lens multipole L, however in practice we find
that the L dependence is small enough that it suffices to quote a
single average loss. To estimate the degradation due to ignoring
noise correlations we set

Fopt
� =

1

CTT
�
+ B−2,ν

�
NTT

L

, (B.9)

where NTT
L is the power spectrum of the map noise. We find

that the degradation due to neglect of noise correlations is small;
less than 2% for all L ≤ 2048 at 100 GHz, and less than 0.1%
at 143 and 217 GHz. To calculate the degradation due to ignor-
ing noise inhomogeneity, we determine the map noise level in
the 3072 regions corresponding to Nside = 16 HEALPix pix-
els, take Fopt

� using Eq. (B.2) with the local noise level, and
estimate a resulting S/N degradation using Eq. (B.8). The ne-
glect of noise inhomogeneity is the dominant suboptimality of
our filtering, although it is still small. We find an average S/N
loss (averaged over the entire sky) of approximately 4% at 100,
143, and 217 GHz, consistent with the simulation-based results
of Hanson et al. (2009). We take this loss as justified, given the
simpler normalization properties of our lensing estimates when
neglecting variations in the map noise level.

Appendix C: Mean-Fields

As discussed in Sect. 2, the quadratic lensing estimators which
we use are designed to detect statistical anisotropy induced by
lensing. There are a number of non-lensing sources of statistical
anisotropy which can mimic the lensing signal to some extent.
In our analysis, the effects we consider are

(1) The application of a sky mask, which introduces sharp gra-
dients that may be misinterpreted as lensing.

(2) Noise inhomogeneity, which causes the overall power to
fluctuate across the sky and can resemble the convergence
component of lensing.

(3) Beam asymmetry, which smears the fluctuations more along
one direction than another and can mimic the shear compo-
nent of lensing.

(4) Pixelization, in which detector samples are accumulated into
pixels, introduces a spurious deflection field on the pixel
scale because the centroid of the hit distribution in each pixel
does not necessarily lie at the pixel center.

In our analysis, we account for most of these effects with a cor-
rective mean-field term, given by Eq. (9), which is determined
using Monte Carlo simulations. In this appendix, we will break
this mean-field down into its constituent parts and discuss each
in more detail. As an overview of the results in this section,
in Fig. C.1 we plot estimate for the three largest mean-fields,
due to masking, noise inhomogeneity, and beam asymmetry at
143 GHz (100 and 217 GHz are qualitatively similar). These
mean-fields all have most of their contributions on very large
scales, dictated by the coherency of the scan strategy in the case
of beam asymmetry and noise inhomogeneity, and of the large-
scale nature of the Galactic foregrounds in the case of the sky
mask.

143 GHz

Fig. C.1. Analytical estimates for the power spectra of the largest
low-L mean-fields 143 GHz. The various components are dis-
cussed in more detail in Sect. C.1 (mask), Sect. C.2 (noise), and
Sect. C.3 (beams). The mean-fields all couple most strongly to
even modes of the lens reconstruction, due to the approximate
north/south symmetry of the scan strategy and Galactic mask.

Our discussion will focus on constructing simple models for
each source of mean-field. Following Hanson et al. (2010), we
will identify each of the individual contributions to mean-field
with a tracer zLM that sources a contribution to the CMB covari-
ance matrix given by

∆�T�1m2 T ∗�2m2
� =
�

LM

zLM(−1)M
�
�1 �2 L
m1 m2 M

�
Wz
�1�2L, (C.1)

where Wz
�1�2L is a weight function describing how zLM couples

multipoles. Such a contaminant leads to a bias for the standard
lensing estimator φ̂LM given by

φ̂MF
LM =

RφzLM

RφφL
zLM , (C.2)

where the response function RφzL is defined in Eq. (12). The ana-
lytical forms for the mean-fields which we present here are used
in Sect. 7.4 to construct “bias hardened” estimators which have

32

Biases at the map level

Planck Collaboration: Gravitational lensing by large-scale structures with Planck

Our motivation for taking a fixed noise level is that with this ap-
proach, in regions sufficiently far from the mask boundary, our
filter asymptotes to the diagonal form of Eq. (B.1). This means
that the normalization of our lensing estimates can be well-
approximated analytically, which is very useful for the propa-
gation of systematic effects, and also that the normalization of
our lensing estimates does not vary across the sky with noise
level, which simplifies cross-correlation analysis. Our C−1 fil-
ter is therefore optimally accounting for masking effects, but not
for noise correlations and inhomogeneity. We estimate the sub-
optimality of neglecting these noise properties by calculating the
quantity

(S/N)use

(S/N)opt
=

�
Rφφ,use

L

�2
�
Rφφ,opt

L

�


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2
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����
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Fopt
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−1

(B.8)

where Fopt
� is the optimal filter and Fuse

� is the suboptimal filter
which we have actually used. This equation gives the S/N loss
as a function of lens multipole L, however in practice we find
that the L dependence is small enough that it suffices to quote a
single average loss. To estimate the degradation due to ignoring
noise correlations we set

Fopt
� =

1

CTT
�
+ B−2,ν

�
NTT

L

, (B.9)

where NTT
L is the power spectrum of the map noise. We find

that the degradation due to neglect of noise correlations is small;
less than 2% for all L ≤ 2048 at 100 GHz, and less than 0.1%
at 143 and 217 GHz. To calculate the degradation due to ignor-
ing noise inhomogeneity, we determine the map noise level in
the 3072 regions corresponding to Nside = 16 HEALPix pix-
els, take Fopt

� using Eq. (B.2) with the local noise level, and
estimate a resulting S/N degradation using Eq. (B.8). The ne-
glect of noise inhomogeneity is the dominant suboptimality of
our filtering, although it is still small. We find an average S/N
loss (averaged over the entire sky) of approximately 4% at 100,
143, and 217 GHz, consistent with the simulation-based results
of Hanson et al. (2009). We take this loss as justified, given the
simpler normalization properties of our lensing estimates when
neglecting variations in the map noise level.

Appendix C: Mean-Fields

As discussed in Sect. 2, the quadratic lensing estimators which
we use are designed to detect statistical anisotropy induced by
lensing. There are a number of non-lensing sources of statistical
anisotropy which can mimic the lensing signal to some extent.
In our analysis, the effects we consider are

(1) The application of a sky mask, which introduces sharp gra-
dients that may be misinterpreted as lensing.

(2) Noise inhomogeneity, which causes the overall power to
fluctuate across the sky and can resemble the convergence
component of lensing.

(3) Beam asymmetry, which smears the fluctuations more along
one direction than another and can mimic the shear compo-
nent of lensing.

(4) Pixelization, in which detector samples are accumulated into
pixels, introduces a spurious deflection field on the pixel
scale because the centroid of the hit distribution in each pixel
does not necessarily lie at the pixel center.

In our analysis, we account for most of these effects with a cor-
rective mean-field term, given by Eq. (9), which is determined
using Monte Carlo simulations. In this appendix, we will break
this mean-field down into its constituent parts and discuss each
in more detail. As an overview of the results in this section,
in Fig. C.1 we plot estimate for the three largest mean-fields,
due to masking, noise inhomogeneity, and beam asymmetry at
143 GHz (100 and 217 GHz are qualitatively similar). These
mean-fields all have most of their contributions on very large
scales, dictated by the coherency of the scan strategy in the case
of beam asymmetry and noise inhomogeneity, and of the large-
scale nature of the Galactic foregrounds in the case of the sky
mask.

143 GHz

Fig. C.1. Analytical estimates for the power spectra of the largest
low-L mean-fields 143 GHz. The various components are dis-
cussed in more detail in Sect. C.1 (mask), Sect. C.2 (noise), and
Sect. C.3 (beams). The mean-fields all couple most strongly to
even modes of the lens reconstruction, due to the approximate
north/south symmetry of the scan strategy and Galactic mask.

Our discussion will focus on constructing simple models for
each source of mean-field. Following Hanson et al. (2010), we
will identify each of the individual contributions to mean-field
with a tracer zLM that sources a contribution to the CMB covari-
ance matrix given by

∆�T�1m2 T ∗�2m2
� =
�

LM

zLM(−1)M
�
�1 �2 L
m1 m2 M

�
Wz
�1�2L, (C.1)

where Wz
�1�2L is a weight function describing how zLM couples

multipoles. Such a contaminant leads to a bias for the standard
lensing estimator φ̂LM given by

φ̂MF
LM =

RφzLM

RφφL
zLM , (C.2)

where the response function RφzL is defined in Eq. (12). The ana-
lytical forms for the mean-fields which we present here are used
in Sect. 7.4 to construct “bias hardened” estimators which have
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Due to the response of the quadratic estimator to sources of statistical anisotropies  in the data.
Dominates the largest scales.

Can be removed on average by estimating a «mean-field» contribution from Monte Carlo.

Planck Collaboration: The Planck mission

Table 4. Statistics of spatial distribution of effective beam parameters:
FWHM, ellipticity and beam solid angle

FWHMa Ω
Band [arcmin] Ellipticity [arcmin2]

30 . . . . . . 32.239 ± 0.013 1.320 ± 0.031 1189.51 ± 0.84
44 . . . . . . 27.01 ± 0.55 1.034 ± 0.033 833 ± 32
70 . . . . . . 13.252 ± 0.033 1.223 ± 0.026 200.7 ± 1.0
100 . . . . . 9.651 ± 0.014 1.186 ± 0.023 105.778 ± 0.311
143 . . . . . 7.248 ± 0.015 1.036 ± 0.009 59.954 ± 0.246
217 . . . . . 4.990 ± 0.025 1.177 ± 0.030 28.447 ± 0.271
353 . . . . . 4.818 ± 0.024 1.147 ± 0.028 26.714 ± 0.250
545 . . . . . 4.682 ± 0.044 1.161 ± 0.036 26.535 ± 0.339
857 . . . . . 4.325 ± 0.055 1.393 ± 0.076 24.244 ± 0.193
a Mean of best-fit Gaussians to the effective beams.

maps are of course constructed from many detectors that sample
each pixel at different angles. Therefore the scanning beams do
not represent well the point spread function at map level. Instead,
“effective beams” are computed for each pixel and frequency us-
ing the FEBeCoP algorithm (Mitra et al. 2011).
FEBeCoP calculates the effective beam at a position in the

sky by computing the real space average of the scanning beam
over all observed crossing angles at that sky position. Table 4
summarizes the distribution across the sky of a set of parame-
ters representing the beams, and Fig. 8 shows, in the 100 GHz
case, their variation across the sky. We note that the effective
beams include pixelization effects (essentially the HEALpix pix-
elization window function). The effective beam window function
for LFI is calculated by FEBeCoP using an ensemble of signal-
only simulations convolved with the effective beams. For HFI,
the quickbeam harmonic space effective beam code (Planck
Collaboration VII 2013) is used to calculate the effective beam
window function given the scan history and the scanning beam.

To estimate the uncertainty of the effective beams, the en-
semble of allowed LFI GRASP models (Sect. 5.4) was propa-
gated through FEBeCoP and used to determine window function
errors. For HFI, quickbeam is used to propagate an ensemble
of simulated Mars observations to harmonic space, constructing
effective beam window function errors. The total uncertainties in
the effective beam window function (in B2

� units) at � = 600 are
2 % at 30 GHz and 1.5 % at 44 GHz. At � = 100 they are 0.7 %,
0.5 %, 0.2 %, and 0.2 % for 70, 100, 143, and 217 GHz respec-
tively (Planck Collaboration IV 2013; Planck Collaboration VII
2013).

6.2. Mapmaking

6.2.1. LFI

The calibrated TOI of each LFI radiometer are used as input
to the Madam mapmaking code (Keihänen et al. 2010) together
with the corresponding pointing data, in the form of the Euler
angles (θ, φ, ψ). Madam implements a polarized destriping ap-
proach to mapmaking; the noise is modelled as white noise
plus a set of offsets, or baselines. The algorithm estimates in
a maximum-likelihood fashion the amplitudes of the baselines,
subtracts them from the actual TOI, and then simply bins the
result into a map. The output consists of pixelized maps of the
three Stokes parameters (T , Q, U). The LFI temperature maps
being released at this time are shown as the first three maps in
Fig. 9.

Fig. 8. This figure shows the distribution across the sky of the solid
angle (top) and ellipticity of the effective beams at 100 GHz. The distri-
bution is typical for all channels.

One of the key parameters in the Madam algorithm is the
baseline length that represents the time scale at which the base-
line approximation of low-frequency noise is applied. We choose
baseline lengths corresponding to an integer number of samples
(33, 47, and 79 at 30, 44, and 70 GHz respectively) such that
the total integration time over the baseline corresponds approx-
imately to one second. This selection is based on a compromise
between computational load and map quality, and we find that
shortening the baselines below one second has practically no ef-
fect on the residual noise.

In order to create maps in the maximum-likelihood ap-
proach, the noise covariance matrix of the problem has to be
specified. In general, we use a white noise covariance matrix.
The pipeline allows the use of different user-defined weighting
schemes. The maps being released are made using the horn-
uniform weighting scheme with

C−1
w =

2
σ2

M + σ
2
S

, (1)

where σM and σS are the white noise sensitivities of the Main
and Side radiometers of a given horn, and these radiometers are
weighted equally.
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Fig. 14. The SMICA CMB map (with 3 % of the sky replaced by a constrained Gaussian realization).

Fig. 15. Spatial distribution of the noise RMS on a color scale of 25 µK
for the SMICA CMB map. It has been estimated from the noise map
obtained by running SMICA through the half-ring maps and taking the
half-difference. The average noise RMS is 17 µK. SMICA does not
produce CMB values in the blanked pixels. They are replaced by a con-
strained Gaussian realization.

for bandpowers at � < 50, using the cleanest 87 % of the sky. We
supplement this ‘low-�’ temperature likelihood with the pixel-
based polarization likelihood at large-scales (� < 23) from the
WMAP 9-year data release (Bennett et al. 2012). These need to
be corrected for the dust contamination, for which we use the
WMAP procedure. However, we have checked that switching
to a correction based on the 353 GHz Planck polarization data,
the parameters extracted from the likelihood are changed by less
than 1σ.

At smaller scales, 50 < � < 2500, we compute the power
spectra of the multi-frequency Planck temperature maps, and
their associated covariance matrices, using the 100, 143, and

Fig. 16. Angular spectra for the SMICA CMB products, evaluated over
the confidence mask, and after removing the beam window function:
spectrum of the CMB map (dark blue), spectrum of the noise in that
map from the half-rings (magenta), their difference (grey) and a binned
version of it (red).

217 GHz channels, and cross-spectra between these channels11.
Given the limited frequency range used in this part of the analy-
sis, the Galaxy is more conservatively masked to avoid contam-
ination by Galactic dust, retaining 58 % of the sky at 100 GHz,
and 37 % at 143 and 217 GHz.

11 interband calibration uncertainties have been estimated by compar-
ing directly the cross spectra and found to be within 2.4 and 3.4×10−3

respectively for 100 and 217 GHz with respect to 143 GHz

25

Beam ellipticity

noise RMS
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Table 2. Area of sky retained by combining diffuse foreground
and point source masks, once apodised.

Mask Sky fraction Sky area
[%] [deg2]

CL31 . . . . . . . . . 30.71 12 668
CL39 . . . . . . . . . 39.32 16 223
CL49 . . . . . . . . . 48.77 20 121

Figure 2. The set of masks (CL31, CL39, CL49) used for the
likelihood analyses.

absence of point source holes, this precision can be achieved
with sharp, non-apodised Galactic masks (Efstathiou 2004).
However, the inclusion of point source holes introduces non-
negligible low-� power leakage, which in turn can generate
errors of a few percent in the covariance matrices. We re-
duce this leakage by apodising the diffuse Galactic masks (see
Appendix B for details). The point source mask is based on the
union of the point sources detected between 100 and 353 GHz,
and is also apodized. The point source flux cut is not critical,
since the amplitudes of the Poisson contributions of unresolved
sources are allowed to vary over a wide range in the likelihood
analysis. Thus, we do not impose tight priors from source counts
and other CMB experiments on the Poisson amplitudes. A set of
the combined Galactic and point source masks, referred to as

‘CLx’, where ‘x’ is the percentage of sky retained, are shown in
Fig. 2.

3.2. Galactic emission

The contamination from diffuse Galactic emission at low to in-
termediate multipoles can be reduced to low levels compared to
CMB anisotropies by a suitable choice of masking. However,
even with conservative masking, the remaining Galactic emis-
sion at high multipoles is non-negligible compared to other un-
resolved components, such as the Cosmic Infrared Background
(CIB) anisotropies at 143 and 217 GHz. A clear way of demon-
strating this is by differencing the power spectra computed with
different masks, thereby highlighting the differences between
the isotropic and non-isotropic unresolved components. Figure 3
shows (up to � ≤ 1400) the 217 GHz power spectrum difference
for the mask1 and mask0 masks3, minus the corresponding dif-
ference for the 143 GHz frequency channel. Any isotropic con-
tribution to the power spectrum (CMB, unresolved extragalactic
sources, etc.) will cancel in such a double difference, leaving a
non-isotropic signal of Galactic origin, free of the CMB induced
cosmic variance scatter. Above � > 1400, Fig. 3 shows the mask
differenced 217 GHz power spectrum, as the instrumental noise
becomes significant at � � 1400 for the 143 GHz channel.

In the same figure, these difference spectra are compared to
the unbinned mask-differenced 857 GHz power spectrum, scaled
to 217 GHz adopting a multiplicative factor4 of (9.93 × 10−5)2;
the dotted line shows a smooth fit to the unbinned spectrum.
The agreement between this prediction and the actual dust emis-
sion at 217 GHz is excellent, and this demonstrates conclusively
the existence of a small-scale dust emission component with an
amplitude of ∼ 5 − 15 µK2 at 217 GHz if mask1 is used.

For cosmological parameter analysis this small-scale dust
component must be taken into account, and several approaches
may be considered:

1. Fit to a template shape, e.g., as shown by the dotted line in
Fig. 3.

2. Reduce the amplitude by further masking of the sky.
3. Attempt a component separation by using higher frequen-

cies.

The main disadvantage of the third approach is a potential
signal-to-noise penalty, depending on which frequencies are
used, as well as confusion with other unresolved foregrounds.
This is particularly problematic with regards to the CIB, which
has a spectrum very similar to that of Galactic dust. In the fol-
lowing we therefore adopt the two former solutions.

It is important to understand the nature of the small scale dust
emission, and, as far as possible, to disentangle this emission
from the CIB contribution at the HFI cosmological frequencies.
We use the 857 GHz power spectrum for this purpose, noting
that the dust emission at 857 GHz is so intense that this partic-
ular map provides an effectively noise-free dust emission map.
In Fig. 4 we again show the 857 GHz mask power spectrum dif-
ference, but this time plotted on a log-log scale. The solid line
shows the corresponding best-fit model defined by

D� = A (100/�)α

[1 + (�/�c)2]γ/2
, (9)

3 These are the combination of the non-apodised Galactic masks G35
and G22 with the apodised point source mask PSA82.

4 The scaling coefficient for the 143 GHz spectrum is (3.14 × 10−5)2,
derived from the 7-parameter fitting function of Eq. A.46.

5

Mask

I “Mean-field” corrections are very large at low-L. We fail some detailed
consistency tests at L < 10 (though not very badly!).
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The lensing power spectrum provides a CMB lever arm on structure at
intermediate redshifts.
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PARAMETER CONSTRAINTS
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Lensing completely demolishes the CMB geometrical degeneracy (see
also Sherwin et. al. 2011, van Engelen et. al. 2012 for ACT and SPT

results).
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PARAMETER CONSTRAINTS
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With Planck, lensing also helps to break the Ase−τ degeneracy in the
primary CMB.
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PARAMETER CONSTRAINTS
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Note: TT lensing power spectrum prefers high lensing amplitude
relative to theory, leading to some counter-intuitive results. Something

to watch.
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LENSING-ISW CORRELATION

I We measure an amplitude for
the lensing-ISW bispectrum of

ÂTφ = 0.78± 0.32.

I Consistent with the ΛCDM
expectation of ÂTφ = 1 and
discrepant with zero at ∼ 2.4σ.

I Provides a bias for estimates
of f loc

NL

f̂ loc
NL = 9.8± 5.8 (ignore lensing)

f̂ loc
NL = 2.7± 5.8 (debiased)
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LENSING-ISW CORRELATION

Planck Collaboration: Gravitational lensing by large-scale structures with Planck

in a net blueshifting of the CMB photons which traverse these
potentials.

In the concordance ΛCDM model, there is significant over-
lap between the large-scale structure which sources the CMB
lensing potential φ and the ISW effect (greater than 90% at
L < 100), although it should be kept in mind that we cannot
observe the ISW component by itself, and so the effective cor-
relation with the total CMB temperature is much smaller, on the
order of 20%.

The correlation between the lensing potential and the ISW
effect results in a non-zero bispectrum or three-point function
for the observed CMB fluctuations. This bispectrum is peaked
for “squeezed” configurations, in which one short leg at low-�
supported by the ISW contribution is matched to the lensing-
induced correlation between two small-scale modes at high-
�. Constraints on the amplitude of the lensing-ISW bispec-
trum using several different estimators are presented in Planck
Collaboration XXIV (2013). Here we will present an additional
constraint, in which the bispectrum measurement is recast as an
estimate for the amplitude of the cross-spectrum CTφ

L , using the
filtering and frequency map combinations of our baseline lensing
reconstruction. Our measurements are in good agreement with
those made in Planck Collaboration XXIV (2013); a detailed
comparison of several lensing-ISW bispectrum estimators, in-
cluding the one used here, is presented in Planck Collaboration
XIX (2013).

Following Lewis et al. (2011), we begin with an estimator for
the cross-spectrum of the lensing potential and the ISW effect as

ĈTφ
L =

f −1
sky

2L + 1

�

M

T̂LMφ̂
∗
LM , (45)

where T̂�m = CTT
� T̄�m is the Wiener-filtered temperature map

and φ̂ is given in Eq. (13). In Fig. 16 we plot the measured cross-
spectra for our individual frequency reconstructions at 100, 143,
and 217 GHz as well as the MV reconstruction. We also plot the
mean and scatter expected in the fiducial ΛCDM model.

To compare quantitatively the overall level of the measured
CTφ

L correlation to the value in ΛCDM, we estimate an overall
amplitude for the cross-spectrum as

ÂTφ = NTφ
Lmax�

L=Lmin

(2L + 1)CTφ,fid.
L ĈTφ

L /(C
TT
L NφφL ). (46)

The overall normalizationNTφ is determined from Monte-Carlo
simulations. For our processing of the data, we find that it is well
approximated (at the 5% level) by the analytical approximation

NTφ ≈


Lmax�

L=Lmin

(2L + 1)
�
CTφ,fid.

L

�2
/(CTT

L NφφL )



−1

. (47)

The estimator above is equivalent to the KSW and skew-C� es-
timators of Komatsu et al. (2005); Munshi et al. (2011b) for the
lensing-ISW bispectrum which are used in Planck Collaboration
XXIV (2013) (up to implementation details such as filtering).
The mean-field subtraction performed when computing φ̂LM can
be identified with the linear term of Creminelli et al. (2006)
which is necessary to minimize the estimator variance. The con-
tribution to the total S/N of this estimator as a function of the
short leg L is plotted in Fig. 2, where it can be seen that the con-
straining power for the fiducial correlation is almost entirely at
L < 100.

Fig. 16. Lensing-ISW bispectrum-related cross spectra com-
puted from Eq. (45). Black dashed lines indicate the average
value for simulations, while dark/light gray filled regions indi-
cate the expected one/two standard deviation scatter, also mea-
sured from simulations. The thin magenta line gives the expected
CTφ

L cross-spectrum for our fiducial model. The agreement of
this curve with the simulation average illustrates that our esti-
mator is accurately normalized. In all the quantitative analysis
of this section we ignore L < 10, although we have plotted the
cross-spectra at these multipoles for interest.

In Table 2 we present measured values for the amplitude of
the lensing-ISW bispectrum using Eq. (45). The uncertainties on
ÂTφ are determined by Monte-Carlo. We use the multipole range
10 < L < 100, given some of the potential systematic issues
with these multipoles identified in Sect. 7.4, although as can be
seen from Fig. 16, the inclusion of lower multipoles does not sig-
nificantly affect our results. Note that for the ISW-lensing mea-
surements, inaccuracies in the mean-field subtraction do not bias
the estimator although they may degrade the statistical errors on
large scales. The differences between the different amplitude fits
are well within the expected scatter, as we show in Table 3.

As a point of interest, we have also split our amplitude
constraint into the contribution from even and odd multipoles.
There are well known odd/even-multipole power asymmetries in
the temperature anisotropies on large angular scales, the study
of which is somewhat limited by the small number of avail-
able modes (Land & Magueijo 2005; Kim & Naselsky 2010;
Gruppuso et al. 2011; Bennett et al. 2011). The lensing potential
gives a potentially new window on these power asymmetries, as
a third somewhat independent measurement of power on large

20

I Lensing-ISW bispectrum has
associated cross-spectrum CTφ

L .
I Potentially a (semi-) independent

low-L probe; striking odd/even
differences, though not
significant.

Planck Collaboration: Gravitational lensing by large-scale structures with Planck

Table 2. Best-fit amplitudes of the lensing-ISW bispectrum ÂTφ

given by Eq. (46) with Lmin = 10 and Lmax = 100, as well as
split into even/odd-L contributions. All of the fits are consistent
(within 2σ) with the amplitude of unity expected in our fiducial
ΛCDM model.

Lensing-ISW Amplitudes

ÂTφ (all L) ÂTφ (even L) ÂTφ (odd L)

100 GHz . . . . 0.93 ± 0.52 0.45 ± 0.72 1.44 ± 0.73
143 GHz . . . . 0.81 ± 0.36 0.27 ± 0.48 1.37 ± 0.52
217 GHz . . . . 0.87 ± 0.35 0.54 ± 0.49 1.22 ± 0.49
MV . . . . . . . . 0.78 ± 0.32 0.25 ± 0.45 1.32 ± 0.46

Table 3. Differences between the lensing-ISW amplitude fits
of Table 2, along with 1σ scatter determined from Monte-Carlo
simulations.

Lensing-ISW Pair Differences

143 GHz 217 GHz MV

100 GHz . . . . +0.13 ± 0.38 +0.06 ± 0.42 +0.16 ± 0.41
143 GHz . . . . −0.07 ± 0.26 +0.03 ± 0.18
217 GHz . . . . +0.10 ± 0.13
Even-Odd . . . −1.10 ± 0.69 −0.68 ± 0.69 −1.07 ± 0.64

angular scales. As we can see in Table 2, there is a large differ-
ence between the odd/even-L contributions in our lensing-ISW
bispectrum estimate, related to the odd/even temperature asym-
metry.

In Table 3 we present differences between the amplitude
measurements of Table 2, as well as the expected scatter, ac-
counting for correlations between the estimates due to common
CMB and (in the case of MV vs. 143 or 217 GHz) noise fluc-
tuations. We see that our estimates are all very consistent. The
difference in measured odd/even multipole power, while strik-
ing, is not statistically significant at greater than 2σ.

To conclude, we see a correlation between our lensing poten-
tial measurement and the large-scale temperature anisotropies
that is consistent with level expected due to the present-day
dark energy domination in our fiducial ΛCDM cosmology. Our
amplitude measurements are in agreement with those presented
in Planck Collaboration XXIV (2013); these independent mea-
surements are compared in detail in Planck Collaboration XIX
(2013).

6.3. Correlation with Galaxy Catalogues

The CMB lensing potential is an integrated measure of all mat-
ter in the Universe back to the last scattering surface, with a
broad kernel which peaks at z ∼ 2, but has significant contri-
butions from both lower and higher redshifts. There are there-
fore significant correlations between the CMB lensing potential
and other tracers of large-scale structure. Such correlations have
already been observed between lensing potential from WMAP
and the NVSS (Smith et al. 2007; Hirata et al. 2008, on the order
of 3σ in significance), as well as between the lensing potential
from SPT with optical and infrared catalogs from BCS, WISE,
and Spitzer/IRAC (Bleem et al. 2012, between 4 and 5σ), and
the ACT lensing potential with quasars from SDSS (Sherwin
et al. 2012, at 3.8σ). Here we will show several representative
examples of correlations with the Planck lensing potential, be-

tween 7σ and 20σ in significance. Our goal here is not to per-
form an in depth study, but rather to demonstrate the power
of our public lensing map. In addition to the correlations pre-
sented here, there is a powerful correlation between the Cosmic
Infrared Background (CIB). Correlation of the Plancklensing
with the CIB fluctuations as probed by the highest frequency
Planck channels is observed at greater than 40σ in significance,
and has been subjected to a more detailed analysis and mod-
elling, which is presented in an accompanying paper, Planck
Collaboration XVIII (2013).

To predict expected levels of correlation for a given galaxy
catalog, we use the Limber approximation (Limber 1954) with a
simple linear bias model, in which the cross-spectrum between
two mass tracers is given by

Cgφ
L =

�
dχKg

L(χ)KφL(χ)P(k = L/χ, χ), (48)

where χ is conformal distance and P(k, χ) is the 3D matter power
spectrum for wavenumber k at conformal lookback time χ. Kφ
and Kg are kernels associated with lensing and with the galaxy
catalog of interest respectively, and are given by

KφL(χ) = −3ΩmH2
0

L2

χ

a

�
χ∗ − χ
χ∗χ

�
,

Kg
L(χ) =

dN
dz

dz
dχ

b(z)
χ
. (49)

Here b(z) is a redshift-dependent linear bias parameter, and
dN/dz describes the redshift distribution of the galaxy popula-
tion. As with the lensing-ISW bispectrum, we can construct a
simple pseudo-CL estimator for the cross correlation using

Ĉgφ
L =

f −1
sky,j

2L + 1

�

M

gLMφ̂
∗
LM , (50)

where fsky,j is the sky fraction common to both the lens recon-
struction and the catalog, and gLM is the harmonic transform of
the galaxy fractional overdensity. Denoting the positions of the
objects p in the catalog as n̂p, the transform is given by

gLM =
1

Ngg

�

p

Y∗LM(n̂p), (51)

where Ngg is the surface density of objects in gal/steradian.
With a fiducial model Cgφ,fid.

L for cross spectrum obtained using
Eq. (48), the minimum-variance estimator for its overall ampli-
tude is

Âgφ = Ngφ
�

L

(2L + 1)Cgφ,fid.
L Ĉgφ

L

(Cgg
L + Ngg)(CφφL + NφφL )

≡
�

L

Agφ
L Ĉgφ

L , (52)

where Cgg
L is the signal power spectrum of the catalog, which

can be estimated using Eq. (48) with Kg for both weight func-
tions. Here we have defined the spectrum Agφ

L as a scaling at
each multipole L of the cross-correlation power spectrum. The
normalization Ngφ is given by

Ngφ =


�

L

(2L + 1)
�
Cgφ,fid.

L

�2

(Cgg
L + Ngg)(CφφL + NφφL )



−1

. (53)

In Fig. 17 we plot the contributions to Âgφ as a function of
L for several surveys which have significant correlations with
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CIB-LENSING CORRELATION

The high-frequency Planck maps trace Cosmic Infrared Background
(CIB) fluctuations, primarily sourced by star formation at

high-redshift; strong correlations with lensing (Song et. al.).
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EXTERNAL CORRELATIONS

I The CMB lensing potential has
significant correlations with
other tracers of large-scale
structure.

I Can observe by stack the
lensing map at the position of
catalog objects.

I Equivalently, pixelize into a
fractional overdensity map
δ(n̂) and take cross-spectrum

ĈδφL =
1

2L + 1

∑
M

δLMφ̂
∗
LM.

SDSS DR8-based
LRG Catalog

Ross, Ho et. al.
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EXTERNAL CORRELATIONS
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EXTERNAL CORRELATIONS
NVSS, 2 × 106 quasars, z ∼ 1, ∼ 20σ

SDSS, 1.5 × 106 LRGs, z ∼ 0.5, ∼ 10σ

L

MaxBCG, 14, 000 clusters, z ∼ 0.2, ∼ 7σ

WISE, 2 × 106 objects, z ∼ 0.1, ∼ 7σ

L
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LENSING IN THE 2013 RELEASE

Data processing papers

I Overview of products and scientific results
II The Low Frequency Instrument data processing

III LFI systematic uncertainties
IV Low Frequency Instrument beams and window

functions
V LFI calibration

VI High Frequency Instrument data processing
VII HFI time response and beams

VIII HFI photometric calibration and mapmaking
IX HFI spectral response
X Energetic particle effects: characterization,

removal, and simulation

Science papers

XII Component separation
XIII Galactic CO emission
XIV Zodiacal emission

XV CMB power spectra and likelihood
XVI Cosmological parameters

XVII Gravitational lensing by large-scale structure
XVIII The gravitational lensing infrared background

correlation
XIX The integrated Sachs-Wolfe effect
XX Cosmology from Sunyaev-Zeldovich cluster

counts
XXI Cosmology with the all-sky Planck Compton

parameter y-map
XXII Constraints on inflation

XXIII Isotropy and statistics of the CMB
XXIV Constraints on primordial non-Gaussianity
XXV Searches for cosmic strings and other topological

defects
XXVI Background geometry and topology of the

Universe
XXVII Doppler boosting of the CMB

XXVIII The Planck Catalogue of Compact Sources
XXIX Planck catalogue of Sunyaev-Zeldovich sources
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I Every high-resolution CMB
experiment is now a lensing
survey; in the past two years
CMB lensing has moved from
detection mode→ precision
cosmological probe.

I Planck is at the forefront of
this push.

I Look forward to the full
mission + polarization for a
sub-3% measurement of CφφL .
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