Hadron Tomography

or: Physical Interpretation for the Generalized Parton Distributions $H(x,0,-\pmb{\Delta}_{\perp}^2)$ and $E(x,0,-\pmb{\Delta}_{\perp}^2)$

Matthias Burkardt

burkardt@nmsu.edu

New Mexico State University Las Cruces, NM, 88003, U.S.A.

(brief) Motivation

● DIS $\stackrel{opt.theorem}{\longrightarrow}$ forward Compton amplitude $\stackrel{Bj-limit}{\longrightarrow}$ $q(x_{Bj})$

$$q(x_{Bj}) = \int \frac{dx^{-}}{2\pi} \langle p | \overline{q} \left(-\frac{x^{-}}{2}, \mathbf{0}_{\perp} \right) \gamma^{+} q \left(\frac{x^{-}}{2}, \mathbf{0}_{\perp} \right) | p \rangle e^{ix^{-}x_{Bj}P^{+}}$$

- Light-cone coordinates $x^{\pm} = \frac{1}{\sqrt{2}} \left(x^0 \pm x^1 \right)$
- q(x) = light-cone momentum distribution of quarks in the target; x = (light-cone) momentum fraction
- no information about position of partons!

(brief) Motivation

9 generalization to $p' \neq p \Rightarrow$ **G**eneralized **P**arton **D**istributions

$$GPD(x,\xi,t) \equiv \int \frac{dx^{-}}{2\pi} \langle p' | \overline{q} \left(-\frac{x^{-}}{2}, \mathbf{0}_{\perp} \right) \gamma^{+} q \left(\frac{x^{-}}{2}, \mathbf{0}_{\perp} \right) | p \rangle e^{ix^{-}xP^{+}}$$

with
$$\Delta = p - p'$$
, $t = \Delta^2$, and $\xi(p^+ + p^{+'}) = -2\Delta^+$.

- can be probed e.g. in Deeply Virtual Compton Scattering (DVCS) at HERMES, JLab@12GeV, eRHIC, ...
- Interesting observation: X.Ji, PRL78,610(1997)

$$\langle J_q \rangle = \frac{1}{2} \int_0^1 dx \, x \left[H_q(x, 0, 0) + E_q(x, 0, 0) \right]$$

$$oxed{ extsf{DVCS}} \Leftrightarrow oxed{ extsf{GPDs}} \Leftrightarrow oxed{ec{J_q}}$$

But: what other "physical information" about the nucleon can we obtain by measuring/calculating GPDs?

Outline

- DIS parton distributions
- Deeply virtual Compton scattering (DVCS)
- Generalized parton distributions (GPDs)
- Probabilistic interpretation of GPDs as Fourier transforms of impact parameter dependent PDFs

 - $\tilde{H}(x,0,-\mathbf{\Delta}_{\perp}^2) \longrightarrow \Delta q(x,\mathbf{b}_{\perp})$
 - $E(x,0,-{f \Delta}_{\perp}^2)$ $\longrightarrow \perp$ distortion of PDFs when the target is transversely polarized
- ullet Chromodynamik lensing and ot single-spin asymmetries (SSA)

$$\left.\begin{array}{c} \text{transverse distortion of PDFs} \\ + \text{ final state interactions} \end{array}\right\} \quad \Rightarrow \quad \bot \text{ SSA in } \quad \gamma N \longrightarrow \pi + X$$

Summary

DIS — light-cone correlations

opt. theorem: inclusive cross–section ⇔ virtual, forward Compton amplitude

struck quark carries large momentum: $Q^2\gg \Lambda_{\rm OCD}^2$

- crossed diagram suppressed (wavefunction!)
- asymptotic freedom ⇒ neglect interactions of struck quark
- struck quark propagates along light-cone $x^2 = 0$

suppression of crossed diagrams

Flow of the large momentum q through typical diagrams contributing to the forward Compton amplitude. a) 'handbag' diagrams; b) 'cat's ears' diagram. Diagram b) is suppressed at large q due to the presence of additional propagators.

DIS — light-cone correlations

opt. theorem: inclusive cross–section ⇔ virtual, forward Compton amplitude

struck quark carries large momentum: $Q^2 \gg \Lambda_{\rm OCD}^2$

- crossed diagram suppressed (wavefunction!)
- asymptotic freedom ⇒ neglect interactions of struck quark
- struck quark propagates along light-cone $x^2 = 0$

DIS — light-cone correlations

light-cone coordinates:

$$x^{+} = (x^{0} + x^{3}) / \sqrt{2}$$

$$x^{-} = (x^{0} - x^{3})/\sqrt{2}$$

DIS related to correlations along light-cone

$$q(x_{Bj}) = \int \frac{dx^-}{2\pi} \langle P | \overline{q}(\mathbf{0}^-, \mathbf{0}_\perp) \gamma^+ q(x^-, \mathbf{0}_\perp) | P \rangle e^{ix^- x_{Bj} P^+}$$

No information about transverse position of partons!

Deeply Virtual Compton Scattering (DVCS)

$$T^{\mu\nu} = i \int d^4z \, e^{i\bar{q}\cdot z} \left\langle p' \left| TJ^{\mu} \left(-\frac{z}{2} \right) J^{\nu} \left(\frac{z}{2} \right) \right| p \right\rangle$$

$$\stackrel{Bj}{\hookrightarrow} \quad \stackrel{g_{\perp}^{\mu\nu}}{\longrightarrow} \int_{-1}^{1} dx \left(\frac{1}{x - \xi + i\varepsilon} + \frac{1}{x + \xi - i\varepsilon} \right) H(x, \xi, \Delta^{2}) \bar{u}(p') \gamma^{+} u(p) + \dots$$

$$\bar{q} = (q + q')/2$$

$$\Delta = p' - p$$

$$x_{Bj} \equiv -q^2/2p \cdot q = 2\xi(1+\xi)$$

Generalized Parton Distributions (GPDs)

$$\int \frac{dx^{-}}{2\pi} e^{ix^{-}\bar{p}^{+}x} \left\langle p' \left| \bar{q} \left(-\frac{x^{-}}{2} \right) \gamma^{+} q \left(\frac{x^{-}}{2} \right) \right| p \right\rangle = H(x, \xi, \Delta^{2}) \bar{u}(p') \gamma^{+} u(p)$$

$$+ E(x, \xi, \Delta^{2}) \bar{u}(p') \frac{i\sigma^{+\nu} \Delta_{\nu}}{2M} u(p)$$

$$\int \frac{dx^{-}}{2\pi} e^{ix^{-}\bar{p}^{+}x} \left\langle p' \left| \bar{q} \left(-\frac{x^{-}}{2} \right) \gamma^{+} \gamma_{5} q \left(\frac{x^{-}}{2} \right) \right| p \right\rangle = \tilde{H}(x, \xi, \Delta^{2}) \bar{u}(p') \gamma^{+} \gamma_{5} u(p)$$

$$+ \tilde{E}(x, \xi, \Delta^{2}) \bar{u}(p') \frac{\gamma_{5} \Delta^{+}}{2M} u(p)$$

where $\Delta=p'-p$ is the momentum transfer and ξ measures the longitudinal momentum transfer on the target $\Delta^+=\xi(p^++p^{+\prime})$.

Parton Interpretation

$$\int \frac{dx^{-}}{2\pi} e^{ix^{-}\bar{p}^{+}x} \left\langle p' \left| \bar{q} \left(-\frac{x^{-}}{2} \right) \gamma^{+} q \left(\frac{x^{-}}{2} \right) \right| p \right\rangle = H(x, \xi, \Delta^{2}) \bar{u}(p') \gamma^{+} u(p)$$

$$+ E(x, \xi, \Delta^{2}) \bar{u}(p') \frac{i\sigma^{+\nu} \Delta_{\nu}}{2M} u(p)$$

- Actually $H=H(x,\xi,\Delta^2,q^2)$, but will not discuss q^2 dependence of GPDs today!
- $oldsymbol{D}$ x is mean long. momentum fraction carried by active quark
- ξ measures longitudinal momentum transfer $\xi = rac{p^{+'} p^{+}}{p^{+} + p^{+'}}$

- → GPDs provide a decomposition of form factor w.r.t. the momentum fraction (in IMF) carried by the active quark

Parton Interpretation

$$\int \frac{dx^{-}}{2\pi} e^{ix^{-}\bar{p}^{+}x} \left\langle p' \left| \bar{q} \left(-\frac{x^{-}}{2} \right) \gamma^{+} q \left(\frac{x^{-}}{2} \right) \right| p \right\rangle = H(x, \xi, \Delta^{2}) \bar{u}(p') \gamma^{+} u(p)$$

$$+ E(x, \xi, \Delta^{2}) \bar{u}(p') \frac{i\sigma^{+\nu} \Delta_{\nu}}{2M} u(p)$$

- Actually $H=H(x,\xi,\Delta^2,q^2)$, but will not discuss q^2 dependence of GPDs today!
- $oldsymbol{D}$ x is mean long. momentum fraction carried by active quark
- ξ measures longitudinal momentum transfer $\xi = \frac{p^{+'} p^+}{p^+ + p^{+'}}$

What is Physics of GPDs?

Definition of GPDs resembles that of form factors

$$\left\langle p' \left| \hat{O} \right| p \right\rangle = H(x,\xi,\Delta^2) \bar{u}(p') \gamma^+ u(p) + E(x,\xi,\Delta^2) \bar{u}(p') \frac{i\sigma^{+\nu}\Delta_{\nu}}{2M} u(p)$$
 with
$$\hat{O} \equiv \int \frac{dx^-}{2\pi} e^{ix^-\bar{p}^+ x} \bar{q} \left(-\frac{x^-}{2} \right) \gamma^+ q \left(\frac{x^-}{2} \right)$$

- relation between PDFs and GPDs similar to relation between a charge and a form factor
- If form factors can be interpreted as Fourier transforms of charge distributions in position space, what is the analogous physical interpretation for GPDs?

Form Factors vs. GPDs

operator	forward matrix elem.	off-forward matrix elem.	position space
$\bar{q}\gamma^+q$	Q	F(t)	$ ho(ec{r})$
$\int \frac{dx^- e^{ixp^+ x^-}}{4\pi} \overline{q} \left(\frac{-x^-}{2} \right) \gamma^+ q \left(\frac{x^-}{2} \right)$	q(x)	$H(x,\xi,t)$?

Form Factors vs. GPDs

operator	forward matrix elem.	off-forward matrix elem.	position space
$\bar{q}\gamma^+q$	Q	F(t)	$ ho(ec{r})$
$\int \frac{dx^- e^{ixp^+ x^-}}{4\pi} \bar{q}\left(\frac{-x^-}{2}\right) \gamma^+ q\left(\frac{x^-}{2}\right)$	q(x)	H(x,0,t)	$q(x,\mathbf{b}_{\perp})$

 $q(x, \mathbf{b}_{\perp}) = \text{impact parameter dependent PDF}$

lacksquare define state that is localized in \perp position:

$$|p^+, \mathbf{R}_{\perp} = \mathbf{0}_{\perp}, \lambda\rangle \equiv \mathcal{N} \int d^2 \mathbf{p}_{\perp} |p^+, \mathbf{p}_{\perp}, \lambda\rangle$$

Note: \perp boosts in IMF form Galilean subgroup \Rightarrow this state has

$$\mathbf{R}_{\perp} \equiv \frac{1}{P^{+}} \int dx^{-} d^{2}\mathbf{x}_{\perp} \, \mathbf{x}_{\perp} T^{++}(x) = \mathbf{0}_{\perp}$$

(cf.: working in CM frame in nonrel. physics)

define impact parameter dependent PDF

$$\underline{q(x, \mathbf{b}_{\perp})} \equiv \int \frac{dx^{-}}{4\pi} \langle p^{+}, \mathbf{R}_{\perp} = \mathbf{0}_{\perp} | \, \bar{q}(-\frac{x^{-}}{2}, \mathbf{b}_{\perp}) \gamma^{+} q(\frac{x^{-}}{2}, \mathbf{b}_{\perp}) | p^{+}, \mathbf{R}_{\perp} = \mathbf{0}_{\perp} \rangle e^{ixp^{+}x^{-}}$$

use translation invariance to relate to same matrix element that appears in def. of GPDs

$$q(x, \mathbf{b}_{\perp}) \equiv \int dx^{-} \langle p^{+}, \mathbf{R}_{\perp} = \mathbf{0}_{\perp} | \bar{q}(-\frac{x^{-}}{2}, \mathbf{b}_{\perp}) \gamma^{+} q(\frac{x^{-}}{2}, \mathbf{b}_{\perp}) | p^{+}, \mathbf{R}_{\perp} = \mathbf{0}_{\perp} \rangle e^{ixp^{+}x^{-}}$$

$$= |\mathcal{N}|^{2} \int d^{2}\mathbf{p}_{\perp} \int d^{2}\mathbf{p}_{\perp} \int dx^{-} \langle p^{+}, \mathbf{p}_{\perp}' | \bar{q}(-\frac{x^{-}}{2}, \mathbf{b}_{\perp}) \gamma^{+} q(\frac{x^{-}}{2}, \mathbf{b}_{\perp}) | p^{+}, \mathbf{p}_{\perp} \rangle e^{ixp^{+}x^{-}}$$

use translation invariance to relate to same matrix element that appears in def. of GPDs

$$q(x, \mathbf{b}_{\perp}) \equiv \int dx^{-} \left\langle p^{+}, \mathbf{R}_{\perp} = \mathbf{0}_{\perp} \right| \bar{q}(-\frac{x^{-}}{2}, \mathbf{b}_{\perp}) \gamma^{+} q(\frac{x^{-}}{2}, \mathbf{b}_{\perp}) \left| p^{+}, \mathbf{R}_{\perp} = \mathbf{0}_{\perp} \right\rangle e^{ixp^{+}x^{-}}$$

$$= |\mathcal{N}|^{2} \int d^{2}\mathbf{p}_{\perp} \int d^{2}\mathbf{p}_{\perp}' \int dx^{-} \left\langle p^{+}, \mathbf{p}_{\perp}' \right| \bar{q}(-\frac{x^{-}}{2}, \mathbf{b}_{\perp}) \gamma^{+} q(\frac{x^{-}}{2}, \mathbf{b}_{\perp}) \left| p^{+}, \mathbf{p}_{\perp} \right\rangle e^{ixp^{+}x^{-}}$$

$$= |\mathcal{N}|^{2} \int d^{2}\mathbf{p}_{\perp} \int d^{2}\mathbf{p}_{\perp}' \int dx^{-} \left\langle p^{+}, \mathbf{p}_{\perp}' \right| \bar{q}(-\frac{x^{-}}{2}, \mathbf{0}_{\perp}) \gamma^{+} q(\frac{x^{-}}{2}, \mathbf{0}_{\perp}) \left| p^{+}, \mathbf{p}_{\perp} \right\rangle e^{ixp^{+}x^{-}}$$

$$\times e^{i\mathbf{b}_{\perp} \cdot (\mathbf{p}_{\perp} - \mathbf{p}_{\perp}')}$$

use translation invariance to relate to same matrix element that appears in def. of GPDs

$$q(x, \mathbf{b}_{\perp}) \equiv \int dx^{-} \left\langle p^{+}, \mathbf{R}_{\perp} = \mathbf{0}_{\perp} \right| \bar{q}(-\frac{x^{-}}{2}, \mathbf{b}_{\perp}) \gamma^{+} q(\frac{x^{-}}{2}, \mathbf{b}_{\perp}) \left| p^{+}, \mathbf{R}_{\perp} = \mathbf{0}_{\perp} \right\rangle e^{ixp^{+}x^{-}}$$

$$= |\mathcal{N}|^{2} \int d^{2}\mathbf{p}_{\perp} \int d^{2}\mathbf{p}_{\perp}' \int dx^{-} \left\langle p^{+}, \mathbf{p}_{\perp}' \right| \bar{q}(-\frac{x^{-}}{2}, \mathbf{b}_{\perp}) \gamma^{+} q(\frac{x^{-}}{2}, \mathbf{b}_{\perp}) \left| p^{+}, \mathbf{p}_{\perp} \right\rangle e^{ixp^{+}x^{-}}$$

$$= |\mathcal{N}|^{2} \int d^{2}\mathbf{p}_{\perp} \int d^{2}\mathbf{p}_{\perp}' \int dx^{-} \left\langle p^{+}, \mathbf{p}_{\perp}' \right| \bar{q}(-\frac{x^{-}}{2}, \mathbf{0}_{\perp}) \gamma^{+} q(\frac{x^{-}}{2}, \mathbf{0}_{\perp}) \left| p^{+}, \mathbf{p}_{\perp} \right\rangle e^{ixp^{+}x^{-}}$$

$$\times e^{i\mathbf{b}_{\perp} \cdot (\mathbf{p}_{\perp} - \mathbf{p}_{\perp}')}$$

$$= |\mathcal{N}|^{2} \int d^{2}\mathbf{p}_{\perp} \int d^{2}\mathbf{p}_{\perp}' H\left(x, 0, -(\mathbf{p}_{\perp}' - \mathbf{p}_{\perp})^{2}\right) e^{i\mathbf{b}_{\perp} \cdot (\mathbf{p}_{\perp} - \mathbf{p}_{\perp}')}$$

$$\rightarrow q(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} H(x, 0, -\mathbf{\Delta}_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}$$

$$q(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} H(x, 0, -\mathbf{\Delta}_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}$$

$$(\Delta_{\perp} = \mathbf{p}'_{\perp} - \mathbf{p}_{\perp}, \ \xi = 0)$$

$$q(x, \mathbf{b}_{\perp}) \geq 0$$
 for $x > 0$ $q(x, \mathbf{b}_{\perp}) \leq 0$ for $x < 0$

$$q(x, \mathbf{b}_{\perp}) \sim \langle p^{+}, \mathbf{0}_{\perp} | b^{\dagger}(xp^{+}, \mathbf{b}_{\perp}) b(xp^{+}, \mathbf{b}_{\perp}) | p^{+}, \mathbf{0}_{\perp} \rangle$$
$$= |b(xp^{+}, \mathbf{b}_{\perp}) | p^{+}, \mathbf{0}_{\perp} \rangle|^{2} \geq 0$$

Discussion: $GPD \leftrightarrow q(x, \mathbf{b}_{\perp})$

 $m{positivity}$ pas interpretation as density (positivity constraints!) \hookrightarrow positivity constraint on models

Discussion: $GPD \leftrightarrow q(x, \mathbf{b}_{\perp})$

GPDs allow simultaneous determination of longitudinal momentum and transverse position of partons

$$q(\mathbf{x}, \mathbf{b}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} H(\mathbf{x}, 0, -\mathbf{\Delta}_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}$$
$$\Delta q(\mathbf{x}, \mathbf{b}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} \tilde{H}(\mathbf{x}, 0, -\mathbf{\Delta}_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}$$

- Nonrelativistically such a result not surprising!

 Absence of relativistic corrections to identification $H(x,0,-\Delta_{\perp}^2) \xrightarrow{FT} q(x,\mathbf{b}_{\perp})$ due to Galilean subgroup in IMF
- **▶** b_⊥ distribution measured w.r.t. $\mathbf{R}_{\perp}^{CM} \equiv \sum_i x_i \mathbf{r}_{i,\perp}$ \hookrightarrow width of the \mathbf{b}_{\perp} distribution should go to zero as $x \to 1$, since the active quark becomes the \perp center of momentum in that limit! $\hookrightarrow H(x,0,-\mathbf{\Delta}_{\perp}^2)$ must become $\mathbf{\Delta}_{\perp}^2$ -indep. as $x \to 1$. Confirmed by recent lattice studies (QCDSF, LHPC)

Discussion: $GPD \leftrightarrow q(x, \mathbf{b}_{\perp})$

- Use intuition about nucleon structure in position space to make predictions for GPDs:
 - large x: quarks from localized valence 'core', small x: contributions from larger 'meson cloud' \hookrightarrow expect a gradual increase of the t-dependence (\bot size) of H(x,0,t) as x decreases
- ullet very simple model: $H_q(x,0,-{f \Delta}_{\perp}^2)=q(x)e^{-a{f \Delta}_{\perp}^2(1-x)\ln{1\over x}}.$

$q(x, \mathbf{b}_{\perp})$ in a simple model

back

The physics of $E(x, 0, -\Delta^2)$

So far: only unpolarized (or long. polarized) nucleon $\mbox{In general, use (} \Delta^+ = 0 \mbox{)}$

$$\int \frac{dx^{-}}{4\pi} e^{ip^{+}x^{-}x} \left\langle P + \Delta, \uparrow \left| \bar{q}(0) \gamma^{+} q(x^{-}) \right| P, \uparrow \right\rangle = H(x, 0, -\boldsymbol{\Delta}_{\perp}^{2})$$

$$\int \frac{dx^{-}}{4\pi} e^{ip^{+}x^{-}x} \left\langle P + \Delta, \uparrow \left| \bar{q}(0) \gamma^{+} q(x^{-}) \right| P, \downarrow \right\rangle = -\frac{\Delta_{x} - i\Delta_{y}}{2M} E(x, 0, -\boldsymbol{\Delta}_{\perp}^{2}).$$

- Consider nucleon polarized in x direction (in IMF) $|X\rangle \equiv |p^+, \mathbf{R}_{\perp} = \mathbf{0}_{\perp}, \uparrow\rangle + |p^+, \mathbf{R}_{\perp} = \mathbf{0}_{\perp}, \downarrow\rangle.$
- unpolarized quark distribution for this state:

$$q_X(x, \mathbf{b}_{\perp}) = q(x, \mathbf{b}_{\perp}) - \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} E(x, 0, -\mathbf{\Delta}_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}$$

The physics of $E(x, 0, -\Delta_{\perp}^2)$

 $q_X(x, \mathbf{b}_{\perp})$ in transversely polarized nucleon is transversely distorted compared to longitudinally polarized nucleons!

ightharpoonup mean displacement of flavor $q \perp \text{flavor dipole moment}$

$$d_y^q \equiv \int dx \int d^2 \mathbf{b}_{\perp} q_X(x, \mathbf{b}_{\perp}) b_y = \frac{1}{2M} \int dx E_q(x, 0, 0) = \kappa_q^p$$

with
$$\kappa_{u/d}^p \equiv F_2^{u/d}(0) = \mathcal{O}(1-2) \quad \Rightarrow \quad d_y^q = \mathcal{O}(0.2fm)$$

ullet CM for flavor q shifted relative to CM for whole proton by

$$\int dx \int d^2 \mathbf{b}_{\perp} q_X(x, \mathbf{b}_{\perp}) x b_y = \frac{1}{2M} \int dx \, x E_q(x, 0, 0)$$

 \hookrightarrow not surprising to find that second moment of E_q is related to angular momentum carried by flavor q

Intuitive connection with \vec{L}_q

(some) DIS-kinematics (target rest frame & momentum transfer in $-\hat{z}$ direction):

$$\mathbf{p}_{e\perp} = \mathbf{p}_{e\perp}' = \mathbf{0}_{\perp} \qquad p_e^z \to -\infty \qquad p_e^{z\prime} \to -\infty$$

→ only "—" component of all momenta and momentum transfers large, e.g.

$$p_e^- \equiv \frac{1}{\sqrt{2}} \left(p_e^0 - p_e^z \right) \to \infty$$
 $p_e^+ \equiv \frac{1}{\sqrt{2}} \left(p_e^0 + p_e^z \right) = \frac{m_e^2 + \mathbf{p}_{e\perp}^2}{2p_e^-} \to 0$

- \hookrightarrow only "-" component of the electron current $j_e^\mu = \bar{u}(p')\gamma^\mu u(p)$ large
- vector-vector interaction

$$\mathcal{M} \propto j_e^{\mu} j_q^{\nu} g_{\mu\nu} = j_e^- j_q^+ + j_e^+ j_q^- - j_e^{\perp} j_q^{\perp}$$

 \hookrightarrow electron "sees" (for $p_e^z \to -\infty$) only j_q^+

Intuitive connection with \vec{L}_q

- Electromagnetic interaction couples to vector current. Due to kinematics of the DIS-reaction (and the choice of coordinates \hat{z} -axis in direction of the momentum transfer) the virtual photons "see" (in the Bj-limit) only the $j^+ = j^0 + j^z$ component of the quark current
- If up-quarks have positive orbital angular momentum in the \hat{x} -direction, then j^z is positive on the $+\hat{y}$ side, and negative on the $-\hat{y}$ side

Intuitive connection with \vec{L}_q

- Electromagnetic interaction couples to vector current. Due to kinematics of the DIS-reaction (and the choice of coordinates \hat{z} -axis in direction of the momentum transfer) the virtual photons "see" (in the Bj-limit) only the $j^+=j^0+j^z$ component of the quark current
- If up-quarks have positive orbital angular momentum in the \hat{x} -direction, then j^z is positive on the $+\hat{y}$ side, and negative on the $-\hat{y}$ side
- \rightarrow j^+ is distorted not because there are more quarks on one side than on the other but because the DIS-photons (coupling only to j^+) "see" the quarks on the $+\hat{y}$ side better than on the $-\hat{y}$ side (for $L_x > 0$).

Simple model for $E_q(x,0,-\Delta_{\perp}^2)$

lacksquare For simplicity, make ansatz where $E_q \propto H_q$

$$E_u(x,0,-\boldsymbol{\Delta}_{\perp}^2) = \frac{\kappa_u^p}{2} H_u(x,0,-\boldsymbol{\Delta}_{\perp}^2)$$

$$E_d(x,0,-\boldsymbol{\Delta}_{\perp}^2) = \kappa_d^p H_d(x,0,-\boldsymbol{\Delta}_{\perp}^2)$$

with
$$H_q(x,0,-{f \Delta}_\perp^2)=q(x)e^{-a{f \Delta}_\perp^2(1-x)\ln\frac{1}{x}}$$
 and

$$\kappa_u^p = 2\kappa_p + \kappa_n = 1.673$$
 $\kappa_d^p = 2\kappa_n + \kappa_p = -2.033.$

- Satisfies: $\int dx E_q(x,0,0) = \kappa_q^P$
- Model too simple but illustrates that anticipated distortion is very significant since $\int dx E_q \sim \kappa_q$ known to be large!

Quark Correlations \longleftrightarrow **SSA**

• example: $\gamma p \to \pi X$

- u,d distributions in \bot polarized proton have left-right asymmetry in \bot position space (T-even!); sign determined by κ_u & κ_d
- \hookrightarrow attractive FSI translates position space distortion (before the quark is knocked out) in $+\hat{y}$ -direction into momentum asymmetry that favors $-\hat{y}$ direction
- \hookrightarrow correlation between sign of κ_q/L_q and sign of SSA

$$\langle k_u^y \rangle < 0$$
 and $\langle k_d^y \rangle > 0$

for proton polarized in $+\hat{x}$ direction [M.B., PRD 66, 114005 (2002)].

signs confirmed by recent HERMES data (hep-ex/0408013).

GPDs for $x \rightarrow 1$ (or: size does matter!)

Distance between active quark and center of momentum of all spectators

$$\mathbf{r}_{\perp} = \frac{1}{1 - x} \mathbf{b}_{\perp}$$

diverges as $x \to 1$, unless \mathbf{b}_{\perp} goes to zero!

- Assume (conjecture) no (or only few) partons outside disk of radius $1/\Lambda$ around center of momentum
- $\rightarrow q(x, \mathbf{b}_{\perp}) = 0 \text{ for } \mathbf{b}_{\perp}^2 > \frac{(1-x)^2}{\Lambda^2}$
- \hookrightarrow significant contribution to form factor from quarks with $x>1-\frac{\Lambda}{|\mathbf{\Delta}_\perp|}$

GPDs for $x \rightarrow 1$ (or: size does matter!)

large-x contribution independent of detailed shape of $q(x, \mathbf{b}_{\perp})$

$$F_{large\,x}(\boldsymbol{\Delta}_{\perp}^{\mathbf{2}}) = \frac{c}{4} \frac{\Lambda^4}{\boldsymbol{\Delta}_{\perp}^4} \qquad \text{for} \quad q(x) = c(1-x)^3.$$

- Different mechanism but same behavior $\frac{1}{\Delta_{\perp}^4}$ as pQCD mechanism
- presence of this large-x contribution to the nucleon form factor may have important consequences for color transparency — or the lack thereof ...
- Need to understand large x better!

Summary

DVCS allows probing GPDS

$$\int \frac{dx^{-}}{2\pi} e^{ixp^{+}x^{-}} \left\langle p' \left| \bar{q} \left(-\frac{x^{-}}{2} \right) \gamma^{+} q \left(\frac{x^{-}}{2} \right) \right| p \right\rangle$$

- GPDs resemble both PDFs and form factors: defined through matrix elements of light-cone correlation, but $\Delta \equiv p' p \neq 0$.
- **●** t-dependence of GPDs at ξ = 0 (purely \bot momentum transfer) ⇒ Fourier transform of impact parameter dependent PDFs $q(x, \mathbf{b}_\bot)$
- knowledge of GPDs for $\xi = 0$ provides novel information about nonperturbative parton structure of nucleons: distribution of partons in \bot plane

$$q(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} H(x, 0, -\mathbf{\Delta}_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}$$
$$\Delta q(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} \tilde{H}(x, 0, -\mathbf{\Delta}_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}$$

• $q(x, \mathbf{b}_{\perp})$, $\Delta q(x, \mathbf{b}_{\perp})$ have probabilistic interpretation, e.g. $q(x, \mathbf{b}_{\perp}) > 0$ for x > 0

Summary

- $\Delta_{\perp} E(x,0,-\Delta_{\perp}^2)$ describes how the momentum distribution of unpolarized partons in the \perp plane gets transversely distorted when is nucleon polarized in \perp direction.
- ullet (attractive) final state interaction converts \bot position space asymmetry into \bot momentum space asymmetry
- → simple physical explanation for sign of left-right asymmetry in semi-inclusive DIS
- Similar mechanism also applicable to many other semi-inclusive events, such as transverse polarizations in hyperon production.
- published in: M.B., PRD 62, 71503 (2000), Int. J. Mod. Phys. A18, 173 (2003); see also D. Soper, PRD 15, 1141 (1977).
- Connection to SSA in M.B., PRD 69, 057501 (2004); NPA 735, 185 (2004); PRD 66, 114005 (2002).

extrapolating to $\xi = 0$

- bad news: $\xi = 0$ <u>not</u> directly accessible in DVCS since long. momentum transfer necessary to convert virtual γ into real γ
- **9** good news: moments of GPDs have simple ξ -dependence (polynomials in ξ)

even moments of $H(x, \xi, t)$:

$$H_n(\xi,t) \equiv \int_{-1}^1 dx x^{n-1} H(x,\xi,t) = \sum_{i=0}^{\left[\frac{n-1}{2}\right]} A_{n,2i}(t) \xi^{2i} + C_n(t)$$
$$= A_{n,0}(t) + A_{n,2}(t) \xi^2 + \dots + A_{n,n-2}(t) \xi^{n-2} + C_n(t) \xi^n,$$

i.e. for example

$$\int_{-1}^{1} dx x H(x, \xi, t) = A_{2,0}(t) + C_2(t)\xi^2.$$

- For n^{th} moment, need $\frac{n}{2}+1$ measurements of $H_n(\xi,t)$ for same t but different ξ to determine $A_{n,2i}(t)$.
- **●** GPDs @ $\xi = 0$ obtained from $H_n(\xi = 0, t) = A_{n,0}(t)$
- m extstyle extstyle

QCD evolution

So far ignored! Can be easily included because

- For $t \ll Q^2$, leading order evolution t-independent
- For $\xi=0$ evolution kernel for GPDs same as DGLAP evolution kernel

likewise:

• impact parameter dependent PDFs evolve such that different \mathbf{b}_{\perp} do not mix (as long as \perp spatial resolution much smaller than Q^2)

→ above results consistent with QCD evolution:

$$H(x, 0, -\mathbf{\Delta}_{\perp}^2, Q^2) = \int d^2b_{\perp}q(x, \mathbf{b}_{\perp}, Q^2)e^{-i\mathbf{b}_{\perp}\mathbf{\Delta}_{\perp}}$$
$$\tilde{H}(x, 0, -\mathbf{\Delta}_{\perp}^2, Q^2) = \int d^2b_{\perp}\Delta q(x, \mathbf{b}_{\perp}, Q^2)e^{-i\mathbf{b}_{\perp}\mathbf{\Delta}_{\perp}}$$

where QCD evolution of $H, \tilde{H}, q, \Delta q$ is described by DGLAP and is independent on both \mathbf{b}_{\perp} and $\mathbf{\Delta}_{\perp}^2$, provided one does not look at scales in \mathbf{b}_{\perp} that are smaller than 1/Q.

Form factor vs. charge distribution (non-rel.)

define state that is localized in position space (center of mass frame)

$$\left| \vec{R} = \vec{0} \right\rangle \equiv \mathcal{N} \int d^3 \vec{p} \left| \vec{p} \right\rangle$$

define charge distribution (for this localized state)

$$\rho(\vec{r}) \equiv \left\langle \vec{R} = \vec{0} \middle| j^0(\vec{r}) \middle| \vec{R} = \vec{0} \right\rangle$$

use translation invariance to relate to same matrix element that appears in def. of form factor

$$\begin{split} \rho(\vec{r}) &\equiv \left\langle \vec{R} = \vec{0} \right| j^0(\vec{r}) \left| \vec{R} = \vec{0} \right\rangle \\ &= \left| \mathcal{N} \right|^2 \int \!\! d^3 \vec{p} \int \!\! d^3 \vec{p}' \left\langle \vec{p}' \right| j^0(\vec{r}) \left| \vec{p} \right\rangle \\ &= \left| \mathcal{N} \right|^2 \int \!\! d^3 \vec{p} \int \!\! d^3 \vec{p}' \! \left\langle \vec{p}' \right| j^0(\vec{0}) \left| \vec{p} \right\rangle e^{i \vec{r} \cdot (\vec{p} - \vec{p}')}, \\ &= \left| \mathcal{N} \right|^2 \int \!\! d^3 \vec{p} \int \!\! d^3 \vec{p}' F \left(- (\vec{p}' - \vec{p})^2 \right) e^{i \vec{r} \cdot (\vec{p} - \vec{p}')} \end{split}$$

$$\rho(\vec{r}) = \int \frac{d^3 \vec{\Delta}}{(2\pi)^3} F(-\vec{\Delta}^2) e^{-i\vec{r}\cdot\vec{\Delta}}$$

density interpretation of $q(x, \mathbf{b}_{\perp})$

• express quark-bilinear in twist-2 GPD in terms of light-cone 'good' component $q_{(+)} \equiv \frac{1}{2} \gamma^- \gamma^+ q$

$$\bar{q}'\gamma^+q = \bar{q}'_{(+)}\gamma^+q_{(+)} = \sqrt{2}q'^{\dagger}_{(+)}q_{(+)}.$$

ullet expand $q_{(+)}$ in terms of canonical raising and lowering operators

$$q_{(+)}(x^{-}, \mathbf{x}_{\perp}) = \int_{0}^{\infty} \frac{dk^{+}}{\sqrt{4\pi k^{+}}} \int \frac{d^{2}\mathbf{k}_{\perp}}{2\pi} \sum_{s} \times \left[u_{(+)}(k, s)b_{s}(k^{+}, \mathbf{k}_{\perp})e^{-ikx} + v_{(+)}(k, s)d_{s}^{\dagger}(k^{+}, \mathbf{k}_{\perp})e^{ikx} \right],$$

density interpretation of $q(x, \mathbf{b}_{\perp})$

with usual (canonical) equal light-cone time x^+ anti-commutation relations, e.g.

$$\{b_r(k^+, \mathbf{k}_\perp), b_s^{\dagger}(q^+, \mathbf{q}_\perp)\} = \delta(k^+ - q^+)\delta(\mathbf{k}_\perp - \mathbf{q}_\perp)\delta_{rs}$$

and the normalization of the spinors is such that

$$\bar{u}_{(+)}(p,r)\gamma^{+}u_{(+)}(p,s) = 2p^{+}\delta_{rs}.$$

Note: $\bar{u}_{(+)}(p',r)\gamma^+u_{(+)}(p,s)=2p^+\delta_{rs}$ for $p^+=p'^+$, one finds for x>0

$$q(x, \mathbf{b}_{\perp}) = \mathcal{N}' \sum_{s} \int \frac{d^{2}\mathbf{k}_{\perp}}{2\pi} \int \frac{d^{2}\mathbf{k}_{\perp}'}{2\pi} \left\langle p^{+}, \mathbf{0}_{\perp} \middle| b_{s}^{\dagger}(xp^{+}, \mathbf{k}_{\perp}') b_{s}(xp^{+}, \mathbf{k}_{\perp}) \middle| p^{+}, \mathbf{0}_{\perp} \right\rangle \times e^{i\mathbf{b}_{\perp} \cdot (\mathbf{k}_{\perp} - \mathbf{k}_{\perp}')}.$$

density interpretation of $q(x, \mathbf{b}_{\perp})$

Switch to mixed representation:

momentum in longitudinal direction position in transverse direction

$$\tilde{b}_s(k^+, \mathbf{x}_\perp) \equiv \int \frac{d^2 \mathbf{k}_\perp}{2\pi} b_s(k^+, \mathbf{k}_\perp) e^{i\mathbf{k}_\perp \cdot \mathbf{x}_\perp}$$

 \longrightarrow

$$q(x, \mathbf{b}_{\perp}) = \sum_{s} \langle p^{+}, \mathbf{0}_{\perp} | \tilde{b}_{s}^{\dagger}(xp^{+}, \mathbf{b}_{\perp}) \tilde{b}_{s}(xp^{+}, \mathbf{b}_{\perp}) | p^{+}, \mathbf{0}_{\perp} \rangle.$$

$$= \sum_{s} \left| \tilde{b}_{s}(xp^{+}, \mathbf{b}_{\perp}) | p^{+}, \mathbf{0}_{\perp} \rangle \right|^{2}$$

$$> 0.$$

Boosts in nonrelativistic QM

$$\vec{x}' = \vec{x} + \vec{v}t \qquad \qquad t' = t$$

purely kinematical (quantization surface t = 0 inv.)

$$q\Psi_{\vec{v}}(\vec{p}_1,\vec{p}_2) = \Psi_{\vec{0}}(\vec{p}_1 - m_1\vec{v},\vec{p}_2 - m_2\vec{v}).$$

2. dynamics of center of mass

$$\vec{R} \equiv \sum_i x_i \vec{r_i}$$
 with $x_i \equiv \frac{m_i}{M}$

decouples from the internal dynamics

Relativistic Boosts

$$t' = \gamma \left(t + \frac{v}{c^2} z \right), \qquad z' = \gamma \left(z + vt \right) \qquad \mathbf{x}'_{\perp} = \mathbf{x}_{\perp}$$

generators satisfy Poincaré algebra:

$$[P^{\mu}, P^{\nu}] = 0$$

$$[M^{\mu\nu}, P^{\rho}] = i (g^{\nu\rho}P^{\mu} - g^{\mu\rho}P^{\nu})$$

$$[M^{\mu\nu}, M^{\rho\lambda}] = i (g^{\mu\lambda}M^{\nu\rho} + g^{\nu\rho}M^{\mu\lambda} - g^{\mu\rho}M^{\nu\lambda} - g^{\nu\lambda}M^{\mu\rho})$$

rotations: $M_{ij} = \varepsilon_{ijk} J_k$, boosts: $M_{i0} = K_i$.

Galilean subgroup of \bot boosts

introduce generator of \perp 'boosts':

$$B_x \equiv M^{+x} = \frac{K_x + J_y}{\sqrt{2}}$$
 $B_y \equiv M^{+y} = \frac{K_y - J_x}{\sqrt{2}}$

Poincaré algebra \Longrightarrow commutation relations:

$$[J_3, B_k] = i\varepsilon_{kl}B_l \qquad [P_k, B_l] = -i\delta_{kl}P^+$$
$$[P^-, B_k] = -iP_k \qquad [P^+, B_k] = 0$$

with $k, l \in \{x, y\}$, $\varepsilon_{xy} = -\varepsilon_{yx} = 1$, and $\varepsilon_{xx} = \varepsilon_{yy} = 0$.

Together with $[J_z, P_k] = i\varepsilon_{kl}P_l$, as well as

$$[P^-, P_k] = [P^-, P^+] = [P^-, J_z] = 0$$

 $[P^+, P_k] = [P^+, B_k] = [P^+, J_z] = 0.$

Same as commutation relations among generators of nonrel. boosts, translations, and rotations in x-y plane, provided one identifies

 $P^- \longrightarrow \mathsf{Hamiltonian}$

 $\mathbf{P}_{\perp} \quad \longrightarrow \quad \text{momentum in the plane}$

 $P^+ \longrightarrow \mathsf{mass}$

 $L_z \longrightarrow \text{rotations around } z\text{-axis}$

 ${f B}_{\perp} \longrightarrow {f generator}$ generator of boosts in the plane,

back to discussion

Consequences

- ullet many results from NRQM carry over to ot boosts in IMF, e.g.
- \(\text{\text{boosts kinematical} } \)

$$\Psi_{\Delta_{\perp}}(x, \mathbf{k}_{\perp}) = \Psi_{\mathbf{0}_{\perp}}(x, \mathbf{k}_{\perp} - x\Delta_{\perp})$$

$$\Psi_{\Delta_{\perp}}(x, \mathbf{k}_{\perp}, y, \mathbf{l}_{\perp}) = \Psi_{\mathbf{0}_{\perp}}(x, \mathbf{k}_{\perp} - x\Delta_{\perp}, y, \mathbf{l}_{\perp} - y\Delta_{\perp})$$

▶ Transverse center of momentum $\mathbf{R}_{\perp} \equiv \sum_{i} x_{i} \mathbf{r}_{\perp,i}$ plays role similar to NR center of mass, e.g. $\int d^{2}\mathbf{p}_{\perp} |p^{+},\mathbf{p}_{\perp}\rangle$ corresponds to state with $\mathbf{R}_{\perp} = \mathbf{0}_{\perp}$.

⊥ Center of Momentum

field theoretic definition

$$p^+\mathbf{R}_{\perp} \equiv \int dx^- \int d^2\mathbf{x}_{\perp} T^{++}(x)\mathbf{x}_{\perp} = M^{+\perp}$$

- $M^{+\perp} = \mathbf{B}^{\perp}$ generator of transverse boosts
- parton representation:

$$\mathbf{R}_{\perp} = \sum_{i} x_i \mathbf{r}_{\perp,i}$$

 $(x_i = momentum fraction carried by i^{th} parton)$

Poincaré algebra:

$$[P^{\mu}, P^{\nu}] = 0$$

$$[M^{\mu\nu}, P^{\rho}] = i (g^{\nu\rho}P^{\mu} - g^{\mu\rho}P^{\nu})$$

$$[M^{\mu\nu}, M^{\rho\lambda}] = i (g^{\mu\lambda}M^{\nu\rho} + g^{\nu\rho}M^{\mu\lambda} - g^{\mu\rho}M^{\nu\lambda} - g^{\nu\lambda}M^{\mu\rho})$$

rotations: $M_{ij} = \varepsilon_{ijk}J_k$, boosts: $M_{i0} = K_i$. back

Galilean subgroup of \bot boosts

introduce generator of \perp 'boosts':

$$B_x \equiv M^{+x} = \frac{K_x + J_y}{\sqrt{2}}$$
 $B_y \equiv M^{+y} = \frac{K_y - J_x}{\sqrt{2}}$

Poincaré algebra \Longrightarrow commutation relations:

$$[J_3, B_k] = i\varepsilon_{kl}B_l \qquad [P_k, B_l] = -i\delta_{kl}P^+$$
$$[P^-, B_k] = -iP_k \qquad [P^+, B_k] = 0$$

with $k, l \in \{x, y\}$, $\varepsilon_{xy} = -\varepsilon_{yx} = 1$, and $\varepsilon_{xx} = \varepsilon_{yy} = 0$.

Together with $[J_z, P_k] = i\varepsilon_{kl}P_l$, as well as

$$[P^-, P_k] = [P^-, P^+] = [P^-, J_z] = 0$$

 $[P^+, P_k] = [P^+, B_k] = [P^+, J_z] = 0.$

Same as commutation relations among generators of nonrel. boosts, translations, and rotations in x-y plane, provided one identifies

- $P^- \longrightarrow \mathsf{Hamiltonian}$
- $\mathbf{P}_{\perp} \quad \longrightarrow \quad \text{momentum in the plane}$
- $P^+ \longrightarrow \mathsf{mass}$
- $L_z \longrightarrow \text{rotations around } z\text{-axis}$
- ${f B}_{\perp} \longrightarrow {f generator}$ generator of boosts in the plane,

Consequences of Galilean subgroup

- ullet many results from NRQM carry over to ot boosts in IMF, e.g.
- \(\text{\text{boosts kinematical} } \)

$$\Psi_{\Delta_{\perp}}(x, \mathbf{k}_{\perp}) = \Psi_{\mathbf{0}_{\perp}}(x, \mathbf{k}_{\perp} - x\Delta_{\perp})$$

$$\Psi_{\Delta_{\perp}}(x, \mathbf{k}_{\perp}, y, \mathbf{l}_{\perp}) = \Psi_{\mathbf{0}_{\perp}}(x, \mathbf{k}_{\perp} - x\Delta_{\perp}, y, \mathbf{l}_{\perp} - y\Delta_{\perp})$$

Transverse center of momentum $\mathbf{R}_{\perp} \equiv \sum_{i} x_{i} \mathbf{r}_{\perp,i}$ plays role similar to NR center of mass, e.g. $|p^{+}, \mathbf{R}_{\perp} = \mathbf{0}_{\perp}\rangle \equiv \int d^{2}\mathbf{p}_{\perp} \, |p^{+}, \mathbf{p}_{\perp}\rangle$ corresponds to state with $\mathbf{R}_{\perp} = \mathbf{0}_{\perp}$.

Proof that $\mathbf{B}_{\perp}|p^{+}, \mathbf{R}_{\perp} = \mathbf{0}_{\perp}\rangle = 0$

Use

$$e^{-i\mathbf{v}_{\perp}\cdot\mathbf{B}_{\perp}}|p^{+},\mathbf{p}_{\perp},\lambda\rangle = |p^{+},\mathbf{p}_{\perp}+p^{+}\mathbf{v}_{\perp},\lambda\rangle$$

$$e^{-i\mathbf{v}_{\perp}\cdot\mathbf{B}_{\perp}}\int d^{2}\mathbf{p}_{\perp}|p^{+},\mathbf{p}_{\perp},\lambda\rangle = \int d^{2}\mathbf{p}_{\perp}|p^{+},\mathbf{p}_{\perp},\lambda\rangle$$

 \hookrightarrow

$$\mathbf{B}_{\perp} \int d^2 \mathbf{p}_{\perp} | p^+, \mathbf{p}_{\perp}, \lambda \rangle = 0$$

Example

 \blacksquare Ansatz: $H_q(x,0,-{\Delta}_{\perp}^2)=q(x)e^{-a{\Delta}_{\perp}^2(1-x)\ln{1\over x}}.$

$$q(x, \mathbf{b}_{\perp}) = q(x) \frac{1}{4\pi a(1-x) \ln \frac{1}{x}} e^{-\frac{\mathbf{b}_{\perp}^2}{4a(1-x) \ln \frac{1}{x}}}$$

 $q(x, \mathbf{b}_{\perp})$

Lattice results for first 3 moments