The Planck Lensing Potential

Duncan Hanson, McGill On behalf of the Planck Collaboration

Observations and Theoretical Challenges in Primordial Cosmology Monday April 22nd, 2013

LENSING POWER SPECTRUM

More details: Lewis and Challinor (astro-ph/0601594).

- ▶ Velocity dipole, with $v/c \approx 0.00123$ has deflection RMS of $\langle |\nabla \phi|^2 \rangle^{1/2} = 3'$.
- Large-scale structure in the linear regime. Coherent over $\frac{300 \text{Mpc}}{7000 \text{Mpc}} \approx 2^{\circ}$. Deflection per "structure" of $\sim 0.3'$ so RMS of $\langle |\nabla \phi|^2 \rangle^{1/2} \approx \sqrt{50} \times 0.3' = 2.4'$.
- Power spectrum corrections from non-linearity, although Gaussian still a good approximation.

CMB LENS RECONSTRUCTION

- We want to reconstruct the lensing potential $\phi(\hat{n})$.
- ► How to get the large-scale lenses: start by decomposing the lensing potential into convergence and shear modes:

$$-\nabla_{ij}\phi = \begin{bmatrix} \kappa + \gamma_+ & \gamma_- - \omega \\ \gamma_- + \omega & \kappa - \gamma_+ \end{bmatrix}.$$

CMB LENS RECONSTRUCTION

• Consider taking the power spectrum of a small patch with uniform κ .

► To first order in κ we have $C_l^{TT} = \tilde{C}_l^{TT} + \kappa \Delta_l^{\kappa}$, where

$$\Delta_l^{\kappa} = \left[l rac{\partial ilde{\mathsf{C}}_l^{TT}}{\partial l} + 2 ilde{\mathsf{C}}_l^{TT}
ight]$$

► Look for Δ_l^{κ} in (localized) estimates of power spectrum, stitch together to get $\kappa(\hat{n})$.

QUADRATIC CMB LENS RECONSTRUCTION

Suppose lenses are fixed, then CMB is still Gaussian, but becomes statistically anisotropic. Averaging over CMB realizations have

$$\frac{\partial \langle T(\vec{l}_1)T(\vec{l}_2)\rangle_{\text{CMB}}}{\partial \phi(\vec{l})} = \Delta^{\phi}(\vec{l}_1, \vec{l}_2) = \frac{1}{2\pi} \vec{l} \cdot \left[\vec{l}_1 \tilde{C}_{l_1}^{TT} + \vec{l}_2 \tilde{C}_{l_2}^{TT} \right] + \mathcal{O}(\phi^2)$$

where $\vec{l} = \vec{l}_1 + \vec{l}_2$. As for κ , write down usual estimator as

$$\hat{\phi}(\vec{l}) = N_l^{\phi\phi} \int \frac{d^2 \vec{l}_1}{2\pi} \hat{T}(\vec{l}_1) \hat{T}(\vec{l}_2) \Delta^{\phi}(\vec{l}_1, \vec{l}_2) \text{Var}^{-1}(T(\vec{l}_1) T(\vec{l}_2)) \frac{1}{2}.$$

This is the minimum-variance quadratic estimator of Hu 2001 (astro-ph/0105424).

LENSING EFFECT ON THE POWER SPECTRUM

At second order, lensing smooths the accoustic peaks of the power spectrum. For interest, sometimes parameterize as A_L .

PLANCK SKY MAPS

Noise Levels / Noise Budget

TECHNICAL DETAILS:

- ▶ Point source shot-noise correction.
- ► Frequency- and map- cross-estimators.
- ▶ Bias-hardened estimators for both instrumental and foreground contamination (Namikawa et. al. arxiv:1209.0091).
- ▶ Phase-dependent $N^{(0)}$ bias correction, motivated by likelihood:

$$\begin{split} &\Delta C_{L,x}^{\phi\phi}\big|_{\text{N0}} = \left\langle -C_{L,x}^{\overline{\phi}\overline{\phi}}\left[\tilde{T}_{\text{MC}}^{(1)},\tilde{T}_{\text{MC}'}^{(2)},\tilde{T}_{\text{MC}'}^{(3)},\tilde{T}_{\text{MC}}^{(4)}\right] \right. \\ &+ C_{L,x}^{\overline{\phi}\overline{\phi}}\left[\tilde{T}_{\text{MC}}^{(1)},\tilde{T}^{(2)},\tilde{T}_{\text{MC}}^{(3)},\tilde{T}^{(4)}\right] + C_{L,x}^{\overline{\phi}\overline{\phi}}\left[\tilde{T}_{\text{MC}}^{(1)},\tilde{T}^{(2)},\tilde{T}^{(3)},\tilde{T}_{\text{MC}}^{(4)}\right] \\ &+ C_{L,x}^{\overline{\phi}\overline{\phi}}\left[\tilde{T}^{(1)},\tilde{T}_{\text{MC}}^{(2)},\tilde{T}_{\text{MC}}^{(3)},\tilde{T}_{\text{MC}}^{(4)}\right] \\ &- C_{L,x}^{\overline{\phi}\overline{\phi}}\left[\tilde{T}_{\text{MC}}^{(1)},\tilde{T}_{\text{MC}'}^{(2)},\tilde{T}_{\text{MC}'}^{(3)},\tilde{T}_{\text{MC}'}^{(4)}\right] \\ &- C_{L,x}^{\overline{\phi}\overline{\phi}}\left[\tilde{T}_{\text{MC}}^{(1)},\tilde{T}_{\text{MC}'}^{(2)},\tilde{T}_{\text{MC}'}^{(3)},\tilde{T}_{\text{MC}'}^{(4)}\right] \right\rangle_{\text{MC,MC'}}, \end{split}$$

▶ Renormalizable likelihood code, so uncertainty in C_{ℓ}^{TT} or B_{ℓ} for lens reconstruction can be handled consistently with TT power spectrum analysis.

CONSISTENCY TESTS

LOW MULTIPOLES:

► "Mean-field" corrections are very large at low-*L*. We fail some detailed consistency tests at *L* < 10 (though not very badly!).

The lensing power spectrum provides a CMB lever arm on structure at intermediate redshifts.

PARAMETER CONSTRAINTS

Lensing completely demolishes the CMB geometrical degeneracy (see also Sherwin et. al. 2011, van Engelen et. al. 2012 for ACT and SPT results).

PARAMETER CONSTRAINTS

With Planck, lensing also helps to break the $A_s e^{-\tau}$ degeneracy in the primary CMB.

PARAMETER CONSTRAINTS

Note: TT lensing power spectrum prefers high lensing amplitude relative to theory, leading to some counter-intuitive results. Something to watch.

LENSING-ISW CORRELATION

We measure an amplitude for the lensing-ISW bispectrum of

$$\hat{A}^{T\phi} = 0.78 \pm 0.32.$$

- ► Consistent with the Λ CDM expectation of $\hat{A}^{T\phi} = 1$ and discrepant with zero at $\sim 2.4\sigma$.
- ► Provides a bias for estimates of f_{NL}^{loc}

$$\hat{f}_{NL}^{loc} = 9.8 \pm 5.8$$
 (ignore lensing)
 $\hat{f}_{NL}^{loc} = 2.7 \pm 5.8$ (debiased)

LENSING-ISW CORRELATION

- ► Lensing-ISW bispectrum has associated cross-spectrum $C_L^{T\phi}$.
- ► Potentially a (semi-) independent low-*L* probe; striking odd/even differences, though not significant.

	Lensing-ISW Amplitudes				
	$\hat{A}^{T\phi}$ (all L)	$\hat{A}^{T\phi}$ (even L)	$\hat{A}^{T\phi}$ (odd L)		
100 GHz	0.93 ± 0.52	0.45 ± 0.72	1.44 ± 0.73		
143 GHz	0.81 ± 0.36	0.27 ± 0.48	1.37 ± 0.52		
217 GHz	0.87 ± 0.35	0.54 ± 0.49	1.22 ± 0.49		
$\underline{MV\ldots\ldots}$	0.78 ± 0.32	0.25 ± 0.45	1.32 ± 0.46		

CIB-LENSING CORRELATION

The high-frequency Planck maps trace Cosmic Infrared Background (CIB) fluctuations, primarily sourced by star formation at high-redshift; strong correlations with lensing (Song et. al.).

EXTERNAL CORRELATIONS

- ► The CMB lensing potential has significant correlations with other tracers of large-scale structure.
- Can observe by stack the lensing map at the position of catalog objects.
- Equivalently, pixelize into a fractional overdensity map $\delta(\hat{n})$ and take cross-spectrum

$$\hat{C}_L^{\delta\phi} = \frac{1}{2L+1} \sum_M \delta_{LM} \hat{\phi}_{LM}^*.$$

EXTERNAL CORRELATIONS

EXTERNAL CORRELATIONS

LENSING IN THE 2013 RELEASE

Data processing papers		XV	CMB power spectra and likelihood	
		XVI	Cosmological parameters	
I	Overview of products and scientific results	XVII	Gravitational lensing by large-scale structure	
II	The Low Frequency Instrument data processing	XVIII	The gravitational lensing infrared background	
III	LFI systematic uncertainties		correlation	
IV			The integrated Sachs-Wolfe effect	
	functions	XX	Cosmology from Sunyaev-Zeldovich cluster	
V	LFI calibration		counts	
VI	High Frequency Instrument data processing	XXI	6)	
VII	HFI time response and beams		parameter y-map	
VIII	HFI photometric calibration and mapmaking HFI spectral response		Constraints on inflation	
IX			Isotropy and statistics of the CMB	
	Energetic particle effects: characterization,	XXIV	Constraints on primordial non-Gaussianity	
	removal, and simulation	XXV	Searches for cosmic strings and other topological defects	
Science papers		XXVI	Background geometry and topology of the Universe	
XII	I Component separation			
XIII	Galactic CO emission	XXVII	Doppler boosting of the CMB	
XIV	Zodiacal emission	XXVIII	The Planck Catalogue of Compact Sources	

XXIX Planck catalogue of Sunyaev-Zeldovich sources

- ► Every high-resolution CMB experiment is now a lensing survey; in the past two years CMB lensing has moved from detection mode → precision cosmological probe.
- Planck is at the forefront of this push.
- ► Look forward to the full mission + polarization for a sub-3% measurement of $C_L^{\phi\phi}$.

