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Driven quantum systems 

…  are also driven by their output

Measurements on a quantum system imply

- wave function collapse - back action - state reduction

Ψ(t), ρ(t)
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Measurement data reveal unknown parameters

- general state reduction - P(θ|D).



Quantum metrology

Strategies to

Prepare optimal states of quantum probes

cooling, alignment, squeezing, entanglement, …

Extract maximum amount of information

spectroscopy, filters, Bayes rule, adaption …

Establish general results

Cramer-Rao bounds, Fisher information, …

Goals

high precision/sensitivity measurements, feedback control, 

quantum functional devices, …



Outline

The ”complex landscape” in this presentation is 

the infinite set of possible data records.

The ”message”: the experiment walks the path, we just have to look!

Metrology with continuous quantum measurements.

Part I

A toy model  for ”normal” and ”optimum” use of a fluorescence signal. 

”Fishing with Fisher for the signal in the noise”

Part II

General Stochastic Master Equation theory.



Toy model: laser driven two level atom



Toy model: laser driven two level atom

Steady state excited state population is a 

function of the model parameters 



Toy model: laser driven two level atom

timeclicks

Blatt, Ertmer, Zoller, Hall; PRA 1986



Toy model: laser driven two level atom

timeclicks



Toy model: laser driven two level atom
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Toy model: laser driven two level atom
Fisher Information

 p(detection record|values)

Delay times are uncorrelated.

Distribution of delay times: 

Histogram with Poisson noise

√



Toy model: laser driven two level atom
Fisher Information

1/√F

error per click

Around Ω=5Γ



General theory

H. Mabuchi, Quant. Semiclass. Opt. 8, 1103, (1996); 

J. Gambetta and H. M Wiseman, Phys. Rev. A 64, 042105 (2001).

Søren Gammelmark, KM:  arXiv:1212.5700 

Data D, parameter(s) θ

Bayes probability rule:

Likelihood (no need for normalization)



Likelihood of measurement data 

Random state evolution

 0 or 1

Probability for the measurement data
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Likelihood of measurement data 

Random state evolution

 0 or 1

Likelihood determined for different θ

 their relative probability given the data measured.



Data (click) record, find Δ

Here, we do not use our insight or analytical knowledge

about the anti-bunching and delay function.

It is automatically taken into account in the SME.



Unknown Δ, Ω and γ



Asymptotic behavior

Fisher information



Sample the Fisher information

Auxiliary density matrices:



Fisher information reveals sensitivity of 

detection method: 



Summary/outlook

 Quantum optical systems ”survive” that we perform measurements
on them.

 Basic theory is stochastic (measurement conditioned) master 
equation. 

 An observed record + the conditioned quantum state

constitute a quantum trajectory (Carmichael).

 The quantum trajectory carries its own likelihood function with it, 

and by associating the likelihood with different candidate values

for unkown parameters, these can be estimated.

 The method exhausts the information present in the full data record !

 Optimization over measurement strategies, adaption,  … . 



Likelihood of measurement data 

Count vs. Homodyne detection

 0 or 1


