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I (brief) Motivation

® DIS ™ forward Compton amplitude /=20 q(xp;)

dx™  _ x~ x~ ip— o Pt
q(xBj) = / o (r|g (—77%) 7T q (77(&) p) e *Bit

i " + 1 0 1
» Light-cone coordinates z* = = (29 £ 2t

# ¢(x) = light-cone momentum distribution of quarks in the
target; x = (light-cone) momentum fraction

# no information about position of partons!




I (brief) Motivation

® generalizationto p’ #p =  Generalized Parton Distributions

xr xr . — .p+
. 0 + 0 x P

with A =p—p/, t = A2 and £(pt +pt') = —2AT.
# can be probed e.g. in beeply virtual compton Scattering
(DVCS) at HERMES, JLab@12GeV, eRHIC, ...

# Interesting observation: X.Ji, PRL78,610(1997)

GPD(x,&,t) E/d;—ﬁ_ (p'

(Jy) = %/0 dx x[Hy(z,0,0) + E4(z,0,0)]

—

DVCS| <« |GPDs| & | J,

# But: what other “physical information” about the nucleon can
we obtain by measuring/calculating GPDs?



I Outline

o [ o ®

DIS — parton distributions
Deeply virtual Compton scattering (DVCS)
Generalized parton distributions (GPDs)

Probabilistic interpretation of GPDs as Fourier transforms of
Impact parameter dependent PDFs

® H(x,0,—A?%) — q(z,b))
e H(zx,0,—-A%) — Ag(z,b))
.o

E(z,0,—A%) — 1 distortion of PDFs when the target is trans-
versely polarized

Chromodynamik lensing and L single-spin asymmetries (SSA)

transverse distortion of PDFs

. . . = 1 SSAin YN — 714X
+ final state interactions

Summary



I DIS — light-cone correlations

opt. theorem:
Inclusive cross—section < virtual, forward Compton amplitude

( ) struck quark carries large

- - momentum: Q? > AéCD

e crossed diagram suppressed

(wavefunction!)

e asymptotic freedom =- neglect

Interactions of struck quark

e struck quark propagates along

light-cone z? = 0



suppression of crossed diagrams

_ P P

Flow of the large momentum ¢ through typical diagrams con-
tributing to the forward Compton amplitude. a) ‘handbag’
diagrams; b) ‘cat’s ears’ diagram. Diagram b) is suppressed
at large ¢ due to the presence of additional propagators.

back



I DIS — light-cone correlations

opt. theorem:
Inclusive cross—section < virtual, forward Compton amplitude

( ) struck quark carries large

- - momentum: Q? > AéCD

e crossed diagram suppressed

(wavefunction!)

e asymptotic freedom =- neglect

Interactions of struck quark

e struck quark propagates along

light-cone z? = 0



DIS — light-cone correlations

light-cone coordinates:

DIS related to correlations along light—cone

dZIZ‘_ — 1T T B
q(rB;) :/ (Plg(07,0, )y q(z~,0,)|P) e 2 P

2

No information about transverse position of partons!



I Deeply Virtual Compton Scattering (DVCS)

r * p q’ 1
e
p p’ D P
v of e () (Gl

Bj g ' 1 1 e
By s
/—1 “ (5’5—€+i€ T rHE—ie (2, & A%)ap )y ulp)  +

g=(q+4q)/2 A=p —p rpj = —¢*/2p-q=2§(1 +¢)



I Generalized Parton Distributions (GPDs)

0(-5 ) (F)|p) = HEcaNaw) )

2T
—y
+E(z, ¢, A2)?1(10’)7/02]\4 u(p)
A ~ _ |
) A+
+E (o, &, A%)a(p) Z—u(p)

where A = p’ — p is the momentum transfer and £ measures the longi-

tudinal momentum transfer on the target A™ = £(pt + pt').



I Parton Interpretation

0(-5 ) (F)|p) = HecaNa) )

icTVA,

+E(z, &, A%)u(p) 57

u(p)

® Actually H = H(x, &, A%, ¢?), but will not discuss ¢? dependence
of GPDs today!

® 1 is mean long. momentum fraction carried by active quark
pt —p*

® ¢ measures longitudinal momentum transfer ¢ = T

® In general no probabilistic interpretation since initial and final state
not the same — interpretation as transition amplitude

® [dxH(z,&,A%) =F(A%) and [dzE(z,£ A%) = Fy(A?)

— GPDs provide a decomposition of form factor w.r.t. the momentum
fraction (in IMF) carried by the active quark



I Parton Interpretation

L I

0(-5 ) (F)|p) = HecaNa) )

icTVA,

+E(z, &, A%)u(p) 57

u(p)

Actually H = H(x,&, A%, ¢*), but will not discuss ¢* dependence
of GPDs today!

x IS mean long. momentum fraction carried by active quark

pT —pt

pt+pt’

In general no probabilistic interpretation since initial and final state
not the same — interpretation as transition amplitude
[dxH(z,&,A%) = F1(A%) and [dzE(x,£,A%) = F5(A?)

GPDs provide a decomposition of form factor w.r.t. the
momentum fraction (in IMF) carried by the active quark

¢ measures longitudinal momentum transfer § =

— knowledge of GPDs = better understanding of form factors



I What is Physics of GPDs ?

® Definition of GPDs resembles that of form factors

(o

icTVA,
2M

OA‘ p> = H(z, & A a(p )y Tulp) + Bz, &, A%)u(p') u(p)

with O = [ 4 _¢iz"preg (—%) 77q (%)
— relation between PDFs and GPDs similar to relation between a

charge and a form factor

— |f form factors can be interpreted as Fourier transforms of charge
distributions in position space, what is the analogous physical
interpretation for GPDs ?



I Form Factors.vs. GPDs

forward off-forward .
operator . . position space
matrix elem. matrix elem.
g Q F(t) p(7)
dcc_emp—i_x_— —x + [z~ )
e q( ; )7 q(T) q() H(z,¢&,1) -




I Form Factors.vs. GPDs

forward off-forward .
operator . . position space
matrix elem. matrix elem.
7 Q F(t) p(7)
dw—eixp'i_x (—x— + T
i q( ; )”y q( > q() H(z,0,1) q(z,b.)

q(x,b ) = impact parameter dependent PDF




I Impact parameter dependent PDFs

® define state that is localized in _L position:

’p—i_?R_L — 0_L7)\> EN/dsz_ ’p+7pJ_7>\>

Note: L boosts in IMF form Galilean subgroup = this state has
R, = %fda:_dQXLXLTJFJF(x) =0,
(cf.: working in CM frame in nonrel. physics)

» define impact parameter dependent PDF

dx™ oz x~ iont o
q(x,by) 5/4—7T (pt R, =0| Q(—5, bL)TLQ(?a b )[pth R =0,)e™P



I Impact parameter dependent PDFs

® use translation invariance to relate to same matrix element that
appears in def. of GPDs

- 21 T T ixp T
q(xr,by) = /de (p", Ry = OL‘Q(_77 bL)TLQ(?a b )lp", R =0, )e Pt

— — x x izpt o~
= INIQ/de/dei/dw (p™, pi\é](—?bL)WQ(?bL)\pﬁer P



I Impact parameter dependent PDFs

® use translation invariance to relate to same matrix element that
appears in def. of GPDs

— — T L xp
q(xr,by) = /dx (pt R, =0| Q(_77 bL)7+Q(7a b )[ptR. =0,)e pt

— — x x izpT o~
= |N|2/d2PL/dQP/¢/d33 <p+,pl!cI(—?bL)v+Q(?bL) ptpL)e™?

— — x L ixp T
— |N|2ﬁ2PL/CZ2Pl/d$ <p+,pl!(J(—70L)7+Q(7OL) pT.pL)e™P



I Impact parameter dependent PDFs

® use translation invariance to relate to same matrix element that
appears in def. of GPDs

o T T ixp T
q(x,by) = /dil? (pt )R, =0| Q(—77 bL)qu(?’ b )[ptbRL=0,)¢ Pt

= INI2/d2IM/dQIﬁ/dﬂf<p+
= INI2/d2m/del/dﬂf<;0+

Y /dZm /deLH

— (p, —p1)?)eP PPl

T X
Pl a(=5 by a5

P A X
P35 00y (=

2 Y

2 2

bJ_) ‘p_i_a PL> €

OJ_) ‘p—*_a PJ_> €

— q(z,b1) :/

A
(2m)?

H(z,0,—A?%)e tPrAL

ixp+a:_

ixp+x_



I Impact parameter dependent PDFs

o (x,b ) = dQAlH 0, —A2)e b1
q\x, J_)_ (27T)2 (xa ) J_)e

(AL =p)| —pL, £=0)
® ¢(x,b) has physical interpretation of a density

q(x,by ) >0 for >0

g(x,b) <0 for z <0

g(z,b1) ~ (pH0L[b'(zpT, b1 )b(zpt,byL)|pT0L)

= |b(zp™,by)|pT, 0¢>‘2 >0



Discussion. GPD < q(z,b)

® ¢(x,b ) has interpretation as density (positivity constraints!) —
positivity constraint on models



Discussion. GPD < q(z,b)

® GPDs allow simultaneous determination of longitudinal
momentum and transverse position of partons

d’> A _ib . -
Q(xa bJ_) — / (QW)JQ_ H($, 07 —Ai)@ P

dPA | - .
MoGae.b) = [ G0, AT A

® Nonrelativistically such a result not surprising!
Absence of relativistic corrections to identification

H(z,0,—A2) 25 ¢(z, b, ) due to Galilean subgroup in IMF

® b, distribution measured w.r.t. RY™ =5 x;r; |
— width of the b distribution should go to zero as = — 1, since
the active quark becomes the L center of momentum in that limit!
— H(x,0,—A%) must become A? -indep. as x — 1. Confirmed
by recent lattice studies (QCDSF, LHPC)




Discussion. GPD < q(z,b)

$ Use intuition about nucleon structure in position space to make
predictions for GPDs:
large x: quarks from localized valence ‘core’,
small xz: contributions from larger * meson cloud’
— expect a gradual increase of the ¢t-dependence (L size) of
H(x,0,t) as x decreases

® very simple model: H,(z,0,—A2) = ¢(z)e AT~z n 5




q(x, b ) in.asimple model

-

back




The physics of E(x, 0, —A?)

® Sofar: only unpolarized (or long. polarized) nucleon

In general, use ( A* = 0)

dz~
dz™ A_iA

® Consider nucleon polarized in x direction (in IMF)
|X> = |p+7RJ_ — OJ_7 T> T |p+7RJ_ — OJ_7 l>
— unpolarized quark distribution for this state:

1 0 [d°A) .
Yy



The physics of E(x, 0, —A?)

gx (x, b1 ) in transversely polarized nucleon is transversely distorted
compared to longitudinally polarized nucleons !

® mean displacement of flavor ¢ (L flavor dipole moment)
1
dl = /dx/deLqX(a:,bL)b i drE,(z,0,0) = Kb

with 7, = F/90) =0(1-2) = df =0(0.2fm)
® CM for flavor ¢ shifted relative to CM for whole proton by

1
/dw/d2quX(a:,bL)xby = 577 /da: rE,(x,0,0)

— not surprising to find that second moment of £, is related to
angular momentum carried by flavor ¢



I Intuitive connection with L,

©

[

°

(some) DIS-kinematics (target rest frame & momentum transfer in
—Z direction):

/ z z!
Pel = Pel — OJ— Pe — —X Pe — —X

only “—" component of all momenta and momentum transfers
large, e.g.

Pe =

2 2
(pg - P'Z) — 00 Pe e Z) — M TPy

Sl

only “—" component of the electron current j* = u(p’)v*u(p) large

vector-vector interaction

M o< 1Y g = 3235 + iy —itis

electron “sees” (for p> — —oc) only Jj



I Intuitive connection with L,

® Electromagnetic interaction couples to vector current. Due to
kinematics of the DIS-reaction (and the choice of coordinates —
z-axis in direction of the momentum transfer) the virtual photons
“see” (in the Bj-limit) only the ;T = j° + j* component of the quark
current

® If up-quarks have positive orbital angular momentum in the
x-direction, then 57 is positive on the + side, and negative on the
—q) side

v
-37>0



I Intuitive connection with L,

® Electromagnetic interaction couples to vector current. Due to
kinematics of the DIS-reaction (and the choice of coordinates —
z-axis in direction of the momentum transfer) the virtual photons
“see” (in the Bj-limit) only the ;T = j° + j* component of the quark
current

® |f up-quarks have positive orbital angular momentum in the
z-direction, then 5% is positive on the 44 side, and negative on the
—q) side

— 47T is distorted not because there are more quarks on one side
than on the other but because the DIS-photons (coupling only to
77) “see” the quarks on the +4 side better than on the — side (for
L, > 0).



Simple model for E,(x,0, —A?)

® For simplicity, make ansatz where E, « H,
p
Eu(x,O,—Ai) — %Hu(xaoa_Ai)
Eq(z,0,-A%) = rhHy(z,0,—A7)
with H,(z,0, —A%) = g(z)e AL -o)n 3 gngd

kP = 2kp 4+ Ky = 1.673 Kyg = 2Ky, + Kkp = —2.033.

°

Satisfies: [ dxE,(x,0,0) = &}

® Model too simple but illustrates that anticipated distortion is very
significant since [ dzE, ~ k, known to be large!
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I Quark Correlations «—— SSA

® example: yp — X v

_)
p _ /
8l ) .’

® . d distributions in L polarized proton have left-right asymmetry in
| position space (T-even!); sign determined by k,, & kg4

— attractive FSI translates position space distortion (before the
guark is knocked out) in +g-direction into momentum asymmetry
that favors —g direction

— correlation between sign of x,/L, and sign of SSA
(k¥ <0  and (k3) >0

for proton polarized in +2 direction [M.B., PRD 66, 114005 (2002)].
® signs confirmed by recent HERMES data (hep-ex/0408013).



I GPDs forz.— 1 (or: size doesmatter!)

® Distance between active quark and center of momentum of all
spectators

1
1l —=x

r = bJ_

diverges as x — 1, unless b | goes to zero!

® Assume (conjecture) no (or only few) partons outside disk of
radius 1/A around center of momentum

— q(z,b.) =0forb2 > L2 x)

— significant contribution to form factor from quarks with

A

Flargex(Ai) = /da:H x,0, A2 / da: / d’b e PLAL q(x,by)
A ] A
1 4
A
= / drq(x) = 2—4 for q(z) =c(1 —x)°.
l- & 14l



I GPDs forz.— 1 (or: size doesmatter!)

® |arge-z contribution independent of detailed shape of ¢(x,b )

c A*
Flar e:E(AZ) — T A4 for Q(x) — C(l o ZE)?)'
VN |

® Different mechanism but same behavior A%L as pQCD mechanism
L

® presence of this large-x contribution to the nucleon form factor
may have important consequences for color transparency — or
the lack thereof ...

® Need to understand large x better!



I Summary

® DVCS allows probing GPDS
o R ey
(7))

dr™ .+ -
TP ' X /
21 c <p
® GPDs resemble both PDFs and form factors:
defined through matrix elements of light-cone correlation, but
A=p —p#D0.
® {-dependence of GPDs at £=0 (purely L momentum transfer) =
Fourier transform of impact parameter dependent PDFs ¢(x, b )

— knowledge of GPDs for £ = 0 provides novel information about
nonperturbative parton structure of nucleons: distribution of

partons in L plane

A0, A A

Aqxbj_ fCéQA)éHﬂfO A2)_ZbL'Al

® (x,by), Aq(z,b ) have probabilistic interpretation, e.qg.
q(x,by) >0forz >0



I Summary

9 ?—ﬁE(ZE, 0, —A?) describes how the momentum distribution of
unpolarized partons in the _L plane gets transversely distorted

when is nucleon polarized in _L direction.

® (attractive) final state interaction converts _L position space
asymmetry into .. momentum space asymmetry

— simple physical explanation for sign of left-right asymmetry in
semi-inclusive DIS

® Similar mechanism also applicable to many other semi-inclusive
events, such as transverse polarizations in hyperon production.

® published in: M.B., PRD 62, 71503 (2000), Int. J. Mod. Phys. A18,
173 (2003); see also D. Soper, PRD 15, 1141 (1977).

® Connection to SSA in M.B., PRD 69, 057501 (2004); NPA 735, 185
(2004); PRD 66, 114005 (2002).



| extrapolating to £ = 0

® Dbad news:¢ = 0 not directly accessible in DVCS since long.
momentum transfer necessary to convert virtual + into real ~

® good news: moments of GPDs have simple £-dependence
(polynomials in &)
— should be possible to extrapolate!

even moments of H(x,&,1):

| [25]
Ho(€1) = / daa™  H(z,6.0) = 3 AnsiDE + Ca(1)
- 1=0

= Ano(t) + Ano(DE + o 4 Apn 2 (DE2 4 Cp()ET



-

1
/ dCECIZH(SIZ, 57 t) — A2,O(t) + C12 (t)€2

—1

® For n'" moment, need Z + 1 measurements of H, (¢, t) for same ¢
but different ¢ to determine A,, 2;(t).

® GPDs @ ¢ = 0 obtained from H,, (¢ = 0,t) = A, 0(t)

°

similar procedure exists for moments of H

back



| QCD evolution

So far ignored! Can be easily included because

® Fort < Q?, leading order evolution ¢t-independent

® For ¢ = 0 evolution kernel for GPDs same as DGLAP evolution
kernel

likewise:

® impact parameter dependent PDFs evolve such that different b |
do not mix (as long as L spatial resolution much smaller than Q?)



I

— above results consistent with QCD evolution:

[i’(l'7 O, —Ai7 Q2) — f deJ_Q(ZC, bJ_’ Qz)e—ibJ_AJ_
H(x,0,—A2%,Q%) = [d?*b, Aq(z,b),Q?)e P+AL

where QCD evolution of H, H, ¢, Aq is described by DGLAP and is

independent on both b, and A%, provided one does not look at scales
in b, that are smaller than 1/Q.

back



I Form factor.vs. charge distribution (non-rel.)

® define state that is localized in position space (center of mass
frame)

ﬁ:6> E/\/'/d?’mﬁ}
® define charge distribution (for this localized state)

p(7) = <ﬁ = 6‘ 7°(7) |E = 6>



I

® use translation invariance to relate to same matrix element that
appears in def. of form factor




| density.interpretation of ¢(z,b )

® express quark-bilinear in twist-2 GPD in terms of light-cone ‘good’
component gy = 37 vtg

7 q = §E+)7+Q(+) = \/iq&)q(vt)'
#® expand g4 In terms of canonical raising and lowering operators

- > dkt  [d’k,
10X = ) T | o
X ugg (K, 8)bs (KT k1 )e™ ™ 44 (k, s)df (kT k1 )e™™]




density interpretation of ¢(z,b | )

with usual (canonical) equal light-cone time ™ anti-commutation
relations, e.g.

{br (k7K 1), bl (g 1)} = 6(kT = ¢M)d(k . — a1 )3,
and the normalization of the spinors is such that
a(‘i‘) (p7 T)fy—ku(—l-) (p7 S) — 2p+5rs-

Note: @', )y u)(p,s) = 2p™ 6, for p™ = p'*, one finds for
x>0

21/
q(z,by) N’Z/ L‘/inL@tOL’bT xpt K )bs(zpT k1) [pT,00)

DL (ki—K, )



density interpretation of ¢(z,b | )

» Switch to mixed representation:

momentum in longitudinal direction
position in transverse direction

- d?k .
bs(kJr,XL) = / Lbs(kJr,kL)eZkL'xL

2T

g(z,br) = Y (ph0L|bl(zpt,bL)bs(zpt,bL) |ph0L).

3

S

~

2
bs(zp™,b1) [pY, 0¢>‘

> 0.

back



I Boosts in nonrelativistic QM

¥ =T+ vt t' =t
purely kinematical (quantization surface ¢t = 0 inv.)
— 1. boosting wavefunctions very simple

qVs(P1,p2) = Y5(P1 — m1U, Po — ma?)

2. dynamics of center of mass

R = Z T with 2, = —-

decouples from the internal dynamics



I Relativistic Boosts

t’:fy(t—l—%z>, 2" =~ (z+vt) x| =x,
c

generators satisfy Poincaré algebra:
PYPY] = 0
M, PP] = i(g""P" = g"P")
[M,UJV’ Mpk} — 4 (guAMl/p + ngMu/\ _ gupMW\ _ gW\Mup>

rotations: M;; = €;;xJk, boosts: M,y = K.



I Galilean subgroup of L boosts

iIntroduce generator of L ‘boosts’:

szM+x:Kx+‘]y B, =Mty = By~
NG ’ NG
Poincaré algebra — commutation relations:
|J3, Br] =ien D) [Py, Bl] = —i0i PT
[P_,Bk] = 1P [P+,Bk] =0

with k.1 €{x,y}, €zy= —€yo=1,and g, = €, = 0.



I

Together with [J,, P.] = ie; P, as well as

P~ P = [P,PT]=[P,J.]=0
[Pt P = [P*,By] =[P",J.]=0.

Same as commutation relations among generators of nonrel. boosts,
translations, and rotations in x-y plane, provided one identifies

P~ — Hamiltonian

P, — momentum in the plane

PT — mass

L. —— rotations around z-axis

B, — generator of boosts in the plane,

back to discussion



I Consequences

L I

back

many results from NRQM carry over to L boosts in IMF, e.g.

1 boosts kinematical
\I/AL(x,kJ_) — \IJOJ_(ZC,kJ_—.TAJ_)
Ua (z,ki,y,11) = Yo, (v, k;, —2zA1,y, 1 —yA])

Transverse center of momentum R, = ) . x;r ; plays role

similar to NR center of mass, e.g. [ d*p. |p*, p.) corresponds to
statewithR;, =0,.



| 1 Center.of Momentum

® field theoretic definition
pTR, = /dac_ /d2XJ_T++(x)XJ_ — M+t

® M+t+ =B" generator of transverse boosts
® parton representation:

R, = E Tir
i

(z; = momentum fraction carried by i** parton)

back



I Poincare algebra:

PYPY] = 0
M™, PP = i(g" P! — g PY)
[MW, Mpk} — 3 (guAMVp + ngM/M _ gupMW\ _ gvAMup>

rotations: M,;; = €;xJi, boosts: M,y = K;. back



I Galilean subgroup of L boosts

iIntroduce generator of L ‘boosts’:

szM+x:Kx+‘]y B, =Mty = By~
NG ’ NG
Poincaré algebra — commutation relations:
|J3, Br] =ien D) [Py, Bl] = —i0i PT
[P_,Bk] = 1P [P+,Bk] =0

with k.1 €{x,y}, €zy= —€yo=1,and g, = €, = 0.

back



I

Together with [J,, P.] = ie; P, as well as
P~ P = [P,PT]=[P,J.]=0
[Pt P = [P*,By] =[P",J.]=0.

Same as commutation relations among generators of nonrel. boosts,
translations, and rotations in x-y plane, provided one identifies

P~ — Hamiltonian

P, — momentum in the plane

PT — mass

L. —— rotations around z-axis

B, — generator of boosts in the plane,

back



I Consequences of Galilean subgroup

L I

back

many results from NRQM carry over to L boosts in IMF, e.g.

1 boosts kinematical
\I/AL(xﬂ{J_) — \IJOJ_(ZC,kJ_—.TAJ_)
Ua (z,ki,y,11) = Yo, (v, k;, —2zA1,y, 1 —yA])

Transverse center of momentum R =) . z;r  ; plays role similar

to NR center of mass, e.g. [ptR. =0.)= [d°p, |pT,pL)
corresponds to state with R, =0, .



Proof that BJ_‘p+, R, = OL> = (

®» Use
e~V Brpt i p ) = ptpL + v, )
<
o [ p) = [l by
<

B /dzmlp*,m, A) =0

back



r - 2
Ansatz: H,(z,0,—A2) = g(z)e ¢A1(0-2)In ¢

2
1 b7

— Q(l‘) bJ_) = Q([,U) 47Ta(1 )1 - 6_ 4a(1—=x)1In %
— )11 =



Q(l’,bL)

back




I L attice results for first 3 moments

back
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