optimal control theory for quantum gates in open quantum systems

Christiane P. Koch

$$
\begin{aligned}
& \text { U N I K A S S E L } \\
& \text { V E R S I T A' }
\end{aligned}
$$

some terminology

\&
basics of optimal control

principle of coherent / quantum control

wave properties of matter (superposition principle)
variation of phase between different, but indistinguishable quantum pathways:
constructive interference in desired channel
destructive interference in all other channels

principle of coherent / quantum control

wave properties of matter (superposition principle)
variation of phase between different, but indistinguishable quantum pathways:
constructive interference in desired channel
destructive interference in all other channels
how to solve the inversion problem?
'intuitive' approaches
optimal control theory

principle of coherent / quantum control

wave properties of matter (superposition principle)
variation of phase between different, but indistinguishable quantum pathways:
constructive interference in desired channel
destructive interference in all other channels
how to solve the inversion problem?
'intuitive' approaches
optimal control theory

Brumer \& Shapiro

Tannor \& Rice

STIRAP

principle of coherent / quantum control

wave properties of matter (superposition principle)
variation of phase between different, but indistinguishable quantum pathways:
constructive interference in desired channel
destructive interference in all other channels
how to solve the inversion problem?
'intuitive' approaches
optimal control theory

- bichromatic control
- pump-dump/probe
- STIRAP
\rightsquigarrow DFS \& other
symmetry-adapted control

principle of coherent / quantum control

wave properties of matter (superposition principle)
variation of phase between different, but indistinguishable quantum pathways:
constructive interference in desired channel
destructive interference in all other channels
how to solve the inversion problem?
'intuitive' approaches

- bichromatic control
- pump-dump/probe
- STIRAP
\rightsquigarrow DFS \& other
symmetry-adapted control
optimal control theory
- theory: iterative solution of control equations
- exp.:

optimal control theory

time/frequency 'phase space' picture

$$
\begin{aligned}
& t=0 \\
& \left|\varphi_{i}\right\rangle
\end{aligned} \sim \sim \quad \begin{aligned}
& t=T \\
& \left|\varphi_{f}\right\rangle
\end{aligned}
$$

define the objective :

$$
\mathrm{GOAL} \equiv\left\|\left\langle\varphi_{i}\right| \hat{\mathbf{U}}^{+}(T, 0 ; \varepsilon)\left|\varphi_{f}\right\rangle\right\|^{2}=-J_{T}
$$

as a functional of the field ε

optimal control theory

time/frequency 'phase space' picture

$$
\begin{aligned}
& t=0 \\
& \left|\varphi_{i}\right\rangle
\end{aligned} \sim \sim \quad \begin{aligned}
& t=T \\
& \left|\varphi_{f}\right\rangle
\end{aligned}
$$

define the objective :

$$
\mathrm{GOAL} \equiv\left\|\left\langle\varphi_{i}\right| \hat{\mathbf{U}}^{+}(T, 0 ; \varepsilon)\left|\varphi_{f}\right\rangle\right\|^{2}=-J_{T}
$$

as a functional of the field ε
include additional constraints:

$$
J=J_{T}+\int_{0}^{T} J_{t}(\varepsilon, \varphi) \mathrm{d} t
$$

optimal control theory

time/frequency 'phase space' picture

$$
\begin{aligned}
& t=0 \\
& \left|\varphi_{i}\right\rangle
\end{aligned} \sim \sim \quad \begin{aligned}
& t=T \\
& \left|\varphi_{f}\right\rangle
\end{aligned}
$$

define the objective :

$$
\mathrm{GOAL} \equiv\left\|\left\langle\varphi_{i}\right| \hat{\mathbf{U}}^{+}(T, 0 ; \varepsilon)\left|\varphi_{f}\right\rangle\right\|^{2}=-J_{T}
$$

as a functional of the field ε
include additional constraints:

$$
J=J_{T}+\int_{0}^{T} J_{t}(\varepsilon, \varphi) \mathrm{d} t
$$

optimize J :

$$
\begin{array}{lcl}
\partial_{\epsilon} J=0 & \partial_{\varphi(t)} J=0 & \partial_{\epsilon}^{2} J>0 \\
& |\varphi(t)\rangle=\hat{\mathbf{U}}(t, 0 ; \epsilon)\left|\varphi_{i}\right\rangle & \text { can only be fulfilled locally! }
\end{array}
$$

control tasks

in an ideal quantum world
(w/o decoherence)

optimal control for quantum gates

$$
\operatorname{Tr}\{\hat{0}+\hat{\mathrm{p}} \hat{N}(T, 0 ; \varepsilon) \hat{\mathrm{P}} N\}
$$

Palao E Kosloff, PRA 68, 062308 (2003)

- desired gate operation : Ô
- desired fidelity :

$$
1-\varepsilon \text { where } \varepsilon<10^{-4}
$$

optimal control for quantum gates

$$
\operatorname{Tr}\left\{\hat{\mathbf{O}}^{+} \hat{\mathbf{P}}_{N} \hat{\mathbf{U}}(T, 0 ; \varepsilon) \hat{\mathbf{P}}_{N}\right\}
$$

Palao E Kosloff, PRA 68, 062308 (2003)

- desired gate operation : Ô
- desired fidelity :

$$
1-\varepsilon \text { where } \varepsilon<10^{-4}
$$

$\Delta \epsilon(t)=\frac{S(t)}{2 \alpha} \mathfrak{I m}\left[\sum_{k=1}^{N}\left\langle\varphi_{k, i n i}\right| \hat{\mathbf{O}}^{+} \hat{\mathbf{U}}^{+}\left(T, t ; \epsilon^{\text {old }}\right) \hat{\boldsymbol{\mu}} \hat{\mathbf{U}}\left(t, 0 ; \epsilon^{\text {new }}\right)\left|\varphi_{k, i n i}\right\rangle\right]$

optimal control for quantum gates

$$
\operatorname{Tr}\left\{\hat{\mathbf{O}}^{+} \hat{\mathbf{P}}_{N} \hat{\mathbf{U}}(T, 0 ; \varepsilon) \hat{\mathbf{P}}_{N}\right\}
$$

Palao E Kosloff, PRA 68, 062308 (2003)

- desired gate operation : Ô
- desired fidelity :

$$
1-\varepsilon \text { where } \varepsilon<10^{-4}
$$

$$
\Delta \epsilon(t)=\frac{S(t)}{2 \alpha} \mathfrak{I m}\left[\sum_{k=1}^{N}\left\langle\varphi_{k, i n i}\right| \hat{\mathbf{O}}^{+} \hat{\mathbf{U}}^{+}\left(T, t ; \epsilon^{\text {old }}\right) \hat{\boldsymbol{\mu}} \hat{\mathbf{U}}\left(t, 0 ; \epsilon^{\text {new }}\right)\left|\varphi_{k, i n i}\right\rangle\right]
$$

- what gate time T needed ?
- best choice of target Ô ?

minimum gate time

example: controlled phasegate $\hat{\mathbf{O}}=\operatorname{diag}\left(e^{i \chi}, 1,1,1\right)$ for atoms in an optical lattice

Goerz, Calarco, Koch, J Phys B 44, 154011 (2011)

goal: perform a two-qubit gate on the logical basis
while restoring the motional state of the atoms

minimum gate time

example: controlled phasegate $\hat{\mathbf{O}}=\operatorname{diag}\left(e^{i \chi}, 1,1,1\right)$ for atoms in an optical lattice

Goerz, Calarco, Koch, J Phys B 44, 154011 (2011)

goal: perform a two-qubit gate on the logical basis
while restoring the motional state of the atoms

best choice of target

Müller, Reich, Murphy, Yuan, Vala, Whaley, Calarco, Koch, PRA 84, 042315 (2011) optimize for the entangling content of a two-qubit gate rather than for a specific gate

local invariants functional

$$
J_{T}=\Delta g_{1}^{2}+\Delta g_{2}^{2}+\Delta g_{3}^{2}
$$

with $\Delta g_{i}{ }^{2}=\left|g_{i}(\hat{\mathbf{O}})-g_{i}(\hat{\mathbf{U}})\right|^{2}$ and $g_{i}(\hat{\mathbf{O}})$ the local invariants of $\hat{\mathbf{O}}$
optimization determines that gate out of a local equivalence class that can best be implemented in an automated fashion

$$
\begin{gathered}
\hat{\mathbf{U}}=\hat{\mathbf{k}}_{1} e^{-\frac{i}{2} \sum_{j=x, y, z} c_{j} \hat{\sigma}_{j}^{1} \hat{\sigma}_{j}^{2} \hat{\mathbf{k}}_{2}} \\
g_{1}, g_{2}, g_{3} \Longleftrightarrow c_{x}, c_{y}, c_{z}
\end{gathered}
$$

best choice of target

Müller, Reich, Murphy, Yuan, Vala, Whaley, Calarco, Koch, PRA 84, 042315 (2011)

optimize for the entangling content of a two-qubit gate rather than for a specific gate

local invariants functional

$$
J_{T}=\Delta g_{1}^{2}+\Delta g_{2}^{2}+\Delta g_{3}^{2}
$$

with $\Delta g_{i}{ }^{2}=\left|g_{i}(\hat{\mathbf{O}})-g_{i}(\hat{\mathbf{U}})\right|^{2}$ and $g_{i}(\hat{\mathbf{O}})$ the local invariants of $\hat{\mathbf{O}}$
optimization determines that gate out of a local equivalence class that can best be implemented in an automated fashion

$$
\hat{\mathbf{U}}=\hat{\mathbf{k}}_{1} e^{-\frac{i}{2} \sum_{j=x, y, z} c_{j} \hat{\sigma}_{j}^{1} \hat{\sigma}_{j}^{2}} \hat{\mathbf{k}}_{2}
$$

$g_{1}, g_{2}, g_{3} \quad \Longleftrightarrow \quad c_{x}, c_{y}, c_{z}$

best choice of target

Müller, Reich, Murphy, Yuan, Vala, Whaley, Calarco, Koch, PRA 84, 042315 (2011)

optimize for the entangling content of a two-qubit gate rather than for a specific gate

local invariants functional

$$
J_{T}=\Delta g_{1}^{2}+\Delta g_{2}^{2}+\Delta g_{3}^{2}
$$

with $\Delta g_{i}{ }^{2}=\left|g_{i}(\hat{\mathbf{O}})-g_{i}(\hat{\mathbf{U}})\right|^{2}$ and $g_{i}(\hat{\mathbf{O}})$ the local invariants of $\hat{\mathbf{O}}$
optimization determines that gate out of a local equivalence class that can best be implemented in an automated fashion

$$
\begin{gathered}
\hat{\mathbf{U}}=\hat{\mathbf{k}}_{1} e^{-\frac{i}{2} \sum_{j j} x_{y, y}, c_{j} \hat{\sigma}_{j} \hat{\sigma}_{j}^{2} \hat{\mathbf{k}}_{2}} \\
g_{1}, g_{2}, g_{3} \quad \Longleftrightarrow
\end{gathered} \Longleftrightarrow \quad c_{x}, c_{y}, c_{z} .
$$

J_{T} 8th degree polynomial in $\left\{\left|\varphi_{k}\right\rangle\right\}$
\rightsquigarrow nonlinear Krotov method

Reich, Ndong, Koch, J. Chem. Phys. 136, 104103 (2012)

best choice of target

Müller, Reich, Murphy, Yuan, Vala, Whaley, Calarco, Koch, PRA 84, 042315 (2011)
optimize for the entangling content of a two-qubit gate rather than for a specific gate

best choice of target

Muiller, Reich, Murphy, Yuan, Vala, Whaley, Calarco, Koch, PRA 84, 042315 (2011)
optimize for the entangling content of a two-qubit gate rather than for a specific gate

can be generalized to all perfect entanglers
P. Watts \mathcal{E} J. Vala combination of g_{i} which vanishes on boundary of $W_{P E}$, e.g.

$$
J_{T}=g_{3} \sqrt{g_{1}^{2}+g_{2}^{2}-g_{1}}
$$

how to tackle control tasks

in the real world ?
(with decoherence)

OCT for open quantum systems

$$
\rho(T)=\mathcal{D}(\rho(0)) \quad \text { e.g. : } \quad \frac{\partial \rho}{\partial t}=\frac{i}{\hbar}[H, \rho]_{-}+\mathcal{L}_{D}(\rho)
$$

OCT for open quantum systems

$$
\rho(T)=\mathcal{D}(\rho(0)) \quad \text { e.g. : } \quad \frac{\partial \rho}{\partial t}=\frac{i}{\hbar}[H, \rho]_{-}+\mathcal{L}_{D}(\rho)
$$

(1) state-to-state: $\rho(t=0) \rightarrow \rho(t=T)=\rho_{\text {target }}$
\Rightarrow maximize $\operatorname{Tr}\left[\rho(T) \rho_{\text {target }}\right]$
Bartana, Kosloff, Tannor, J. Chem. Phys. 106, 1435 (1997)
Schmidt, Negretti, Ankerhold, Calarco, Stockburger, Phys. Rev. Lett. 107, 130404 (2011)

OCT for open quantum systems

$$
\rho(T)=\mathcal{D}(\rho(0)) \quad \text { e.g. : } \quad \frac{\partial \rho}{\partial t}=\frac{i}{\hbar}[H, \rho]_{-}+\mathcal{L}_{D}(\rho)
$$

(1) state-to-state: $\rho(t=0) \rightarrow \rho(t=T)=\rho_{\text {target }}$
\Rightarrow maximize $\operatorname{Tr}\left[\rho(T) \rho_{\text {target }}\right]$
Bartana, Kosloff, Tannor, J. Chem. Phys. 106, 1435 (1997)
Schmidt, Negretti, Ankerhold, Calarco, Stockburger, Phys. Rev. Lett. 107, 130404 (2011)
(2) gates: lift $\operatorname{Tr}\left\{O^{+} P_{N} U(T, 0 ; \varepsilon) P_{N}\right\}$ to Liouville space \Rightarrow maximize $\frac{1}{d^{2}} \sum_{j=1}^{d^{2}} \operatorname{Tr}\left[O \rho_{j} O^{+} \rho_{j}(T)\right]$

Kallush \& Kosloff, Phys. Rev. A 73, 032324 (2006)
Schulte-Herbrü̈ggen, Spörl, Khaneja, Glaser, J. Phys. B 44154013 (2011)

OCT for open quantum systems

$$
\rho(T)=\mathcal{D}(\rho(0)) \quad \text { e.g. : } \quad \frac{\partial \rho}{\partial t}=\frac{i}{\hbar}[H, \rho]_{-}+\mathcal{L}_{D}(\rho)
$$

(1) state-to-state: $\rho(t=0) \rightarrow \rho(t=T)=\rho_{\text {target }}$
\Rightarrow maximize $\operatorname{Tr}\left[\rho(T) \rho_{\text {target }}\right]$
Bartana, Kosloff, Tannor, J. Chem. Phys. 106, 1435 (1997)
Schmidt, Negretti, Ankerhold, Calarco, Stockburger, Phys. Rev. Lett. 107, 130404 (2011)
(2) gates: lift $\operatorname{Tr}\left\{O^{+} P_{N} U(T, 0 ; \varepsilon) P_{N}\right\}$ to Liouville space \Rightarrow maximize $\frac{1}{d^{2}} \sum_{j=1}^{d^{2}} \operatorname{Tr}\left[O \rho_{j} O^{+} \rho_{j}(T)\right]$

Kallush \& Kosloff, Phys. Rev. A 73, 032324 (2006)
Schulte-Herbrüggen, Spörl, Khaneja, Glaser, J. Phys. B 44154013 (2011)
but: $d=\operatorname{dim} \mathcal{H}$!?

OCT for open quantum systems

$$
\rho(T)=\mathcal{D}(\rho(0)) \quad \text { e.g. : } \quad \frac{\partial \rho}{\partial t}=\frac{i}{\hbar}[H, \rho]_{-}+\mathcal{L}_{D}(\rho)
$$

(1) state-to-state: $\rho(t=0) \rightarrow \rho(t=T)=\rho_{\text {target }}$
\Rightarrow maximize $\operatorname{Tr}\left[\rho(T) \rho_{\text {target }}\right]$
Bartana, Kosloff, Tannor, J. Chem. Phys. 106, 1435 (1997)
Schmidt, Negretti, Ankerhold, Calarco, Stockburger, Phys. Rev. Lett. 107, 130404 (2011)
(2) gates: lift $\operatorname{Tr}\left\{O^{+} P_{N} U(T, 0 ; \varepsilon) P_{N}\right\}$ to Liouville space \Rightarrow maximize $\frac{1}{d^{2}} \sum_{j=1}^{d^{2}} \operatorname{Tr}\left[O \rho_{j} O^{+} \rho_{j}(T)\right]$

Kallush \& Kosloff, Phys. Rev. A 73, 032324 (2006)
Schulte-Herbrüggen, Spörl, Khaneja, Glaser, J. Phys. B 44154013 (2011)
but: $d=\operatorname{dim} \mathcal{H}$!?
(3) local equivalence class: $J_{T}=\Delta g_{1}^{2}+\Delta g_{2}^{2}+\Delta g_{3}^{2}$ with

$$
\Delta g_{i}^{2}=\left|g_{i}(O)-g_{i}(U)\right|^{2}
$$

OCT for open quantum systems

$$
\rho(T)=\mathcal{D}(\rho(0)) \quad \text { e.g. : } \quad \frac{\partial \rho}{\partial t}=\frac{i}{\hbar}[H, \rho]_{-}+\mathcal{L}_{D}(\rho)
$$

(1) state-to-state: $\rho(t=0) \rightarrow \rho(t=T)=\rho_{\text {target }}$
\Rightarrow maximize $\operatorname{Tr}\left[\rho(T) \rho_{\text {target }}\right]$
Bartana, Kosloff, Tannor, J. Chem. Phys. 106, 1435 (1997)
Schmidt, Negretti, Ankerhold, Calarco, Stockburger, Phys. Rev. Lett. 107, 130404 (2011)
(2) gates: lift $\operatorname{Tr}\left\{O^{+} P_{N} U(T, 0 ; \varepsilon) P_{N}\right\}$ to Liouville space \Rightarrow maximize $\frac{1}{d^{2}} \sum_{j=1}^{d^{2}} \operatorname{Tr}\left[O \rho_{j} O^{+} \rho_{j}(T)\right]$

Kallush \& Kosloff, Phys. Rev. A 73, 032324 (2006)
Schulte-Herbrüggen, Spörl, Khaneja, Glaser, J. Phys. B 44154013 (2011)
but: $d=\operatorname{dim} \mathcal{H}$!?
(3) local equivalence class: $J_{T}=\Delta g_{1}^{2}+\Delta g_{2}^{2}+\Delta g_{3}^{2}$ with

$$
\Delta g_{i}^{2}=\left|g_{i}(O)-g_{i}(U)\right|^{2}
$$

$$
\text { but: } U \Leftrightarrow \mathcal{D}(\rho) \text { !? }
$$

OCT for open quantum systems

$$
\rho(T)=\mathcal{D}(\rho(0)) \quad \text { e.g. : } \quad \frac{\partial \rho}{\partial t}=\frac{i}{\hbar}[H, \rho]_{-}+\mathcal{L}_{D}(\rho)
$$

two propositions:

(1) gates: $J_{T}=\frac{1}{2^{d}} \sum_{j=1}^{d^{2}} \operatorname{Tr}\left[O \rho_{j} O^{+} \rho_{j}(T)\right]$
how many states ρ_{j} really need to be propagated? only $3!\left(\operatorname{not} d^{2}\right)$

OCT for open quantum systems

$$
\rho(T)=\mathcal{D}(\rho(0)) \quad \text { e.g. : } \quad \frac{\partial \rho}{\partial t}=\frac{i}{\hbar}[H, \rho]_{-}+\mathcal{L}_{D}(\rho)
$$

two propositions:

(1) gates: $J_{T}=\frac{1}{2^{d}} \sum_{j=1}^{d^{2}} \operatorname{Tr}\left[O \rho_{j} O^{+} \rho_{j}(T)\right]$
how many states ρ_{j} really need to be propagated? only $3!\left(\operatorname{not} d^{2}\right)$
(2) local equivalence classes: $J_{T}=\Delta g_{1}^{2}+\Delta g_{2}^{2}+\Delta g_{3}^{2}$
how to determine U to calculate $g_{i}(U)$? analytical reconstruction possible based on $2 d-1$ specific ρ_{j}

OCT for open quantum systems

$$
\rho(T)=\mathcal{D}(\rho(0)) \quad \text { e.g. : } \quad \frac{\partial \rho}{\partial t}=\frac{i}{\hbar}[H, \rho]_{-}+\mathcal{L}_{D}(\rho)
$$

two propositions:

(1) gates: $J_{T}=\frac{1}{2^{d}} \sum_{j=1}^{d^{2}} \operatorname{Tr}\left[O \rho_{j} O^{+} \rho_{j}(T)\right]$
how many states ρ_{j} really need to be propagated? only $3!\left(\operatorname{not} d^{2}\right)$
(2) local equivalence classes: $J_{T}=\Delta g_{1}^{2}+\Delta g_{2}^{2}+\Delta g_{3}^{2}$
how to determine U to calculate $g_{i}(U)$?
analytical reconstruction possible based on $2 d-1$ specific ρ_{j}
using concepts 'commutant space' and 'total rotation'

differentiating unitaries: commutant space

 assume unitary time evolutionset of states $\left\{\rho_{i}=\rho_{i}(t=0)\right\}$ and $\left\{\rho_{i}^{U}(T)=U \rho_{i} U^{+}\right\}$

$$
U \in P U(d)=U(d) / U(1)
$$

differentiating unitaries: commutant space

 assume unitary time evolutionset of states $\left\{\rho_{i}=\rho_{i}(t=0)\right\}$ and $\left\{\rho_{i}^{U}(T)=U \rho_{i} U^{+}\right\}$

$$
U \in P U(d)=U(d) / U(1)
$$

for a given set $\left\{\rho_{i}\right\}$ consider the map \mathcal{M}

$$
\begin{aligned}
\mathcal{M}: P U(d) & \longrightarrow \bigoplus_{i} \mathbb{C}^{d \times d} \\
U & \longrightarrow\left\{\rho_{i}^{U}(T)\right\}
\end{aligned}
$$

differentiating unitaries: commutant space

 assume unitary time evolutionset of states $\left\{\rho_{i}=\rho_{i}(t=0)\right\}$ and $\left\{\rho_{i}^{U}(T)=U \rho_{i} U^{+}\right\}$

$$
U \in P U(d)=U(d) / U(1)
$$

for a given set $\left\{\rho_{i}\right\}$ consider the map \mathcal{M}

$$
\begin{aligned}
\mathcal{M}: P U(d) & \longrightarrow \bigoplus_{i} \mathbb{C}^{d \times d} \\
U & \longrightarrow\left\{\rho_{i}^{U}(T)\right\}
\end{aligned}
$$

we can differentiate two unitaries U, U^{\prime} iff \mathcal{M} injective

differentiating unitaries: commutant space

 assume unitary time evolutionset of states $\left\{\rho_{i}=\rho_{i}(t=0)\right\}$ and $\left\{\rho_{i}^{U}(T)=U \rho_{i} U^{+}\right\}$

$$
U \in P U(d)=U(d) / U(1)
$$

for a given set $\left\{\rho_{i}\right\}$ consider the map \mathcal{M}

$$
\begin{aligned}
\mathcal{M}: P U(d) & \longrightarrow \bigoplus_{i} \mathbb{C}^{d \times d} \\
U & \longrightarrow\left\{\rho_{i}^{U}(T)\right\}
\end{aligned}
$$

we can differentiate two unitaries U, U^{\prime} iff \mathcal{M} injective
\mathcal{M} injective iff only $\mathbb{1}$ in commutant space of $\left\{\rho_{i}\right\}$
commutant space $K(\rho)=$ set of all linear operators that commute with ρ

differentiating unitaries: commutant space

 assume unitary time evolutionset of states $\left\{\rho_{i}=\rho_{i}(t=0)\right\}$ and $\left\{\rho_{i}^{U}(T)=U \rho_{i} U^{+}\right\}$

$$
U \in P U(d)=U(d) / U(1)
$$

for a given set $\left\{\rho_{i}\right\}$ consider the map \mathcal{M}

$$
\begin{aligned}
\mathcal{M}: P U(d) & \longrightarrow \bigoplus_{i} \mathbb{C}^{d \times d} \\
U & \longrightarrow\left\{\rho_{i}^{U}(T)\right\}
\end{aligned}
$$

we can differentiate two unitaries U, U^{\prime} iff \mathcal{M} injective
\mathcal{M} injective iff only $\mathbb{1}$ in commutant space of $\left\{\rho_{i}\right\}$
commutant space $K(\rho)=$ set of all linear operators that commute with ρ
unitaries in $K(\rho)$ cannot be distinguished from $\mathbb{1}$ by inspection

$$
\text { of } \rho: U \rho U^{+}=U U^{+} \rho=\rho
$$

differentiating unitaries: commutant space

commutant space $K(\rho)=$ set of all linear operators that commute with ρ
unitaries in $K(\rho)$ cannot be distinguished from $\mathbb{1}$ by inspection

$$
\text { of } \rho: U \rho U^{+}=U U^{+} \rho=\rho
$$

if we can distinguish U from $\mathbb{1}$, we can distinguish any U from any other U^{\prime} (follows from $\left.U, U^{\prime} \in P U(d)\right) \longleftrightarrow \mathcal{M}$ injective

differentiating unitaries: commutant space

commutant space $K(\rho)=$ set of all linear operators that commute with ρ
unitaries in $K(\rho)$ cannot be distinguished from $\mathbb{1}$ by inspection

$$
\text { of } \rho: U \rho U^{+}=U U^{+} \rho=\rho
$$

if we can distinguish U from $\mathbb{1}$, we can distinguish any U from any other U^{\prime} (follows from $\left.U, U^{\prime} \in P U(d)\right) \longleftrightarrow \mathcal{M}$ injective
can always find U with common eigenbasis with $\rho \longrightarrow$ need a set of at least two states

differentiating unitaries: commutant space

commutant space $K(\rho)=$ set of all linear operators that commute with ρ
unitaries in $K(\rho)$ cannot be distinguished from $\mathbb{1}$ by inspection

$$
\text { of } \rho: U \rho U^{+}=U U^{+} \rho=\rho
$$

if we can distinguish U from $\mathbb{1}$, we can distinguish any U from any other U^{\prime} (follows from $\left.U, U^{\prime} \in P U(d)\right) \longleftrightarrow \mathcal{M}$ injective
can always find U with common eigenbasis with $\rho \longrightarrow$ need a set of at least two states
$\mathcal{K}\left(\left\{\rho_{i}\right\}\right)=$ intersection of all $K\left(\rho_{i}\right)$
$=$ set of all linear operators that commute with each ρ_{i}

differentiating unitaries: commutant space

commutant space $K(\rho)=$ set of all linear operators that commute with ρ
unitaries in $K(\rho)$ cannot be distinguished from $\mathbb{1}$ by inspection

$$
\text { of } \rho: U \rho U^{+}=U U^{+} \rho=\rho
$$

if we can distinguish U from $\mathbb{1}$, we can distinguish any U from any other U^{\prime} (follows from $\left.U, U^{\prime} \in P U(d)\right) \longleftrightarrow \mathcal{M}$ injective
can always find U with common eigenbasis with $\rho \longrightarrow$ need a set of at least two states
$\mathcal{K}\left(\left\{\rho_{i}\right\}\right)=$ intersection of all $K\left(\rho_{i}\right)$
$=$ set of all linear operators that commute with each ρ_{i}

$$
\mathcal{K}\left(\left\{\rho_{i}\right\}\right)=\{\mathbb{1}\}
$$

$\mathbb{1}$ is only time evolution that leaves all $\left\{\rho_{i}\right\}$ unchanged

minimal set of states: total rotation

given a ρ, we cannot distinguish those U with common eigenbasis with ρ from \mathbb{I}
(1) fix a basis: basis-complete projectors $\left\{P_{i}\right\}$
d orthonormal one-dimensional projectors
$\Longrightarrow \rho=\sum_{i=1}^{d} \lambda_{i} P_{i}, \lambda_{i} \neq \lambda_{j}$

minimal set of states: total rotation

given a ρ, we cannot distinguish those U with common eigenbasis with ρ from \mathbb{I}
(1) fix a basis: basis-complete projectors $\left\{P_{i}\right\}$ d orthonormal one-dimensional projectors

$$
\Longrightarrow \rho=\sum_{i=1}^{d} \lambda_{i} P_{i}, \lambda_{i} \neq \lambda_{j}
$$

(2) construct a ρ^{\prime} guaranteed to have no common eigenspace with any P_{i} : total rotation

$$
\begin{aligned}
& \Longrightarrow \rho^{\prime}=P_{T R} \quad \text { with } \\
& \quad P_{T R} P_{i} \neq 0 \quad \forall P_{i} \in\left\{P_{i}\right\} \\
& \text { (note: } d P_{T R}{ }^{\prime} \mathrm{s}=\text { mutually unbiased basis) }
\end{aligned}
$$

minimal set of states: total rotation

given a ρ, we cannot distinguish those U with common eigenbasis with ρ from \mathbb{I}
(1) fix a basis: basis-complete projectors $\left\{P_{i}\right\}$
d orthonormal one-dimensional projectors

$$
\Longrightarrow \rho=\sum_{i=1}^{d} \lambda_{i} P_{i}, \lambda_{i} \neq \lambda_{j}
$$

(2) construct a ρ^{\prime} guaranteed to have no common eigenspace with any P_{i} : total rotation
$\Longrightarrow \rho^{\prime}=P_{T R} \quad$ with

$$
P_{T R} P_{i} \neq 0 \quad \forall P_{i} \in\left\{P_{i}\right\}
$$

(note: $d P_{T R}$'s $=$ mutually unbiased basis)
$\Longrightarrow \rho(T), \rho^{\prime}(T)$ are sufficient to distinguish any two unitaries (and thus measure success of control) provided time evolution coherent

gate optimization

third state sufficient to check whether time evolution is unitary

$$
J_{T}=\sum_{j=1}^{3}\left[1-\operatorname{Tr}\left[O \rho_{j} O^{+} \rho_{j}(T)\right]\right]
$$

$\rho_{1, i j}=\frac{2(d-i+1)}{d(d+1)} \delta_{i j} \quad \rho_{2, i j}=\frac{d^{2}-2}{d^{2}} \delta_{i 1} \delta_{1 j}+\frac{1}{d^{2}} \delta_{1 j}+\frac{1}{d^{2}} \delta_{i 1} \quad \rho_{3, i j}=\frac{1}{d} \delta_{i j}$
fix the basis totally rotated state check unitality on logical subspace

gate optimization

third state sufficient to check whether time evolution is unitary

$$
J_{T}=\sum_{j=1}^{3}\left[1-\operatorname{Tr}\left[O \rho_{j} O^{+} \rho_{j}(T)\right]\right]
$$

$\rho_{1, i j}=\frac{2(d-i+1)}{d(d+1)} \delta_{i j} \quad \rho_{2, i j}=\frac{d^{2}-2}{d^{2}} \delta_{i 1} \delta_{1 j}+\frac{1}{d^{2}} \delta_{1 j}+\frac{1}{d^{2}} \delta_{i 1} \quad \rho_{3, i j}=\frac{1}{d} \delta_{i j}$
fix the basis totally rotated state check unitality on logical subspace

J_{T} attains its minimum only if

(1) \mathcal{D} is a unitary dynamical map on the logical subspace
(2) $\mathcal{D}\left(\rho_{1}\right)=O \rho_{1} O^{+}$and $\mathcal{D}\left(\rho_{2}\right)=O \rho_{2} O^{+}$

gate optimization

third state sufficient to check whether time evolution is unitary

$$
J_{T}=\sum_{j=1}^{3}\left[1-\operatorname{Tr}\left[O \rho_{j} O^{+} \rho_{j}(T)\right]\right]
$$

$\rho_{1, i j}=\frac{2(d-i+1)}{d(d+1)} \delta_{i j} \quad \rho_{2, i j}=\frac{d^{2}-2}{d^{2}} \delta_{i 1} \delta_{1 j}+\frac{1}{d^{2}} \delta_{1 j}+\frac{1}{d^{2}} \delta_{i 1} \quad \rho_{3, i j}=\frac{1}{d} \delta_{i j}$
fix the basis
totally rotated state
check unitality on logical subspace

J_{T} attains its minimum only if

(1) \mathcal{D} is a unitary dynamical map on the logical subspace
(2) $\mathcal{D}\left(\rho_{1}\right)=O \rho_{1} O^{+}$and $\mathcal{D}\left(\rho_{2}\right)=O \rho_{2} O^{+}$
\rightarrow propagation of 3 states sufficient, irrespective of $\operatorname{dim} \mathcal{H}$

gate optimization

third state sufficient to check whether time evolution is unitary

$$
J_{T}=\sum_{j=1}^{3}\left[1-\operatorname{Tr}\left[O \rho_{j} O^{+} \rho_{j}(T)\right]\right]
$$

$\rho_{1, i j}=\frac{2(d-i+1)}{d(d+1)} \delta_{i j} \quad \rho_{2, i j}=\frac{d^{2}-2}{d^{2}} \delta_{i 1} \delta_{1 j}+\frac{1}{d^{2}} \delta_{1 j}+\frac{1}{d^{2}} \delta_{i 1} \quad \rho_{3, i j}=\frac{1}{d} \delta_{i j}$
fix the basis
totally rotated state check unitality on logical subspace

J_{T} attains its minimum only if

(1) \mathcal{D} is a unitary dynamical map on the logical subspace
(2) $\mathcal{D}\left(\rho_{1}\right)=O \rho_{1} O^{+}$and $\mathcal{D}\left(\rho_{2}\right)=O \rho_{2} O^{+}$
\rightarrow propagation of 3 states sufficient, irrespective of $\operatorname{dim} \mathcal{H}$
\rightarrow implications for device characterization

gate optimization with 3 states

theorem:

Let $\mathrm{DM}(d)$ be the space of $d \times d$ density matrices and $\mathcal{D}: \mathrm{DM}(d) \mapsto \mathrm{DM}(d)$ a dynamical map.
The following statements are equivalent:
(1) \mathcal{D} is unitary.
(2) \mathcal{D} maps a set \mathcal{A} of d one-dimensional orthogonal projectors onto a set of d one-dimensional orthogonal projectors and a totally rotated projector $P_{T R}$ (w.r.t. \mathcal{A}) onto a one-dimensional projector.
(3) \mathcal{D} is unital and leaves the spectrum of a complete and totally rotating set of density matrices invariant. important for optimization of complex systems (d large)

examples:

can OCT help us find better gates?

example 1:

Rydberg C-phase gate for trapped atoms

Rydberg gate

$$
\begin{aligned}
\hat{\mathbf{H}}_{1 q} & =\left(\begin{array}{cccc}
0 & 0 & \mu \epsilon_{1}(t) & 0 \\
0 & E_{1} & 0 & 0 \\
\mu \epsilon_{1}(t) & 0 & \Delta_{1} & \mu \epsilon_{2}(t) \\
0 & 0 & \mu \epsilon_{2}(t) & \Delta_{1}+\Delta_{2}
\end{array}\right) \\
\hat{\mathbf{H}}_{2 q} & =\hat{\mathbf{H}}_{1 q} \otimes \mathbb{1}+\mathbb{1} \otimes \hat{\mathbf{H}}_{1 q}-U|r r\rangle\langle r r|
\end{aligned}
$$

Rydberg gate

$$
\begin{gathered}
\hat{\mathbf{H}}_{1 q}=\left(\begin{array}{cccc}
0 & 0 & \mu \epsilon_{1}(t) & 0 \\
0 & E_{1} & 0 & 0 \\
\mu \epsilon_{1}(t) & 0 & \Delta_{1} & \mu \epsilon_{2}(t) \\
0 & 0 & \mu \epsilon_{2}(t) & \Delta_{1}+\Delta_{2}
\end{array}\right) \\
\hat{\mathbf{H}}_{2 q}=\hat{\mathbf{H}}_{1 q} \otimes \mathbb{1}+\mathbb{1} \otimes \hat{\mathbf{H}}_{1 q}-U|r r\rangle\langle r r|
\end{gathered}
$$

Rydberg gate

$$
\begin{gathered}
\hat{\mathbf{H}}_{1 q}=\left(\begin{array}{cccc}
0 & 0 & \mu \epsilon_{1}(t) & 0 \\
0 & E_{1} & 0 & 0 \\
\mu \epsilon_{1}(t) & 0 & \Delta_{1} & \mu \epsilon_{2}(t) \\
0 & 0 & \mu \epsilon_{2}(t) & \Delta_{1}+\Delta_{2}
\end{array}\right) \\
\hat{\mathbf{H}}_{2 q}=\hat{\mathbf{H}}_{1 q} \otimes \mathbb{1}+\mathbb{1} \otimes \hat{\mathbf{H}}_{1 q}-U|r r\rangle\langle r r|
\end{gathered}
$$

optimization including spontaneous emission

yes!
fidelity:
$0.7 \rightarrow 0.85$
iteration Schulte-Herbrüggen, Spörl, Khaneja, Glaser, J. Phys. B 44154013 (2011)

Rydberg gate

optimization including spontaneous emission

fidelity improvement at the price of bang-like solutions

example 2:

state preparation of

 superconducting qutrits
superconducting qubits 1: phase qutrit

Shalibo, Rofe, Barth, Friedland, Bialczak, Martinis, Katz, Phys. Rev. Lett. 108, 037701 (2012)

Shalibo, PhD thesis (2012)

superconducting qubits 1: phase qutrit

Shalibo, Rofe, Barth, Friedland, Bialczak, Martinis, Katz, Phys. Rev. Lett. 108, 037701 (2012)

Shalibo, PhD thesis (2012)

superconducting qubits 1: phase qutrit

Shalibo, Rofe, Barth, Friedland, Bialczak, Martinis, Katz, Phys. Rev. Lett. 108, 037701 (2012)

Shalibo, PhD thesis (2012)
optimization of state preparation for tomography

$$
T_{1}^{|1\rangle}=170 \mathrm{~ns}, T_{1}^{|2\rangle}=86 \mathrm{~ns} \quad\left(\Gamma_{n, n-1} \sim n\right) \quad T_{2}^{|0\rangle\langle 1|}=75 \mathrm{~ns}, T_{2}^{|1\rangle\langle 2|}=65 \mathrm{~ns}, T_{2}^{|0\rangle\langle 2|}=25 \mathrm{~ns}
$$

superconducting qubits 1: phase qutrit

Shalibo, Rofe, Barth, Friedland, Bialczak, Martinis, Katz, Phys. Rev. Lett. 108, 037701 (2012)

Shalibo, PhD thesis (2012)
optimization of state preparation for tomography

$$
T_{1}^{|1\rangle}=170 \mathrm{~ns}, T_{1}^{|2\rangle}=86 \mathrm{~ns} \quad\left(\Gamma_{n, n-1} \sim n\right) \quad T_{2}^{|0\rangle\langle 1|}=75 \mathrm{~ns}, T_{2}^{|1\rangle\langle 2|}=65 \mathrm{~ns}, T_{2}^{|0\rangle\langle 2|}=25 \mathrm{~ns}
$$

$$
\Phi_{\mathrm{ext}}(\mathrm{t})
$$

experiment sequence of π and $\pi / 2$ pulses with $S(t)=(1-\cos [2 \pi t / T]) / 2$

superconducting qubits 1: phase qutrit

Shalibo, Rofe, Barth, Friedland, Bialczak, Martinis, Katz, Phys. Rev. Lett. 108, 037701 (2012)

Shalibo, PhD thesis (2012)
optimization of state preparation for tomography
$T_{1}^{|1\rangle}=170 \mathrm{~ns}, T_{1}^{|2\rangle}=86 \mathrm{~ns} \quad\left(\Gamma_{n, n-1} \sim n\right) \quad T_{2}^{|0\rangle\langle 1|}=75 \mathrm{~ns}, T_{2}^{|1\rangle\langle 2|}=65 \mathrm{~ns}, T_{2}^{|0\rangle\langle 2|}=25 \mathrm{~ns}$

experiment

sequence of π and $\pi / 2$ pulses with $S(t)=(1-\cos [2 \pi t / T]) / 2$ $T=10 \mathrm{~ns}$

superconducting qubits 1: phase qutrit

Shalibo, Rofe, Barth, Friedland, Bialczak, Martinis, Katz, Phys. Rev. Lett. 108, 037701 (2012)

Shalibo, PhD thesis (2012)
optimization of state preparation for tomography
$T_{1}^{|1\rangle}=170 \mathrm{~ns}, T_{1}^{|2\rangle}=86 \mathrm{~ns} \quad\left(\Gamma_{n, n-1} \sim n\right) \quad T_{2}^{|0\rangle\langle 1|}=75 \mathrm{~ns}, T_{2}^{|1\rangle\langle 2|}=65 \mathrm{~ns}, T_{2}^{|0\rangle\langle 2|}=25 \mathrm{~ns}$

experiment

sequence of π and $\pi / 2$ pulses with $S(t)=(1-\cos [2 \pi t / T]) / 2$ $T=10 \mathrm{~ns}$

implementing
$\hat{\mathbf{O}}=\exp \left[-i \phi \hat{\lambda}_{i} / 2\right]$

superconducting qubits 1: phase qutrit

optimization of state preparation for tomography: $\hat{\lambda}_{1}$

$$
T_{1}^{|1\rangle}=170 \mathrm{~ns}, T_{1}^{|2\rangle}=86 \mathrm{~ns} \quad\left(\Gamma_{n, n-1} \sim n\right) \quad T_{2}^{|0\rangle\langle 1|}=75 \mathrm{~ns}, T_{2}^{|1\rangle\langle 2|}=65 \mathrm{~ns}, T_{2}^{|0\rangle\langle 2|}=25 \mathrm{~ns}
$$

fidelity: 99.3\% (no decoherence)

superconducting qubits 1: phase qutrit

optimization of state preparation for tomography: $\hat{\lambda}_{1}$
$T_{1}^{|1\rangle}=170 \mathrm{~ns}, T_{1}^{|2\rangle}=86 \mathrm{~ns}$
$\left(\Gamma_{n, n-1} \sim n\right)$
$T_{2}^{|0\rangle\langle 1|}=75 \mathrm{~ns}, T_{2}^{|1\rangle\langle 2|}=65 \mathrm{~ns}, T_{2}^{|0\rangle\langle 2|}=25 \mathrm{~ns}$
fidelity: $99.3 \% \rightsquigarrow 91.7 \%$ (with decoherence)

superconducting qubits 1: phase qutrit

optimization of state preparation for tomography: $\hat{\lambda}_{1}$

$$
T_{1}^{|1\rangle}=170 \mathrm{~ns}, T_{1}^{|2\rangle}=86 \mathrm{~ns} \quad\left(\Gamma_{n, n-1} \sim n\right) \quad T_{2}^{|0\rangle\langle 1|}=75 \mathrm{~ns}, T_{2}^{|1\rangle\langle 2|}=65 \mathrm{~ns}, T_{2}^{|0\rangle\langle 2|}=25 \mathrm{~ns}
$$

fidelity: $99.3 \% \rightsquigarrow 91.7 \%$ vs 92.2% (optimized under decoherence)

superconducting qubits 1: phase qutrit

optimization of state preparation for tomography: $\hat{\lambda}_{1}$

$$
T_{1}^{|1\rangle}=170 \mathrm{~ns}, T_{1}^{|2\rangle}=86 \mathrm{~ns} \quad\left(\Gamma_{n, n-1} \sim n\right) \quad T_{2}^{|0\rangle\langle 1|}=75 \mathrm{~ns}, T_{2}^{|1\rangle\langle(2 \mid}=65 \mathrm{~ns}, T_{2}^{|0\rangle\langle 2|}=25 \mathrm{~ns}
$$

fidelity: $99.3 \% \rightsquigarrow 91.7 \%$ vs 92.2% (optimized under decoherence)

superconducting qubits 1: phase qutrit

optimization of state preparation for tomography: $\hat{\lambda}_{1}$

$$
T_{1}^{|1\rangle}=170 \mathrm{~ns}, T_{1}^{|2\rangle}=86 \mathrm{~ns} \quad\left(\Gamma_{n, n-1} \sim n\right) \quad T_{2}^{|0\rangle\langle 1|}=75 \mathrm{~ns}, T_{2}^{|1\rangle\langle(2 \mid}=65 \mathrm{~ns}, T_{2}^{|0\rangle\langle 2|}=25 \mathrm{~ns}
$$

fidelity: $99.3 \% \rightsquigarrow 91.7 \%$ vs 92.2% (optimized under decoherence)

example 3:

C-phase gate for transmon qubits

superconducting qubits 2: transmon qubits

J Koch, Yu, Gambetta, Houck, Schuster, Majer, Blais, Devoret, Girvin,Schoelkopf, Phys. Rev. A 76, 042319 (2007)

DiCarlo, Chow, Gambetta, Bishop, Johnson, Schuster, Majer, Blais, Frunzio, Girvin, Schoelkopf, Nature 460, 240 (2009)
comparatively long decoherence times

$$
T_{2}=20 \ldots 100 \mu \mathrm{~s}
$$

superconducting qubits 2 : transmon qubits

J Koch, Yu, Gambetta, Houck, Schuster, Majer, Blais, Devoret, Girvin,Schoelkopf, Phys. Rev. A 76, 042319 (2007)

DiCarlo, Chow, Gambetta, Bishop, Johnson, Schuster, Majer, Blais, Frunzio, Girvin, Schoelkopf, Nature 460, 240 (2009)
comparatively long decoherence times $T_{2}=20 \ldots 100 \mu \mathrm{~s}$
gate times $T<250 \mathrm{~ns}$
will 'beat' decoherence

superconducting qubits 2 : transmon qubits

J Koch, Yu, Gambetta, Houck, Schuster, Majer, Blais, Devoret, Girvin,Schoelkopf, Phys. Rev. A 76, 042319 (2007)

DiCarlo, Chow, Gambetta, Bishop, Johnson, Schuster, Majer, Blais, Frunzio, Girvin, Schoelkopf, Nature 460, 240 (2009)
comparatively long decoherence times

$$
T_{2}=20 \ldots 100 \mu \mathrm{~s}
$$

gate times $T<250 \mathrm{~ns}$
will 'beat' decoherence
usually treated in dispersive regime \Longrightarrow effective qubit-qubit $\hat{\mathbf{H}}$

superconducting qubits 2 : transmon qubits

J Koch, Yu, Gambetta, Houck, Schuster, Majer, Blais, Devoret, Girvin,Schoelkopf, Phys. Rev. A 76, 042319 (2007)
DiCarlo, Chow, Gambetta, Bishop, Johnson, Schuster, Majer, Blais, Frunzio, Girvin, Schoelkopf, Nature 460, 240 (2009)

comparatively long decoherence times

$$
T_{2}=20 \ldots 100 \mu \mathrm{~s}
$$

gate times $T<250 \mathrm{~ns}$

will 'beat' decoherence

usually treated in dispersive regime \Longrightarrow effective qubit-qubit $\hat{\mathbf{H}}$ \curvearrowright qubit-qubit \& qubit-cavity coupling too weak for fast gates

superconducting qubits 2 : transmon qubits

J Koch, Yu, Gambetta, Houck, Schuster, Majer, Blais, Devoret, Girvin,Schoelkopf, Phys. Rev. A 76, 042319 (2007)
DiCarlo, Chow, Gambetta, Bishop, Johnson, Schuster, Majer, Blais, Frunzio, Girvin, Schoelkopf, Nature 460, 240 (2009)
comparatively long decoherence times

$$
T_{2}=20 \ldots 100 \mu \mathrm{~s}
$$

gate times $T<250 \mathrm{~ns}$
will 'beat' decoherence
usually treated in dispersive regime \Longrightarrow effective qubit-qubit $\hat{\mathbf{H}}$
\curvearrowright qubit-qubit \& qubit-cavity coupling too weak for fast gates

$$
\begin{aligned}
\hat{\mathbf{H}}= & \sum_{i=1,2}\left[\omega_{i} \hat{\mathbf{b}}_{i}^{+} \hat{\mathbf{b}}_{i}-\alpha_{i} \hat{\mathbf{b}}_{i}^{+} \hat{\mathbf{b}}_{i}^{+} \hat{\mathbf{b}}_{i} \hat{\mathbf{b}}_{i}\right]+J\left(\hat{\mathbf{b}}_{1}^{+} \hat{\mathbf{b}}_{2}+\hat{\mathbf{b}}_{1} \hat{\mathbf{b}}_{2}^{+}\right) \\
& +\omega_{c} \hat{\mathbf{a}}^{+} \hat{\mathbf{a}}+\epsilon^{*}(t) \hat{\mathbf{a}}+\epsilon(t) \hat{\mathbf{a}}^{+}+\sum_{i=1,2} g_{i}\left(\hat{\mathbf{b}}_{i}^{+} \hat{\mathbf{a}}+\hat{\mathbf{b}}_{i} \hat{\mathbf{a}}^{+}\right)
\end{aligned}
$$

superconducting qubits 2: transmon qubits

 optimization of C-Phase w/o dissipationfast gate: $F_{a v}=99.72 \%$

superconducting qubits 2: transmon qubits

optimization of C-Phase w/o dissipation

fast gate: $F_{a v}=99.72 \%$

slow gate: $F_{a v}=99.93 \%$
population dynamics for $|\Psi(t=0)\rangle=|00\rangle$

$$
F_{a v}=99.93 \% \rightsquigarrow 97.68 \%
$$

superconducting qubits 2: transmon qubits

optimization of C-Phase w/o dissipation

fast gate: $F_{a v}=99.72 \%$ population dynamics for $|\Psi(t=0)\rangle=|01\rangle$

$$
F_{a v}=99.72 \% \rightsquigarrow 99.06 \%
$$

slow gate: $F_{a v}=99.93 \%$
population dynamics for $|\Psi(t=0)\rangle=|01\rangle$

$$
F_{a v}=99.93 \% \rightsquigarrow 97.68 \%
$$

superconducting qubits 2: transmon qubits

optimization of C-Phase w/o dissipation

fast gate: $F_{a v}=99.72 \%$

slow gate: $F_{a v}=99.93 \%$
population dynamics for $|\Psi(t=0)\rangle=|10\rangle$

$$
F_{a v}=99.93 \% \rightsquigarrow 97.68 \%
$$

superconducting qubits 2: transmon qubits

optimization of C-Phase w/o dissipation

fast gate: $F_{a v}=99.72 \%$ population dynamics for $|\Psi(t=0)\rangle=|11\rangle$

$$
F_{a v}=99.72 \% \rightsquigarrow 99.06 \%
$$

slow gate: $F_{a v}=99.93 \%$
population dynamics for $|\Psi(t=0)\rangle=|11\rangle$

$$
F_{a v}=99.93 \% \rightsquigarrow 97.68 \%
$$

superconducting qubits 2: transmon qubits

optimization of C-Phase w/o dissipation

fast gate: $F_{a v}=99.72 \%$
$F_{a v}=99.72 \% \rightsquigarrow 99.06 \%$

slow gate: $F_{a v}=99.93 \%$
$F_{a v}=99.93 \% \rightsquigarrow 97.68 \%$

superconducting qubits 2: transmon qubits

 optimization of C-Phase w/o dissipationfast gate: $F_{a v}=99.72 \%$
$F_{a v}=99.72 \% \rightsquigarrow 99.06 \%$

slow gate: $F_{a v}=99.93 \%$
$F_{a v}=99.93 \% \rightsquigarrow 97.68 \%$

fast gate with additional transitions involving

- qubit $|1\rangle \rightarrow|2\rangle$
- cavity $|0\rangle \rightarrow|2\rangle$ simultaneous with qubit $|1\rangle \rightarrow|0\rangle$

superconducting qubits 2: transmon qubits

 optimization of C-Phase w/o dissipationfast gate: $F_{a v}=99.72 \%$
$F_{a v}=99.72 \% \rightsquigarrow 99.06 \%$

slow gate: $F_{a v}=99.93 \%$
$F_{a v}=99.93 \% \rightsquigarrow 97.68 \%$

fast gate with additional transitions involving

- qubit $|1\rangle \rightarrow|2\rangle$
- cavity $|0\rangle \rightarrow|2\rangle$ simultaneous with qubit $|1\rangle \rightarrow|0\rangle$
\longrightarrow OCT using full complexity of $\hat{\mathrm{H}}$: gates fast enough to beat decoherence

summary

- OCT can be adapted to QIPC tasks by proper choice of functional
- OCT yields fast high-fidelity gates for complex systems ex: transmons in the non-dispersive regime
- optimizing under dissipation yields improved gates
provided some regions of Hilbert space less effected by decoherence than others ex: Rydberg gate for trapped atoms
- gate optimization requires only 3 (and not d^{2}) states \Longrightarrow paving the way for OCT for complex systems
- so far: bang-like and adiabatic solutions

summary

- OCT can be adapted to QIPC tasks by proper choice of functional
- OCT yields fast high-fidelity gates for complex systems ex: transmons in the non-dispersive regime
- optimizing under dissipation yields improved gates
provided some regions of Hilbert space less effected by decoherence than others ex: Rydberg gate for trapped atoms
- gate optimization requires only 3 (and not d^{2}) states
\Longrightarrow paving the way for OCT for complex systems
- so far: bang-like and adiabatic solutions
will smarter functionals yield smarter solutions?

acknowledgments

Daniel Reich

Giulia Gualdi
Michael Goerz

collaborators

Birgitta Whaley \& Co., UC Berkeley
Nadav Katz \& Co., HU Jerusalem
Tommaso Calarco \& Co., U Ulm
Jiri Vala \& Co., NU Ireland
€€€:
DFG, DAAD

acknowledgments

Daniel Reich

Giulia Gualdi
Michael Goerz

collaborators

Birgitta Whaley \& Co., UC Berkeley
Nadav Katz \& Co., HU Jerusalem
Tommaso Calarco \& Co., U Ulm
Jiri Vala \& Co., NU Ireland
thank you!

summary

- OCT can be adapted to QIPC tasks by proper choice of functional
- OCT yields fast high-fidelity gates for complex systems ex: transmons in the non-dispersive regime
- optimizing under dissipation yields improved gates
provided some regions of Hilbert space less effected by decoherence than others ex: Rydberg gate for trapped atoms
- gate optimization requires only 3 (and not d^{2}) states
\Longrightarrow paving the way for OCT for complex systems
- so far: bang-like and adiabatic solutions
will smarter functionals yield smarter solutions?

