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Introduction

Systems in (finite dimensional) Coherent Quantum Control

Ẋ = −iH(u)X, X(0) = 1

X varies in the unitary (matrix) Lie group U(n).

H is a matrix function of the controls u, which is Hermitian for every value of u.
The controls u attain values in a set U ⊆ Rm.

1 is the identity in the group.

Important feature of these systems: Right Invariance: If X(t, S, u[0,t)) is the solution
corresponding to initial condition S and control function u[0,t), then

X(t, S, u[0,t)) = X(t,1, u[0,t))S.

Consequence for control: If u1 (u2) drives X from the identity 1 to S1 (S2),

then u2 ◦ u1 (concatenation of the two controls) drives the identity 1 to S2S1.
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Controllability

What is the set reachable R from the identity 1 by appropriately varying the controls?
Theorem [Jurdjevic-Sussmann, 1973] Lie Algebra Rank Condition (LARC)

Let

F̃ := {−iH(u)|u ∈ U}.

Let L by the Lie algebra generated by F̃ and eL the associated connected Lie group.

If eL is compact, then

eL = R

This result has been elaborated upon in many papers on quantum systems.

In particular the structure of the dynamical Lie algebra L has been studied in [Polack,
Suchowski, Tannor, PRA 2009] and [D’Alessandro, IEEE TAC 2009 (submitted)].

For quantum systems L is always the direct sum of an Abelian subalgebra of u(n) and a
semisimple one. eL is always the direct product of an Abelian Lie group and a
semisimple (compact) one. That is, modulo an Abelian Lie group which commutes with
everything, eL is compact.
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Constructive Control Set-up

Can we make LARC theorem constructive? That is: Given Xf ∈ eL can we find a control u to
drive 1 → Xf ?
Reformulate problem:

Select a maximal linearly independent set F ⊆ F̃

F = {−iH1, . . . ,−iHm}.

To each −iHj there corresponds a control uj ∈ U and trajectory {e−iHjt|t ≥ 0}.

F generates L (just like F̃ )

With a piecewise constant control with values u1, . . . , ur a typical trajectory is

e−iH̃rtr · · · e−iH̃2t2e−iH̃1t1 ,

with −iH̃1, . . . ,−iH̃r ∈ F and t1, . . . , tr > 0.
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Constructive Control Set-up (ctd.)

Control problem: Given Xf ∈ e
L find a sequence of elements −iH̃k ∈ F

and tk > 0 such that

Xf =

r∏

k=1

e
−iH̃ktk .

Initially we are going to relax the requirement tk > 0 and allow general
tk ∈ R.
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Achieving More Exponentials

F := {−iH1, . . . ,−iHm}

typically is not a basis of the dynamical Lie algebra L. We want to be able to
implement more exponentials of linearly independent matrices in L.

Assume span F 6= L. Since F generates L, there exist indexes j and k such that

[−iHj ,−iHk] linearly independent of F .

Look at H(t) := e−iHjtHkeiHjt, t ∈ R.

There exists a t̄ ∈ R such that H(t̄) is linearly independent of F .
If this was not the case we would have H(t) = −i

Pm
j=1 aj(t)Hj , for every t.

This implies

d

dt
H(t)|t=0 :=

d

dt
e−iHjtHkeiHjt, |t=0 = [−iHj ,−iHk] = −i

mX

j=1

ȧj(0)Hj ,

which contradicts the assumption that [−iHj ,−iHk] is linearly independent of F .

The Constructive Lie Algebra Rank Condition and its Applications to Quantum Control – p.6/22



Achieving More Exponentials (ctd.)

Define

−iHm+1 := H(t̄) = e−iHj t̄(−iHk)eiHj t̄.

F+ := F

[

{−iHm+1} = {−iH1,−iH2, . . . ,−iHm,−iHm+1}

is a linearly independent set in L

F+ generates L.

The exponential of −iHm+1 can be expressed in terms of the available exponentials since

e−iHm+1x = e−iHj t̄e−iHkxeiHj t̄, ∀x ∈ R.

Therefore F+ can replace F and the procedure can be iterated.

This way, we obtain a basis of L,

S := {−iH1,−iH2, . . . ,−iHm,−iHm+1, . . . ,−iHs}, s = dimL,

and the exponential of every element of S can be expressed as the product of available
exponentials.
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Constructive Controllability Method 1

The set

N := {e−iH1t1e−iH2t2 · · · e−iHmtme−iHm+1tm+1 · · · e−iHsts |t1, . . . ts ∈ R},

is an open neighborhood of 1 in eL.

Since eL is compact the exponential map is surjective. Therefore, given Xf ∈ eL, we can
choose A ∈ L so that Xf = eA.

for m sufficiently large e
A
m ∈ N and the equation

e
A
m = e−iH1t1e−iH2t2 · · · e−iHmtme−iHm+1tm+1 · · · e−iHsts , (1)

has a solution.

Method: Solve equation (1) for m sufficiently large. Then

Xf = eA =

h
e−iH1t1e−iH2t2 · · · e−iHmtme−iHm+1tm+1 · · · e−iHsts

im
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Constructive Controllability Method 2

Recall Calculus’ limit (1∞ indeterminate form)

lim
x→∞

�

e
k
x + O

�

1

x1+δ

��x

= ek, δ > 0.

Matrix version of this result (see e.g. [Horn-Johnson, TMA]) for a matrix A

lim
n→∞

�

e
A
n + O

�
1

n1+δ

��n

= eA, δ > 0.

If Xf = eA, write

A =
sX

j=1

aj(−iHj).

Then

e
A
n = e

�Ps
j=1 aj(−iHj)

�
1
n =

sY

j=1

e−i
ajHj

n + O

�

1

n2

�

.
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Constructive Controllability Method 2 (ctd)

From

e
A
n =

sY

j=1

e−i
ajHj

n + O

�
1

n2

�
,

applying formula

lim
n→∞

�

e
A
n + O

�
1

n1+δ

��n

= eA, δ > 0,

we have

lim
n→∞

24 sY
j=1

e−i
ajHj

n

35n

= eA = Xf

Method: Repeat

Qs
j=1 e−i

ajHj
n , n times, for n sufficiently large.
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Method 2 Error analysis

Formula

lim
n→∞

24 sY

j=1

e
Aj
n

35n

= e

Ps
j=1 Aj ,

is generalized Trotter formula.

Error can be obtained applying an induction to error formula known in the s = 2 case.

Error formula is given, with A =

Ps
j=1 Aj , byeA −

0� sY
j=1

e
Aj
n

1An ≤
1

2n

s−1X
j=1

24 jX
l=1

Al , Aj+1

35 .

Upper bound on error increases with the number of matrices used and the size of their
commutators.

Remark: The procedure allows for a lot of flexibility in the choices of the Aj ’s (which are the
−iHj ) (e.g., the choice of the initial set F , the choice of the similarity transformations at
every step) which could be used to make this error small.
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Constructive Controllability Method 3

Method 3, like Method 2, uses formula

lim
n→∞

�

e
A
n + O

�

1

n1+δ

��n

= eA, δ > 0,

but differs from Method 2 in the way eAx for x small is approximated.

Starting from

F := {−iH1, . . . ,−iHm},

generate a basis of L by repeated Lie brackets of elements in F ,

{−iH1, . . . ,−iHm,−iHm+1, . . . ,−iHs}.

Given Xf = eA expand A as

A =
sX

j=1

aj(−iHj).
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Constructive Controllability Method 3 (ctd)

For x small (positive)

eAx =

sY

j=1

e−iajHjx + O(x1+δ), δ > 0. (3)

If −iHj is one of the available one (i.e., it is in F), then it can be implemented with the
available exponentials.

If −iHj /∈ F , then −iHj = [B, C], for some B and C. Use the exponential formula

e−iHjx = e[B,C]x = e−B
√

xe−C
√

xeB
√

xeC
√

x + O(x
3
2 ).
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Constructive Controllability Method 3 (ctd)

Iterate the process. Eventually, we obtain an approximation for eAx in terms of the original
exponentials, i.e.,

eAx =
kY

j=1

e−iH̃jfj(x) + O(x1+δ),

for some functions fj , δ > 0 and −iH̃j ∈ F .

From this we obtain

lim
n→∞

24 kY
j=1

e−iH̃jfj( 1
n

)

35n

= eA = Xf .

This method is more complicated than Method 2 and normally converges more slowly
(number of iterations larger). However it may be more convenient in some cases and may
lead to faster convergence in terms of time.
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Summary

I have proposed three methods for control of right invariant systems on compact Lie groups.

All methods employ piecewise constant controls.

The first method requires a finite (small) number of iterations of the same sequence of
controls but also requires the solution of an algebraic equation. The other two methods
require a (large) number of iterations of the same control sequence but present no
mathematical difficulty.

In all cases we have assumed that we can go both forward and backward in time
(alternatively we have both H and −H Hamiltonians available).
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Exponentials eAt with t < 0

If the elements of F := {−iH1, . . . ,−iHm} give periodic orbits {e−iHjt|t ∈ R}, then we
can implement exactly e−iHjt1 , t1 < 0 with e−iHjt2 with t2 > 0. To this purpose notice that

We have flexibility in choosing the matrices in F we begin with.

It is not necessary to choose a maximal linearly independent set, we only need an
independent set which generates L.

In fact, if the problem is to reach eAt, we only need to generate enough elements
−iHj , j = 1, . . . , f , so as to write

A =

fX
j=1

−iajHj .

We can use several methods in the physics literature to cancel the effect of an Hamiltonian
e−iHt → e−iH(−t).

In any case using the compactness of the Lie group eL, e−A|t| can be approximated with
arbitrary accuracy with eAt1 with t1 > 0.
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Exponentials eAt with t < 0 (ctd)

Original Argument [Jurdjevic-Sussmann, 1973]

Consider eAt and the sequence

�

enA|t|	.

By compactness of eL,

�

enA|t|	 has a converging subsequence {en(k)A|t|}.

Then, Consider the sequence

�
en(k+1)A|t|−n(k)A|t|−A|t|	

lim
k→∞

en(k+1)A|t|−n(k)A|t|−A|t| = e−A|t|

Given x > 0, we would like to have a constructive method to find t > 0 so that

eAt ≈ e−Ax, eA(t+x) ≈ 1
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Exponentials eAt with t < 0 (ctd)

Assume L ⊆ u(n) (Quantum Control Scenario).

Using Frobenius norm eA(t+x) ≈ 1 if and only if

Tr

�

eA(t+x) + eA†(t+x)

�
≈ 2n (4)

Fix ǫ > 0 and let iωk, k = 1, . . . , n, denote the eigenvalues of A.

Then condition (4) is verified if and only if

n −
nX

k=1

cos(ωk(t + x)) < ǫ.
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Exponentials eAt with t < 0 (ctd)

This is certainly verified if we choose t so that

cos(ωk(t + x)) > 1 −
ǫ

n
, k = 1, . . . , n ⇔ |ωk(t + x) − 2πnk| < arccos(1 −

ǫ

n
),

for some integers nk k = 1, . . . , n.

Equivalently define

αk := ωkx

2π
,

y := t+x
x

ǫ′ :=
arccos(1− ǫ

n
)

2π

Then given n numbers αk, and (small) ǫ′ > 0 we want to choose y ≥ 1 and k integers nk

such that

|αky − nk| < ǫ′
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Exponentials eAt with t < 0 (ctd)

Dirichlet’s approximation theorem of number theory:

Given n numbers αk and an integer N there exist a positive integer y and n integers
n1, . . . , nn such that

|αky − nk| <
1

N
.

Moreover 1 ≤ y ≤ Nn.

Therefore we can choose N so that 1
N

< ǫ′ and we will have

|αky − nk| < ǫ′.

This looks like only an existence result. However we only need y := t+x
x

and we can obtain
it (at least) with an exhaustive search since 1 ≤ y ≤ Nn. Moreover y ≥ 1 ensures that
t ≥ 0, as desired.

There exist algorithms to calculate Dirichlet’s approximation (i.e., the numbers y and nk), cf.
[B. Just, SIAM J. Comput. 1992]
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Conclusions

Presented three methods to obtain control of general systems on compact Lie groups to an
arbitrary target. Notice the compactness of the Lie group eL is used only in two places:

The exponential map is surjective (Xf = eA).

We are able to approximate exponentials eAt with t < 0 with exponentials eAt with
t > 0.

Method 1 allows (possibly) to control exactly and in finite time but requires solving a
(nonlinear) algebraic equation.

Method 2 allows to control with arbitrary accuracy to any desired target and does not involve
any mathematical difficulties.

Method 3 differs from Method 2 in the way exponentials are generated.

These methods allow the coherent control of closed quantum systems in every case.

They provide an alternative constructive proof of the LARC

On a case by case basis one may refine these methods to obtain, e.g., faster convergence
in terms of time and-or number of switches.
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