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✤ Few-body quantum systems: standard optimal control 
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CRAB optimization
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quantum random walks (Mohseni et al., 2008). In contrast to
classical random walks, which we also know from the
Brownian motion, the position of the quantum “walker”
would not be a single random position but rather a superpo-
sition of positions.

The incorporation of interference effects in the theoreti-
cal reasoning led to further considerations concerning the
possible role of the protein environment (Rebentrost et al.,
2009; Olaya-Castro et al., 2008), since a close look at wave
physics reveals that coherence can be both beneficial and a
hindrance if the aim is to optimize the speed of transport. On
the one hand, the simultaneous wavelike sampling of many
parallel paths could possibly result in finding a faster way to
the final goal. But on the other hand the presence of an
irregular lattice of scattering centers (static disorder) may ac-
tually suppress wave transport because of destructive inter-
ference. This phenomenon, well known in solid state physics,
is called Anderson localization (Anderson, 1958). In that
case, thermal fluctuations of the protein environment might
therefore be crucial and help to avoid localization and thus
assist in the excitation transfer (Caruso et al., 2009). The
importance of protein dynamics in eliminating Anderson lo-
calization was actually already discussed in an earlier paper
by Balabin and Onuchic (2000), where multiple quantum
pathways and interference were proposed for the electron

transfer after the reduction in the special pair—instead of the
excitation transfer towards the special pair that is discussed
here.

The role of interference in transport phenomena can also
be visualized by recalling the analogy to an optical Mach–
Zehnder interferometer [as shown in Fig. 1(d)]: depending
on the setting of phases, wave interference can guide all ex-
citations to either one of the two exits. Quantum coherence
may then be the best way to channel the interfering quanta
to the desired output. But if the wave phases happened to
be initially set to destructive interference, quantum co-
herence would be a severe handicap. In this case, even ran-
dom dephasing processes would help optimize the transport
efficiency.

External perturbations may also be important for ener-
getic reasons: the electronic excitations have to be trans-
ferred between complexes of different energies. If the
molecular states were too well-defined, the lacking energy
overlap would reduce the transfer rate. External perturba-
tions may broaden the transition bands and thus increase the
coupling between neighboring molecules.

Recent experiments by Collini and Scholes (2009), how-
ever, hint also at another possible role of the protein environ-
ment. In their experiments they could show that coherent
electronic excitation transfer along conjugated polymer
chains occurs even at room temperature. These long-lasting
coherences (200 fs) could only be observed in intrachain but
not in interchain electronic excitation transfers.

All of the models described above bear in common that
they rely on quantum coherence and decoherence and that
they may be robust even under ambient environmental con-
ditions over short time scales. It is thus the fine interplay of
coherent exciton transfer, decoherence, and dephasing that
yields the best results and which seems to reign one of the
most important reactions in nature.

Conformational quantum superpositions
in biomolecules
Since atoms can exist in a superposition of position states,
this may also lead to a superposition of conformational states
in molecules. A tunneling-induced superposition of confor-
mation states is conceivable. It becomes, however, highly im-
probable when many atoms have to be shifted over large dis-
tances and across high potential wells during the state
change.

Photoisomerization is another way of inducing structural
state changes in molecules—now using photon exchange, in-
stead of tunneling. This opens the possibility to connect even
energetically separated states. The photo-induced all-trans-
13-cis transition of retinal is a famous example where a
single photon can cause a sizeable conformation change. But
much of the subsequent atom rearrangement occurs in in-
teractions with the thermal environment (Gai et al., 1998).
In spite of that, it was possible to gain coherent quantum
control in this process. Applying pulse-shaped femtosecond

Figure 4. The FMO complex is composed of three protein-
pigment structures. Each of them contains seven bacteriochlo-
rophyll-a molecules !Blankenship, 2002". Electronic excitation
transfer from the FMO complex to the reaction center is a key pro-
cess in the light-harvesting of green photosynthetic bacteria. Two-
dimensional Fourier transform spectroscopy !Engel et al., 2007" was
able to document long-lived excitonic coherences across neighbor-
ing molecules in this structure !picture credits: Tronrud et al., 2009".
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Entanglement Storage Units

Tommaso Caneva1, Tommaso Calarco1, and Simone Montangero1
1Institut für Quanteninformationsverarbeitung, Universität Ulm, D-89069 Ulm, Germany

(Dated: August 17, 2011)

We introduce a protocol to drive many body quantum systems into long-lived entangled states,
protected from decoherence by big energy gaps. With this approach it is possible to implement
scalable entanglement-storage units. We test the protocol in the Lipkin-Meshkov-Glick model, a
prototype many-body quantum system that describes different experimental setups.

PACS numbers:

Entanglement represents the manifestation of correla-
tions without a classical counterpart and it is regarded as
the necessary ingredient at the basis of the power of quan-
tum information processing. Indeed quantum informa-
tion applications as teleportation, quantum criptography
or quantum computers rely on entanglement as a crucial
resource [1]. Within the current state-of-art, promising
candidates for truly scalable quantum information pro-
cessors are considered architectures that interface hard-
ware components playing different roles like for exam-
ple solid-state systems as stationary qubits combined in
hybrid architectures with optical devices [3]. In this sce-
nario, the stationary qubits are a collection of engineered
qubits with desired properties, as decoupled as possible
from one another to prevent errors. However, this archi-
tecture is somehow unfavorable to the creation and the
conservation of entanglement. Indeed, it would be desir-
able to have a hardware where “naturally” entanglement
is present and that can be prepared in a highly entan-
gled state that persists without any external control: the
closest quantum entanglement analogue of a classical in-
formation memory support, i.e. an entanglement-storage
unit (ESU). Such hardware once prepared can be used
at later times (alone or with duplicates) – once the de-
sired kind of entanglement has been distilled – to perform
quantum information protocols [1].

The biggest challenge in the development of an ESU is
entanglement frailty: it is strongly affected by the detri-
mental presence of decoherence [1]. Furthermore the
search for a proper system to build an ESU is under-
mined by the increasing complexity of quantum systems
with a growing number of components, which makes en-
tanglement more frail, more difficult to characterize, to
create and to control [2]. Moreover, given a many body
quantum system, the search for a state with the desired
properties might be very difficult. Indeed, a direct and
comprehensive study of a many body quantum system
is an exponentially hard task in the system size. Nev-
ertheless, in many-body quantum systems entanglement
naturally arises: for example –when undergoing a quan-
tum phase transition – in proximity of a critical point the
amount of entanglement possessed by the ground state
scales with the size [2, 4]. Unfortunately, due to the clo-
sure of the energy gap at the critical point, the ground
state is an extremely frail state: even very little pertur-
bations might destroy it, inducing excitations towards

FIG. 1: (Color online) Entanglement Storage Units protocol:
a system is initially in a reference state |ψ(−T )〉, e.g. the
ground state, and is optimally driven via a control field Γ(t)
in an entangled eigenstate |ψ(0)〉, protected from decoherence
by an energy gap.

other states. Very recently, the entanglement properties
of the eigenstates of many-body Hamiltonians have been
investigated, and it has been shown that in some cases
they are characterized by entanglement growing with the
system size [5, 13].

In this letter we show that by means of recently devel-
oped optimal control technique [7] it is possible to iden-
tify and prepare a many body quantum system in robust,
long-lived entangled states (ESU states). More impor-
tantly, we drive the system towards ESU states without
the need of any apriori information on the system, either
about the eigenstates or about the energy spectrum. Fi-
nally, we show that properly prepared systems can be ef-
fectively used as ESU exploiting the fact that ESU states
are well protected by large energy gaps.

Recently, optimal control has been used to drive quan-
tum systems in entangled states or to improve the gen-
eration of entanglement [6]. However, here we have in
mind a different scenario: to exploit the control to steer
a system into a highly entangled state that is stable and
robust even after switching off the control (see Fig. 1). In
the following we show that ESU states are gap-protected
entangled eigenstates of the system Hamiltonian in the
absence of the control. Here we show that for an ex-
perimentally relevant model this is indeed possible, and
that it is possible to drive the system in gap-protected
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Speeding up critical system dynamics through optimized evolution.

Tommaso Caneva1,2, Tommaso Calarco2, Rosario Fazio3, Giuseppe E. Santoro1,4,5, and Simone Montangero2
1International School for Advanced Studies (SISSA), Via Beirut 2-4, I-34014 Trieste, Italy
2Institut für Quanteninformationsverarbeitung, Universität Ulm, D-89069 Ulm, Germany

3NEST, Scuola Normale Superiore & Istituto di Nanoscienze - CNR, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
4CNR-INFM Democritos National Simulation Center, Via Beirut 2-4, I-34014 Trieste, Italy
5International Centre for Theoretical Physics (ICTP), P.O.Box 586, I-34014 Trieste, Italy

(Dated: January 1, 2011)

The number of defects which are generated on crossing a quantum phase transition can be min-
imized by choosing properly designed time-dependent pulses. In this letter we determine what are
the ultimate limits of this optimization. We discuss under which conditions the production of de-
fects across the phase transition is vanishing small. Furthermore we show that the minimum time
required to enter this regime is T = π/∆ unveiling an intimate connection between an optimized
unitary dynamics and the intrinsic measure of the Hilbert space for pure states. Surprisingly, the
dynamics is non-adiabatic, this result can be understood by assuming a simple two-level dynamics
for the many-body system.

PACS numbers:

Introduction.— The rapid progress in the experimen-
tal realization and manipulation of quantum systems [1]
is opening the rich and intriguing perspective of the ex-
ploitation of quantum physics to realize quantum tech-
nologies like quantum simulators [2] and quantum com-
puters [3, 4]. These achievements pave the way to the
simulation of condensed matter systems giving the possi-
bility of studying different states of matter in controlled
experiments. Despite the impressive results obtained so
far, this is a formidable technological and theoretical
challenge due to the complexity of the systems in analysis
and the experimental requirements. Indeed, the level of
control needed on the quantum system is unprecedented:
one should be able to prepare a system in a desired initial
state, perform the desired evolution and finally measure
the state in a very precise way. Moreover, the whole
experiment should be performed faster than the system
decoherence time that eventually will destroy any quan-
tum information capability.
Quantum optimal control (OC) theory, the study of op-
timization strategies to improve the outcome of a quan-
tum process, can be an extremely powerful tool to cope
with these issues [5–9]. It allows not only to optimize
the desired experiment outcome but also to speed up
the process itself. Traditionally employed in atomic and
molecular physics [10, 11], OC has been recently ap-
plied with success to the optimization of the dynamics
of many-body systems [12, 13], allowing to achieve the
ultimate bound imposed by quantum mechanics, the so
called quantum speed limit (QSL) [14]. Indeed as intu-
itively suggested by the time-energy uncertainty princi-
ple, the time required by a state to reach another dis-
tinguishable state has to be longer than the inverse of
its energy fluctuations [15]. This implies that a quan-
tum system cannot evolve at an arbitrary speed in its
Hilbert space, but a minimum time is required to per-
form a transformation between orthogonal states [16–20].
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FIG. 1: (Color online) Instantaneous excitation energy in the
LMG model for an optimized (green dashed line, total time
T ∼ TQSL), a non optimized (red dot-dashed line, T ∼ TQSL)
and a linear adiabatic process (orange continuous line, T "
TQSL). Continuous (blue) lines represents the lowest energy
levels as a function of the driving field Γ = −t/T .

For time-independent Hamiltonians this bound has been
exactly determined [14]; the QSL has been formally gen-
eralized also to time-dependent Hamiltonians, but so far
has been computed only in a few simple cases [12, 21–23].
A still unexplored, although relevant question is how the
dynamical crossing of a quantum phase transition (QPT)
affects this fundamental bound. Here we investigate for
the first time the QSL of the dynamics of a first order
QPT in the adiabatic version of Grover’s search algo-
rithm (GSA) [24] and of a second order QPT [25] in
the Lipkin-Meshkov-Glick (LMG) model. Specifically we
consider the problem of converting the ground state on
one side of the critical point into the ground state on the
opposite side in the fastest and most accurate way by se-
lecting an optimal time-dependence of the control field.
We emphasize here that the evolution induced by the op-
timized field is non-adiabatic, as shown in Fig. 1, where
the scenario is reproduced for the LMG model, and an

LMG
model 
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FIG. 3: (Color online) Infidelity as a function of the size in
the LMG model. Squares represents the data before the opti-
mization, circles the data after the optimization with CRAB.

reversed separable state |ψ1
G〉 = |11〉, the homogeneous

superposition state |ψ2
G〉 = 1

2

∑

i,j |i, j〉, and the maxi-

mally entangled Bell state |ψ3
G〉 =

1
√

2
(|00〉+ |11〉). Note

that due to the fact that only the coupling is controlled,
all three states are not trivial to achieve. We set the to-
tal time of the transformation to the somehow arbitrary
time scale T = π/EJ and we perform a CRAB optimiza-
tion using the truncated expansion of the function g(t)
given in Eq. (9), with a constant initial guess for the driv-
ing field Γ0(t) = Γ(0) = 1. We considered an additional
constraint on the fluence of the control field, thus the
resulting cost function is defined as

F = f1 + 0.1 C1(Γ(t)), (11)

where f1 and C1 are given by equations (1) and (4) re-
spectively. Here we are interested in studying the effect
of the randomness introduced in the frequencies of the
expansion (9), thus we optimize both in the case of ran-
dom rk and with rk = 0. To perform a fair compari-
son, we ran the optimization in both cases with the same
maximum number of calls Nf ∼ 30.000 to the function
F , which fixes the simulation complexity. Indeed, in the
first case we repeated the optimization for thirty different
rk random configurations (with a single Ak, Bk random
starting point), while in the second case the optimization
was repeated over thirty initial random Ak, Bk configura-
tions. A typical result is shown in Fig. 1 for Nc = 6 and
|ψ3

G〉: it clearly shows that for the case of randomized ωk

the optimization is highly improved. A more systematic
comparison is shown in Fig. 2 where the best results are
plotted against the number of optimization parameters
Nc for the three target states |ψi

G〉: in all cases, the ran-
domization of the frequencies improves the final results
by about an order of magnitude or even more. More
importantly, in all three considered cases, the final result
without randomization is very far from being satisfactory
as the final fidelity is of the order of ten percent, result-
ing in a very poor state transformation. On the contrary,

0 2 4 6 8 10 12 14 16
2 Nc

10-10

10-8

10-6

10-4

10-2

1f1

N=10
N=32
N=100

0 4 8 12 16
10-8
10-6
10-4
10-2

1LMG model: T/TQSL=2

FIG. 4: (Color online) Infidelity as a function of the number of
control parameters for different sizes in the LMG model. The
total evolution time is T = 2TQSL = 2π∆. Inset: infidelity
as a function of the number of parameters for a single size
N = 32: comparison between data optimized using as cost
function the infidelity (empty circles) and the final energy (full
circles). Green squares represent the results with randomized
frequencies.

using the randomized frequencies we were able to find op-
timal pulses to obtain fidelities below one percent for two
cases out of three – values that are comparable, in most
cases, with experimental errors.

III. LIPKIN-MESHKOV-GLICK MODEL

The Lipkin-Meshkov-Glick (LMG) model is the
paradigm of a system with long range interaction (in-
finite in the thermodynamical limit). The Hamiltonian
in dimensionless units is written as [31, 32]:

H = −
1

N

∑

i<j

(σx
i σ

x
j + γσy

i σ
y
j )− Γ(t)

N
∑

i

σz
i , (12)

where N is the number of spins in the system, Γ is the
transverse field and σα

i are the Pauli matrices. By intro-
ducing the total spin operator Sα =

∑

i σ
α
i /2, Eq. (12)

can be rewritten, apart from an additive constant, as
H = − 1

N [S2
x + γS2

y ]−ΓSz . The Hamiltonian hence com-
mutes with S2 and does not couple states having a differ-
ent parity in the number of spins pointing in the magnetic
field direction: [H,S2] = 0 and [H,

∏

i σ
z
i ] = 0. In the

isotropic case γ = 1, also the z-component of &S is con-
served, [H,Sz ] = 0. In the thermodynamical limit the
LMG model undergoes a second order quantum phase
transition at Γc = 1 from a paramagnet (Γ > 1) to a fer-
romagnet (Γ < 1). The phase transition is characterized
by mean-field critical exponents [32]. The phase tran-
sitions dramatically affects the dynamical behavior of
quantum systems: As discussed in more detail in Sec. VI,
the gap closure at the critical point promotes dynamical

atoms in cavities!
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FIG. 1: CRAB scheme: A) An inital guess pulse c0(t) is used
as starting point. B) The function F(!ω) for the case !ω =
{ω1, ω2} and the initial polytope (ligh red triangle) are defined
and moved “downhill” (darker triangles) until convergence is
reached. C) The final point is recasted as the optimal pulse
c(t) and applied to the physical system.

integrated with t-DMRG, and thus can in principle be
applied to all systems that can be efficiently simulated
by tensor network methods. Triggered by the observa-
tion that optimal control optmizations result in pulses
with very simple Fourier spectrum [22] we develop an
optimal search in a truncated dual space, the Chopped
RAndom Basis (CRAB) optimization, that can be effi-
ciently applied to t-DMRG simulations. The scenario we
are thinking of is as follows: given a system of interested
described by an Hamiltonian H with some controls cj(t)
with j = 1, . . . , NC , the goal is to extremize a given fig-
ure of merit F [H(cj(t))], e.g. the final system energy,
state fidelity, entanglement, etc. The main idea is then
to start with an initial pulse guess c0

j(t) and then looking
for the best correction of the form

cj(t) = c0
j(t) · fj(t), (1)

where fj(t) can be expressed in a simple form in some
function basis, as for example, Fourier space, and de-
pends on some parameters !ωj = ωk

j (k = 1, . . . , Mj), see
Methods for details. The optimization problem is then
recasted in a extremization of a multivariables function
F(ωk

j ) that can be numerically approached with the pre-
ferred method, as for example, stepeest descent or conju-
gate gradient method [25]. While using CRAB together
with t-DMRG, computing the gradient of F is extremely
resource consuming and thus we resort to a Direct search
method as Nelder-Mead or simplex methods [25]. They
are based on the construction of a polytope defined by
some initial set of points in the space of parameters !ωj

that “rolls down the hill” following defined rules up to
reach the (possible local) minima (see Fig. 1 and Meth-
ods). Due to the fact that the Direct Search methods
are based on many independent evaluation of the func-
tion to be minimized, they can be efficiently implemented
together with t-DMRG simulations.

In this letter, the CRAB optimization is applied to
the preparation of a Mott insulator in cold atoms exper-
iments in optical lattice [11]. Indeed, very recently this

!

"#$%&'#()

*+,,-(./#01,+&

2

3

4)(151,(6 4.,(1)(151,(6

!

!"#$!"#$

#
78-9/ 78-9/

FIG. 2: Scheme of the Mott-Superfluid transition in the ho-
mogeneous system for average occupation number 〈n〉 = 1:
increasing the lattice (black line) depth V , the atoms Super-
fluid wave functions (upper) localize in the wells (lower). If
the transition is not adiabatic or optimized defects appear
(here represented by a hole and a double occupied site).

field have experienced a fast development after the exper-
imental demonstration of coherent control of the atoms
subject to a parameter quench in the seminal work of
M.Greiner and coworkers [12]. In these experimental se-
tups a Bose-Einstein condensate is first loaded in a mag-
netic trap and then the optical lattice is slowly switched
on inducing a quantum phase transition to a Mott insu-
lator. This is the fundamental initial step to prepare a
one dimensional system for further investigations as for
recent experiments on transport or spectroscopy [11]. Up
to now, the described Superfluid-Mott insulator transi-
tion has been performed adiabatically in about one hun-
dred ms: we present an optimal pulse to obtain a faithful
ground state with density of defects below one per cent
(???) in a total time of the order of some milliseconds.
This new optimal process allows for a drastic reduction
(about two orders of magnitude) of the time needed to
initialize cold atoms in optical lattice in a desired initial
state, a fundamental step in any quantum information
processing and cold atoms in optical lattice experiments.

Cold atoms in opticall lattice can be mapped in the
Bose Hubbard model defined by the Hamiltonian [11, 14]:

H=
∑

j

[−J(b†jbj+1+h.c.)+Ω(j−
N

2
)2nj+

U

2
(n2

j−nj)]. (2)

The first term on the r.h.s. of Eq.(2) describes the tunnel-
ing of bosons between neighboring sites with rate J , Ω is
the curvature of the trapping potential, and nj = b†jbj is
the density operator with bosonic creation (annihilation)
operators b†j (bj) at site j = −N/2, . . . , N/2−1. The last
term is the onsite contact interaction with energy U . The
system parameters U and J can be expressed as a func-
tion of the optical lattice depth V [11]. As sketched in

8
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FIG. 1: CRAB scheme: A) An inital guess pulse c0(t) is used
as starting point. B) The function F(!ω) for the case !ω =
{ω1, ω2} and the initial polytope (ligh red triangle) are defined
and moved “downhill” (darker triangles) until convergence is
reached. C) The final point is recasted as the optimal pulse
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integrated with t-DMRG, and thus can in principle be
applied to all systems that can be efficiently simulated
by tensor network methods. Triggered by the observa-
tion that optimal control optmizations result in pulses
with very simple Fourier spectrum [22] we develop an
optimal search in a truncated dual space, the Chopped
RAndom Basis (CRAB) optimization, that can be effi-
ciently applied to t-DMRG simulations. The scenario we
are thinking of is as follows: given a system of interested
described by an Hamiltonian H with some controls cj(t)
with j = 1, . . . , NC , the goal is to extremize a given fig-
ure of merit F [H(cj(t))], e.g. the final system energy,
state fidelity, entanglement, etc. The main idea is then
to start with an initial pulse guess c0

j(t) and then looking
for the best correction of the form

cj(t) = c0
j(t) · fj(t), (1)

where fj(t) can be expressed in a simple form in some
function basis, as for example, Fourier space, and de-
pends on some parameters !ωj = ωk

j (k = 1, . . . , Mj), see
Methods for details. The optimization problem is then
recasted in a extremization of a multivariables function
F(ωk

j ) that can be numerically approached with the pre-
ferred method, as for example, stepeest descent or conju-
gate gradient method [25]. While using CRAB together
with t-DMRG, computing the gradient of F is extremely
resource consuming and thus we resort to a Direct search
method as Nelder-Mead or simplex methods [25]. They
are based on the construction of a polytope defined by
some initial set of points in the space of parameters !ωj

that “rolls down the hill” following defined rules up to
reach the (possible local) minima (see Fig. 1 and Meth-
ods). Due to the fact that the Direct Search methods
are based on many independent evaluation of the func-
tion to be minimized, they can be efficiently implemented
together with t-DMRG simulations.

In this letter, the CRAB optimization is applied to
the preparation of a Mott insulator in cold atoms exper-
iments in optical lattice [11]. Indeed, very recently this
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FIG. 2: Scheme of the Mott-Superfluid transition in the ho-
mogeneous system for average occupation number 〈n〉 = 1:
increasing the lattice (black line) depth V , the atoms Super-
fluid wave functions (upper) localize in the wells (lower). If
the transition is not adiabatic or optimized defects appear
(here represented by a hole and a double occupied site).

field have experienced a fast development after the exper-
imental demonstration of coherent control of the atoms
subject to a parameter quench in the seminal work of
M.Greiner and coworkers [12]. In these experimental se-
tups a Bose-Einstein condensate is first loaded in a mag-
netic trap and then the optical lattice is slowly switched
on inducing a quantum phase transition to a Mott insu-
lator. This is the fundamental initial step to prepare a
one dimensional system for further investigations as for
recent experiments on transport or spectroscopy [11]. Up
to now, the described Superfluid-Mott insulator transi-
tion has been performed adiabatically in about one hun-
dred ms: we present an optimal pulse to obtain a faithful
ground state with density of defects below one per cent
(???) in a total time of the order of some milliseconds.
This new optimal process allows for a drastic reduction
(about two orders of magnitude) of the time needed to
initialize cold atoms in optical lattice in a desired initial
state, a fundamental step in any quantum information
processing and cold atoms in optical lattice experiments.

Cold atoms in opticall lattice can be mapped in the
Bose Hubbard model defined by the Hamiltonian [11, 14]:

H=
∑

j

[−J(b†jbj+1+h.c.)+Ω(j−
N

2
)2nj+

U

2
(n2

j−nj)]. (2)

The first term on the r.h.s. of Eq.(2) describes the tunnel-
ing of bosons between neighboring sites with rate J , Ω is
the curvature of the trapping potential, and nj = b†jbj is
the density operator with bosonic creation (annihilation)
operators b†j (bj) at site j = −N/2, . . . , N/2−1. The last
term is the onsite contact interaction with energy U . The
system parameters U and J can be expressed as a func-
tion of the optical lattice depth V [11]. As sketched in
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{ω1, ω2} and the initial polytope (ligh red triangle) are defined
and moved “downhill” (darker triangles) until convergence is
reached. C) The final point is recasted as the optimal pulse
c(t) and applied to the physical system.

integrated with t-DMRG, and thus can in principle be
applied to all systems that can be efficiently simulated
by tensor network methods. Triggered by the observa-
tion that optimal control optmizations result in pulses
with very simple Fourier spectrum [22] we develop an
optimal search in a truncated dual space, the Chopped
RAndom Basis (CRAB) optimization, that can be effi-
ciently applied to t-DMRG simulations. The scenario we
are thinking of is as follows: given a system of interested
described by an Hamiltonian H with some controls cj(t)
with j = 1, . . . , NC , the goal is to extremize a given fig-
ure of merit F [H(cj(t))], e.g. the final system energy,
state fidelity, entanglement, etc. The main idea is then
to start with an initial pulse guess c0

j(t) and then looking
for the best correction of the form

cj(t) = c0
j(t) · fj(t), (1)

where fj(t) can be expressed in a simple form in some
function basis, as for example, Fourier space, and de-
pends on some parameters !ωj = ωk

j (k = 1, . . . , Mj), see
Methods for details. The optimization problem is then
recasted in a extremization of a multivariables function
F(ωk

j ) that can be numerically approached with the pre-
ferred method, as for example, stepeest descent or conju-
gate gradient method [25]. While using CRAB together
with t-DMRG, computing the gradient of F is extremely
resource consuming and thus we resort to a Direct search
method as Nelder-Mead or simplex methods [25]. They
are based on the construction of a polytope defined by
some initial set of points in the space of parameters !ωj

that “rolls down the hill” following defined rules up to
reach the (possible local) minima (see Fig. 1 and Meth-
ods). Due to the fact that the Direct Search methods
are based on many independent evaluation of the func-
tion to be minimized, they can be efficiently implemented
together with t-DMRG simulations.

In this letter, the CRAB optimization is applied to
the preparation of a Mott insulator in cold atoms exper-
iments in optical lattice [11]. Indeed, very recently this
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FIG. 2: Scheme of the Mott-Superfluid transition in the ho-
mogeneous system for average occupation number 〈n〉 = 1:
increasing the lattice (black line) depth V , the atoms Super-
fluid wave functions (upper) localize in the wells (lower). If
the transition is not adiabatic or optimized defects appear
(here represented by a hole and a double occupied site).

field have experienced a fast development after the exper-
imental demonstration of coherent control of the atoms
subject to a parameter quench in the seminal work of
M.Greiner and coworkers [12]. In these experimental se-
tups a Bose-Einstein condensate is first loaded in a mag-
netic trap and then the optical lattice is slowly switched
on inducing a quantum phase transition to a Mott insu-
lator. This is the fundamental initial step to prepare a
one dimensional system for further investigations as for
recent experiments on transport or spectroscopy [11]. Up
to now, the described Superfluid-Mott insulator transi-
tion has been performed adiabatically in about one hun-
dred ms: we present an optimal pulse to obtain a faithful
ground state with density of defects below one per cent
(???) in a total time of the order of some milliseconds.
This new optimal process allows for a drastic reduction
(about two orders of magnitude) of the time needed to
initialize cold atoms in optical lattice in a desired initial
state, a fundamental step in any quantum information
processing and cold atoms in optical lattice experiments.

Cold atoms in opticall lattice can be mapped in the
Bose Hubbard model defined by the Hamiltonian [11, 14]:

H=
∑

j

[−J(b†jbj+1+h.c.)+Ω(j−
N

2
)2nj+

U

2
(n2

j−nj)]. (2)

The first term on the r.h.s. of Eq.(2) describes the tunnel-
ing of bosons between neighboring sites with rate J , Ω is
the curvature of the trapping potential, and nj = b†jbj is
the density operator with bosonic creation (annihilation)
operators b†j (bj) at site j = −N/2, . . . , N/2−1. The last
term is the onsite contact interaction with energy U . The
system parameters U and J can be expressed as a func-
tion of the optical lattice depth V [11]. As sketched in
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integrated with t-DMRG, and thus can in principle be
applied to all systems that can be efficiently simulated
by tensor network methods. Triggered by the observa-
tion that optimal control optmizations result in pulses
with very simple Fourier spectrum [22] we develop an
optimal search in a truncated dual space, the Chopped
RAndom Basis (CRAB) optimization, that can be effi-
ciently applied to t-DMRG simulations. The scenario we
are thinking of is as follows: given a system of interested
described by an Hamiltonian H with some controls cj(t)
with j = 1, . . . , NC , the goal is to extremize a given fig-
ure of merit F [H(cj(t))], e.g. the final system energy,
state fidelity, entanglement, etc. The main idea is then
to start with an initial pulse guess c0

j(t) and then looking
for the best correction of the form

cj(t) = c0
j(t) · fj(t), (1)

where fj(t) can be expressed in a simple form in some
function basis, as for example, Fourier space, and de-
pends on some parameters !ωj = ωk

j (k = 1, . . . , Mj), see
Methods for details. The optimization problem is then
recasted in a extremization of a multivariables function
F(ωk

j ) that can be numerically approached with the pre-
ferred method, as for example, stepeest descent or conju-
gate gradient method [25]. While using CRAB together
with t-DMRG, computing the gradient of F is extremely
resource consuming and thus we resort to a Direct search
method as Nelder-Mead or simplex methods [25]. They
are based on the construction of a polytope defined by
some initial set of points in the space of parameters !ωj

that “rolls down the hill” following defined rules up to
reach the (possible local) minima (see Fig. 1 and Meth-
ods). Due to the fact that the Direct Search methods
are based on many independent evaluation of the func-
tion to be minimized, they can be efficiently implemented
together with t-DMRG simulations.

In this letter, the CRAB optimization is applied to
the preparation of a Mott insulator in cold atoms exper-
iments in optical lattice [11]. Indeed, very recently this
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FIG. 2: Scheme of the Mott-Superfluid transition in the ho-
mogeneous system for average occupation number 〈n〉 = 1:
increasing the lattice (black line) depth V , the atoms Super-
fluid wave functions (upper) localize in the wells (lower). If
the transition is not adiabatic or optimized defects appear
(here represented by a hole and a double occupied site).

field have experienced a fast development after the exper-
imental demonstration of coherent control of the atoms
subject to a parameter quench in the seminal work of
M.Greiner and coworkers [12]. In these experimental se-
tups a Bose-Einstein condensate is first loaded in a mag-
netic trap and then the optical lattice is slowly switched
on inducing a quantum phase transition to a Mott insu-
lator. This is the fundamental initial step to prepare a
one dimensional system for further investigations as for
recent experiments on transport or spectroscopy [11]. Up
to now, the described Superfluid-Mott insulator transi-
tion has been performed adiabatically in about one hun-
dred ms: we present an optimal pulse to obtain a faithful
ground state with density of defects below one per cent
(???) in a total time of the order of some milliseconds.
This new optimal process allows for a drastic reduction
(about two orders of magnitude) of the time needed to
initialize cold atoms in optical lattice in a desired initial
state, a fundamental step in any quantum information
processing and cold atoms in optical lattice experiments.

Cold atoms in opticall lattice can be mapped in the
Bose Hubbard model defined by the Hamiltonian [11, 14]:

H=
∑

j

[−J(b†jbj+1+h.c.)+Ω(j−
N
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j−nj)]. (2)

The first term on the r.h.s. of Eq.(2) describes the tunnel-
ing of bosons between neighboring sites with rate J , Ω is
the curvature of the trapping potential, and nj = b†jbj is
the density operator with bosonic creation (annihilation)
operators b†j (bj) at site j = −N/2, . . . , N/2−1. The last
term is the onsite contact interaction with energy U . The
system parameters U and J can be expressed as a func-
tion of the optical lattice depth V [11]. As sketched in
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integrated with t-DMRG, and thus can in principle be
applied to all systems that can be efficiently simulated
by tensor network methods. Triggered by the observa-
tion that optimal control optmizations result in pulses
with very simple Fourier spectrum [22] we develop an
optimal search in a truncated dual space, the Chopped
RAndom Basis (CRAB) optimization, that can be effi-
ciently applied to t-DMRG simulations. The scenario we
are thinking of is as follows: given a system of interested
described by an Hamiltonian H with some controls cj(t)
with j = 1, . . . , NC , the goal is to extremize a given fig-
ure of merit F [H(cj(t))], e.g. the final system energy,
state fidelity, entanglement, etc. The main idea is then
to start with an initial pulse guess c0

j(t) and then looking
for the best correction of the form

cj(t) = c0
j(t) · fj(t), (1)

where fj(t) can be expressed in a simple form in some
function basis, as for example, Fourier space, and de-
pends on some parameters !ωj = ωk

j (k = 1, . . . , Mj), see
Methods for details. The optimization problem is then
recasted in a extremization of a multivariables function
F(ωk

j ) that can be numerically approached with the pre-
ferred method, as for example, stepeest descent or conju-
gate gradient method [25]. While using CRAB together
with t-DMRG, computing the gradient of F is extremely
resource consuming and thus we resort to a Direct search
method as Nelder-Mead or simplex methods [25]. They
are based on the construction of a polytope defined by
some initial set of points in the space of parameters !ωj

that “rolls down the hill” following defined rules up to
reach the (possible local) minima (see Fig. 1 and Meth-
ods). Due to the fact that the Direct Search methods
are based on many independent evaluation of the func-
tion to be minimized, they can be efficiently implemented
together with t-DMRG simulations.

In this letter, the CRAB optimization is applied to
the preparation of a Mott insulator in cold atoms exper-
iments in optical lattice [11]. Indeed, very recently this
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FIG. 2: Scheme of the Mott-Superfluid transition in the ho-
mogeneous system for average occupation number 〈n〉 = 1:
increasing the lattice (black line) depth V , the atoms Super-
fluid wave functions (upper) localize in the wells (lower). If
the transition is not adiabatic or optimized defects appear
(here represented by a hole and a double occupied site).

field have experienced a fast development after the exper-
imental demonstration of coherent control of the atoms
subject to a parameter quench in the seminal work of
M.Greiner and coworkers [12]. In these experimental se-
tups a Bose-Einstein condensate is first loaded in a mag-
netic trap and then the optical lattice is slowly switched
on inducing a quantum phase transition to a Mott insu-
lator. This is the fundamental initial step to prepare a
one dimensional system for further investigations as for
recent experiments on transport or spectroscopy [11]. Up
to now, the described Superfluid-Mott insulator transi-
tion has been performed adiabatically in about one hun-
dred ms: we present an optimal pulse to obtain a faithful
ground state with density of defects below one per cent
(???) in a total time of the order of some milliseconds.
This new optimal process allows for a drastic reduction
(about two orders of magnitude) of the time needed to
initialize cold atoms in optical lattice in a desired initial
state, a fundamental step in any quantum information
processing and cold atoms in optical lattice experiments.

Cold atoms in opticall lattice can be mapped in the
Bose Hubbard model defined by the Hamiltonian [11, 14]:

H=
∑

j

[−J(b†jbj+1+h.c.)+Ω(j−
N

2
)2nj+
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(n2

j−nj)]. (2)

The first term on the r.h.s. of Eq.(2) describes the tunnel-
ing of bosons between neighboring sites with rate J , Ω is
the curvature of the trapping potential, and nj = b†jbj is
the density operator with bosonic creation (annihilation)
operators b†j (bj) at site j = −N/2, . . . , N/2−1. The last
term is the onsite contact interaction with energy U . The
system parameters U and J can be expressed as a func-
tion of the optical lattice depth V [11]. As sketched in
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The first term on the right-hand side of Eq. (2) describes the
tunneling of bosons between neighboring sites with rate J;
! is the curvature of the external trapping potential, and
nj ¼ byj bj is the density operator with bosonic creation

(annihilation) operators byj (bj) at site j ¼ 1; . . . ; N. The

last term is the on-site contact interaction with energy U.
The system parameters U and J can be expressed as a
function of the optical-lattice depth V (we set @ ¼ 1 from
now on) [19]. As sketched in Fig. 2, the system undergoes a
quantum phase transition from a superfluid phase to a Mott
insulator as a function of the ratio J=U. In a homogeneous
one-dimensional system, the quantum phase transition is
expected to occur at Jc=U ’ 0:083, where (upon decreas-
ing the ratio J=U) the ground state wave function drasti-
cally changes from a Fermi-Thomas distribution with high
fluctuations in the number of particles per site to a simple
product of local Fock states with no fluctuations in the
number of atoms per site [19]. In the presence of an
external trapping potential on top of the optical lattice,
the phase diagram is more complex: the two phases coex-
ists in different trap regions and typical ‘‘cake’’ structures
are formed [22].

Results.—Following previous numerical studies [23]
that modeled the experiment [24], and supported by strong
evidence of agreement between numerical simulations and
experimental results [25,26], we studied both the ideal
homogeneous system (! ¼ 0) and the experimental setup
of [25] where the trapping potential is present. We applied
the CRAB optimization to the preparation of a Mott insu-
lator with ultracold atoms in an optical lattice; that is, we
optimized the ratio J=UðtÞ that drives the superfluid-Mott

insulator transition. The resulting optimal ramp shape
drives the system into a final Mott insulator state with a
density of defects below half a percent in a total time of the
order of a few milliseconds, amounting to a drastic im-
provement in the process time and in the quality of the final
state—by about 2 orders of magnitude and by more than 1,
respectively.
We consider a starting value of the lattice depth

Vð0Þ ¼ 2Er corresponding to J=Uð0Þ & 0:52, since the
description of the experimental system by Eq. (2) breaks
down for Vð0Þ & 2Er [21]. However, the initial lattice
switching on (V ¼ 0 ! 2Er) can be performed very
quickly without exciting the system (few milliseconds at
most) [27]. We optimize the ramp to obtain the minimal
residual energy per site "E=N ¼ ðEðTÞ " EGÞ=N (where
EG is the exact final ground state energy). In all simulations
performed we set the total time T ¼ 50@=U ’ 3:01 ms and
the final lattice depth VðTÞ=Er ¼ 22& 2:4' 10"3J=U,
deep inside the Mott insulator phase. Unless explicitly
stated, we set the average occupation to one (

P
ihnii ¼ N).

In all DMRG simulations, we exploited the conservation of
the number of particles and used m ¼ 20; . . . ; 100, "t ¼
10"2–10"3. We computed the final density of defects ! ¼
1
N

P
ijhnii" 1j: when it reached a given threshold

!c ¼ 10"3, the optimization was halted. In Fig. 3 we report
a typical result of the optimization process: the initial guess
and final optimal ramp for the system in the presence of the
confining trap are shown for the parameter values corre-
sponding to the experiment [24], for a system size N ¼ 30.
As can be clearly seen, the pulse is modulated with respect
to the initial exponential guess and no high frequencies are
present, reflecting the constraint introduced by the CRAB
optimization. In the inset we display the final occupation
numbers and the corresponding fluctuations, for the initial
exponential ramp and the optimal pulse in the case

FIG. 2 (color online). Scheme of the Mott-superfluid transition
in the homogeneous system for average occupation number
hni ¼ 1: increasing the lattice depth V (black line) the atom’s
superfluid wave functions (upper) localize in the wells (lower).
If the transition is not adiabatic—or optimized—defects appear
(here represented by a hole and a doubly occupied site).
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FIG. 3 (color online). Initial guess (dashed black line) and
optimal ramp (solid red line) VðtÞ for the Bose-Hubbard model
in the presence of the trap with N ¼ 30 sites, total time evolution
T ’ 3 ms. Inset: Populations hnii (empty black symbols) and
fluctuations h"n2i i (full red symbols) at time t ¼ T for the
exponential initial guess (circles) and optimal ramp (squares)
for N ¼ 10.
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FIG. 3: Optimal ramp J/U(t) for the Bose Hubbard model in
the presence of the trap (experimental parameters from [8])
with N = 30 sites, average occupation 〈n〉 = 1 and a total
time of the order T # 3ms. Inset: populations 〈ni〉 (empty
black) and fluctuations 〈∆n2

i 〉 (full red) at time t = T for the
exponential initial guess (circles) and optimal ramp (squares)
for N = 10.

merical simulations and experimental results [23, 24], we
studied the ideal homogeneous system and reproduced
the experimental setup of [23]. We optimized numeri-
cally the time dependence of the ratio J/U that drives
the Superfluid-Mott insulator transition and we obtained
an optimal ramp shape for the optical lattice depth V (t)
[17].
We consider a starting value of the lattice depth

V (0) = 2Er corresponding to J/U(0) ∼ 0.52, since the
description of the experimental system by (Eq. 2) breaks
down for V (0) <

∼ 2Er [20]. However, the initial lattice
switching on (V = 0 → 2Er) can be performed in a
much quicker way (few milliseconds at most) while still
fulfilling the adiabatic condition, given that this param-
eter region is quite far from the quantum critical point.
We optimize the ramp to obtain the minimal residual en-
ergy per site ε = ∆E/N = (E(T )−EG)/N (where EG is
the exact final ground) in a strongly reduced time. We
set the total time T = 50h̄/U $ 3.01ms and the final
lattice depth V (T )/Er = 22 ∼ 2.4 · 10−3J/U , well inside
the Mott insulator phase. When the density of defects
reaches a given threshold εc, we stop the optimization. In
Fig. 3 the optimal ramp for the system in the presence
of the confining trap is shown for the parameter values
corresponding to the experiment [8] and for a system size
N = 30. As it can be clearly seen, the pulse is modu-
lated with respect to the initial exponential guess and no
high frequencies are present, reflecting the constraint in-
troduced by the CRAB optimization. In the inset we dis-
play the final occupation numbers and the corresponding
fluctuations, clearly demonstrating the convergence to a
Mott insulator state after the ramp optimization.
Finally, in Fig. 4 we show the final residual energy

per site ε state energy as a function of the system size
N = 10, . . . , 40, for the homogeneous and for the trapped
system. This quantity is directly related to the density
of defects: for J → 0, any additional energy present in
the system is due to sites with occupation number be-

FIG. 4: Optimal density of defects as a function of the system
size N for the homogeneous system (green squares) and in the
presence of the trap, with experimental parameters from [8]
(grey circles). We set the threshold to εc = 0.001. The red
region highlights the typical unoptimized density of defects
for different initial ramp shapes.

tween one and two (the probability of higher occupation
is negligible in the present setup) and the corresponding
fluctuations. Indeed, one can relate the residual energy
per site with the average fluctuations of the occupation
density of defects: ε ∝ 〈n2〉 − 〈n〉 ≈ ∆n2 as 〈n〉 ∼ 1. As
it can be seen from the inset of Fig. 3, fluctuations are
drastically reduced. Correspondingly, in Fig. 4 the resid-
ual energies in the two cases (without and with trap) are
reported: they are well below one per cent, demonstrat-
ing an improvement with respect to the initial guess by
between one and two orders of magnitudes. Indeed, the
exponential guess – like other guesses: linear, random –
gave residual density of defects at least one order of mag-
nitude bigger (red region in Fig. 4).
In conclusion, we would like to note that the CRAB

optimization strategy introduced here can in principle
be applied also to open quantum many-body systems,
e.g. by means of recently introduced numerical tech-
niques [25]. Perhaps an even more stimulating perspec-
tive would be that of implementing it with a quantum
simulator in place of the t-DMRG classical simulator.
This would extend the applicability of the CRAB method
to the optimization of quantum phenomena that are com-
pletely out of reach for simulation on classical comput-
ers, and represent a major design tool for future quantum
technologies.

Methods

t-DMRG - The time-dependent Density Matrix
Renormalization Group (t-DMRG) is a very powerful nu-
merical method that allows for efficient numerical sim-
ulation of the time evolution of one-dimensional quan-
tum systems composed by N interacting local systems or
sites. Its time-independent version (DMRG) was firstly
introduced to study ground states static properties. The
DMRG is based on the assumption that it is possible to
describe approximately a wide class of states with a sim-
ple tensor structure, i.e. a Matrix Product State (MPS).
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T= 3ms
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FIG. 3: Optimal ramp J/U(t) for the Bose Hubbard model in
the presence of the trap (experimental parameters from [8])
with N = 30 sites, average occupation 〈n〉 = 1 and a total
time of the order T # 3ms. Inset: populations 〈ni〉 (empty
black) and fluctuations 〈∆n2

i 〉 (full red) at time t = T for the
exponential initial guess (circles) and optimal ramp (squares)
for N = 10.

merical simulations and experimental results [23, 24], we
studied the ideal homogeneous system and reproduced
the experimental setup of [23]. We optimized numeri-
cally the time dependence of the ratio J/U that drives
the Superfluid-Mott insulator transition and we obtained
an optimal ramp shape for the optical lattice depth V (t)
[17].
We consider a starting value of the lattice depth

V (0) = 2Er corresponding to J/U(0) ∼ 0.52, since the
description of the experimental system by (Eq. 2) breaks
down for V (0) <

∼ 2Er [20]. However, the initial lattice
switching on (V = 0 → 2Er) can be performed in a
much quicker way (few milliseconds at most) while still
fulfilling the adiabatic condition, given that this param-
eter region is quite far from the quantum critical point.
We optimize the ramp to obtain the minimal residual en-
ergy per site ε = ∆E/N = (E(T )−EG)/N (where EG is
the exact final ground) in a strongly reduced time. We
set the total time T = 50h̄/U $ 3.01ms and the final
lattice depth V (T )/Er = 22 ∼ 2.4 · 10−3J/U , well inside
the Mott insulator phase. When the density of defects
reaches a given threshold εc, we stop the optimization. In
Fig. 3 the optimal ramp for the system in the presence
of the confining trap is shown for the parameter values
corresponding to the experiment [8] and for a system size
N = 30. As it can be clearly seen, the pulse is modu-
lated with respect to the initial exponential guess and no
high frequencies are present, reflecting the constraint in-
troduced by the CRAB optimization. In the inset we dis-
play the final occupation numbers and the corresponding
fluctuations, clearly demonstrating the convergence to a
Mott insulator state after the ramp optimization.
Finally, in Fig. 4 we show the final residual energy

per site ε state energy as a function of the system size
N = 10, . . . , 40, for the homogeneous and for the trapped
system. This quantity is directly related to the density
of defects: for J → 0, any additional energy present in
the system is due to sites with occupation number be-

FIG. 4: Optimal density of defects as a function of the system
size N for the homogeneous system (green squares) and in the
presence of the trap, with experimental parameters from [8]
(grey circles). We set the threshold to εc = 0.001. The red
region highlights the typical unoptimized density of defects
for different initial ramp shapes.

tween one and two (the probability of higher occupation
is negligible in the present setup) and the corresponding
fluctuations. Indeed, one can relate the residual energy
per site with the average fluctuations of the occupation
density of defects: ε ∝ 〈n2〉 − 〈n〉 ≈ ∆n2 as 〈n〉 ∼ 1. As
it can be seen from the inset of Fig. 3, fluctuations are
drastically reduced. Correspondingly, in Fig. 4 the resid-
ual energies in the two cases (without and with trap) are
reported: they are well below one per cent, demonstrat-
ing an improvement with respect to the initial guess by
between one and two orders of magnitudes. Indeed, the
exponential guess – like other guesses: linear, random –
gave residual density of defects at least one order of mag-
nitude bigger (red region in Fig. 4).
In conclusion, we would like to note that the CRAB

optimization strategy introduced here can in principle
be applied also to open quantum many-body systems,
e.g. by means of recently introduced numerical tech-
niques [25]. Perhaps an even more stimulating perspec-
tive would be that of implementing it with a quantum
simulator in place of the t-DMRG classical simulator.
This would extend the applicability of the CRAB method
to the optimization of quantum phenomena that are com-
pletely out of reach for simulation on classical comput-
ers, and represent a major design tool for future quantum
technologies.

Methods

t-DMRG - The time-dependent Density Matrix
Renormalization Group (t-DMRG) is a very powerful nu-
merical method that allows for efficient numerical sim-
ulation of the time evolution of one-dimensional quan-
tum systems composed by N interacting local systems or
sites. Its time-independent version (DMRG) was firstly
introduced to study ground states static properties. The
DMRG is based on the assumption that it is possible to
describe approximately a wide class of states with a sim-
ple tensor structure, i.e. a Matrix Product State (MPS).
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We present experimental evidence of the successful closed-loop optimization of the dynamics of

cold atoms in an optical lattice. We optimize the non adiabatic loading of an ultracold atomic gas

in an array of one-dimensional tubes (3D-1D crossover) and we perform an optimal crossing of the

Superfluid- Mott Insulator quantum phase-transition in a three-dimensional lattice. In both cases

we achieve results of comparable qualities as those obtained via adiabatic dynamics, effectively
speeding up the process by more than a factor three while improving the quality of the desired

transformation.

PACS numbers:

In the last decade, the implementation of quantum
simulators with cold atoms has experienced remarkable
expansion [1]. The latest developments in the field have
made now possible to experimentally investigate Fermi
and Bose ultracold gases in many different setups [2].
Optical potentials have given access to the investigation
of the physics of many-body systems in a lattice and
the simulation of the ground-state physics and the dy-
namics of some of the most important lattice models:
Hubbard and spin models have been successfully imple-
mented [3–7]. Including artificial disorder allows to study
ubiquitous phenomena like Anderson localization [8]. Re-
cently, improved experimental techniques allowed for the
acquisition of unprecedented single-atom resolved images
and the coherent control of single spins [9, 10] paving
the way for the next generation of experiments. Novel
and more challenging ideas have been proposed to ex-
ploit the potential of quantum simulators to study arti-
ficial gauge fields related to quantum Hall physics [11],
the physics of complex quantum systems [12] and gauge
theories [13]. The path towards new experiments of in-
creasing complexity is conditional on the development
of better and more precise experimental techniques, to
achieve increased control on the system under investiga-
tion. The necessary steps to be taken are mostly related
to technological and experimental development, however
recently an important theoretical contribution has been
put forward. Indeed, it has been shown that it is possi-
ble to exploit quantum optimal control to synthesize op-
timal strategies for correlated quantum many-body dy-
namics [14, 15], as already known for few-body or un-
correlated quantum systems [16–19]. Combining numer-
ical simulations and novel approaches has enabled opti-
mal control of correlated quantum many-body dynamics
and optimal driving of phase transitions [14, 20], many-

INITIAL
GUESS

s0(t)

OPTIMIZED
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FIG. 1: Scheme of the closed-loop optimization experiment.

The control-field s (t) describes the temporal dependence of

the lattice depth during the loading of the atomic gas in the

lattice. An initial guess s0(t) is chosen: the experiment runs

and a Time-Of-Flight image is recorded. From a numerical

fit we extract the Figure Of Merit F . The optimization algo-

rithm provides an updated function s(t) and the experiment

is repeated until reaching an optimal field sf (t).

body entangled and squeezed states [21]. Despite these
promising theoretical results, their experimental imple-
mentation might be limited by different issues mainly
arising from discrepancies between theoretical models
and experimental realization. Even though optimal con-
trol fields are generically robust against noise and im-
perfections [22], it would be desirable to have an opti-
mal control field obtained by means of the most accurate
and comprehensive description possible of the system dy-
namics under consideration. Moreover, there are also
cases where open-loop quantum optimal control cannot
be applied to a given dynamics as no efficient classical
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Run ∆topt τopt Funcorr Best Fopt

1 154ms 35ms 2.30± 0.03 1.73± 0.02
2 45ms 9ms 2.30± 0.03 1.40± 0.06

FIG. 2: 3D-1D crossover. (a): Two-dimensional mapping

(blu-coloured palette) of the FOM as a function of the pa-

rameters ∆t and τ during the optimization; circles: first run,

triangles: second run (grey-coloured palette). (b): Measured

figure of merit F (ratio between final and initial thermal frac-

tion of the atomic sample) after ramping up and down a two-

dimensional optical lattice during the optimization loop. First

(second) experimental run (see text) is represented by blue

circles (red triangles). The two best results Fopt measured in

the two runs are circled in evidence. For completeness, on

the right side of the graph we report also the corresponding

values of the ratio between temperature Tf measured after

having switched on and off the lattices and temperature Ti

measured before loading the lattices. The table reports the

values of the FOM corresponding respectively to the exponen-

tial uncorrected loading (Funcorr) and to the best one (Fopt),

together with the correspondent values of the parameters ∆t
and τ . For the quasi-adiabatic loading the FOM is typically

(1.66± 0.02).

guess s0(t) and implement the experimental sequence

described above, at the end of which a TOF image is

recorded. An automated fitting procedure results in a

measurement of the final thermal fraction of the sam-

ple Th.Fr. = Nth/Ntot to be compared with the initial

thermal fraction Th.Fr.i. Their ratio defines the FOM

F = (Th.Fr.)f/(Th.Fr.)i we minimize. With this infor-

mation the minimization subroutine implements a search

in the parameters space that defines an updated loading

ramp s(t). The loop is then closed and the process re-

peated until convergence or when the given desired preci-

sion has been reached. In fig.2(b) we report the measured

FOM during the optimization cycle.

3D-1D crossover – We first consider the transforma-

tion between a three-dimensional BEC and an array of

one-dimensional quasi-condensates obtained loading the

BEC in a two-dimensional lattice. As a warm-up for

the full CRAB optimization, here we optimize the pro-

cess over a restricted class of functions, namely load-

ing ramps of exponential shape with different duration

∆t and time constant τ as defined in Eq.(1). The final

value of the two lattices intensity smax is high enough to

produce an array of independent one-dimensional gases

where the transverse degrees of freedom are completely

frozen and the tunneling rate of atoms between differ-
ent sites is negligible on the time scale of the experiment

(smax = 32). The thermalization time is ∆tth = 1 s.

Before running the optimization algorithm, as the fi-

nal thermal fraction is a two-dimensional function of the

free parameters (∆t, τ) and thus easily representable, we

plotted it in the two-dimensional parameter phase-space

(blue-coloured contour plot in Fig. 2(a)). This allows the

results of the closed-loop optimization to be compared

with a brute-force approach, that is an extensive search

in the parameter space. The contour plot gives us in-

teresting information on the problem structure, notice

for example that as expected for very short ramps the

FOM is clearly higher than in case of longer ones. The

extensive mapping approach is unfeasible as soon as the

number of the parameters increases, however in this case

where only two parameters are considered we show that

the CRAB optimization finds very quickly the minima.

Fig. 2 presents two tests of the optimization loop char-

acterized by the same initial guesses ∆t0 = 15ms and

τ0 = 3ms: F is reported for both runs in Fig. 2(b) as

a function of the iteration number n of the optimization

loop. The possibility of finding different final results is

due to the fact that performing an experiment charac-

terized by a finite number of iterations and experimental

errors, we may bump into little deviations in the mea-

surements from run to run. As it can be seen, in both

cases after a quick convergence to a minima the algorithm

looks for other solutions possibly present in case the first

were a local minima, but it founds none. In Fig. 2(a) the

trajectories in the space of parameters clearly reflect this

behavior. Finally, as reported in the table in Fig. 2, the

two loops gave as optimal parameters (∆topt, τopt) two

pairs of slightly different values. This can be explained

by the fact that for high values of ∆topt and τopt there is

3D-1D crossover and QPT 
Topt ∼ Tad/3

FOMopt ∼ 0.9 FOMad
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We present experimental evidence of the successful closed-loop optimization of the dynamics of

cold atoms in an optical lattice. We optimize the non adiabatic loading of an ultracold atomic gas

in an array of one-dimensional tubes (3D-1D crossover) and we perform an optimal crossing of the

Superfluid- Mott Insulator quantum phase-transition in a three-dimensional lattice. In both cases

we achieve results of comparable qualities as those obtained via adiabatic dynamics, effectively
speeding up the process by more than a factor three while improving the quality of the desired

transformation.

PACS numbers:

In the last decade, the implementation of quantum
simulators with cold atoms has experienced remarkable
expansion [1]. The latest developments in the field have
made now possible to experimentally investigate Fermi
and Bose ultracold gases in many different setups [2].
Optical potentials have given access to the investigation
of the physics of many-body systems in a lattice and
the simulation of the ground-state physics and the dy-
namics of some of the most important lattice models:
Hubbard and spin models have been successfully imple-
mented [3–7]. Including artificial disorder allows to study
ubiquitous phenomena like Anderson localization [8]. Re-
cently, improved experimental techniques allowed for the
acquisition of unprecedented single-atom resolved images
and the coherent control of single spins [9, 10] paving
the way for the next generation of experiments. Novel
and more challenging ideas have been proposed to ex-
ploit the potential of quantum simulators to study arti-
ficial gauge fields related to quantum Hall physics [11],
the physics of complex quantum systems [12] and gauge
theories [13]. The path towards new experiments of in-
creasing complexity is conditional on the development
of better and more precise experimental techniques, to
achieve increased control on the system under investiga-
tion. The necessary steps to be taken are mostly related
to technological and experimental development, however
recently an important theoretical contribution has been
put forward. Indeed, it has been shown that it is possi-
ble to exploit quantum optimal control to synthesize op-
timal strategies for correlated quantum many-body dy-
namics [14, 15], as already known for few-body or un-
correlated quantum systems [16–19]. Combining numer-
ical simulations and novel approaches has enabled opti-
mal control of correlated quantum many-body dynamics
and optimal driving of phase transitions [14, 20], many-
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FIG. 1: Scheme of the closed-loop optimization experiment.

The control-field s (t) describes the temporal dependence of

the lattice depth during the loading of the atomic gas in the

lattice. An initial guess s0(t) is chosen: the experiment runs

and a Time-Of-Flight image is recorded. From a numerical

fit we extract the Figure Of Merit F . The optimization algo-

rithm provides an updated function s(t) and the experiment

is repeated until reaching an optimal field sf (t).

body entangled and squeezed states [21]. Despite these
promising theoretical results, their experimental imple-
mentation might be limited by different issues mainly
arising from discrepancies between theoretical models
and experimental realization. Even though optimal con-
trol fields are generically robust against noise and im-
perfections [22], it would be desirable to have an opti-
mal control field obtained by means of the most accurate
and comprehensive description possible of the system dy-
namics under consideration. Moreover, there are also
cases where open-loop quantum optimal control cannot
be applied to a given dynamics as no efficient classical
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(blu-coloured palette) of the FOM as a function of the pa-

rameters ∆t and τ during the optimization; circles: first run,
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figure of merit F (ratio between final and initial thermal frac-

tion of the atomic sample) after ramping up and down a two-

dimensional optical lattice during the optimization loop. First

(second) experimental run (see text) is represented by blue

circles (red triangles). The two best results Fopt measured in

the two runs are circled in evidence. For completeness, on

the right side of the graph we report also the corresponding

values of the ratio between temperature Tf measured after

having switched on and off the lattices and temperature Ti

measured before loading the lattices. The table reports the

values of the FOM corresponding respectively to the exponen-

tial uncorrected loading (Funcorr) and to the best one (Fopt),

together with the correspondent values of the parameters ∆t
and τ . For the quasi-adiabatic loading the FOM is typically

(1.66± 0.02).

guess s0(t) and implement the experimental sequence

described above, at the end of which a TOF image is

recorded. An automated fitting procedure results in a

measurement of the final thermal fraction of the sam-

ple Th.Fr. = Nth/Ntot to be compared with the initial

thermal fraction Th.Fr.i. Their ratio defines the FOM

F = (Th.Fr.)f/(Th.Fr.)i we minimize. With this infor-

mation the minimization subroutine implements a search

in the parameters space that defines an updated loading

ramp s(t). The loop is then closed and the process re-

peated until convergence or when the given desired preci-

sion has been reached. In fig.2(b) we report the measured

FOM during the optimization cycle.

3D-1D crossover – We first consider the transforma-

tion between a three-dimensional BEC and an array of

one-dimensional quasi-condensates obtained loading the

BEC in a two-dimensional lattice. As a warm-up for

the full CRAB optimization, here we optimize the pro-

cess over a restricted class of functions, namely load-

ing ramps of exponential shape with different duration

∆t and time constant τ as defined in Eq.(1). The final

value of the two lattices intensity smax is high enough to

produce an array of independent one-dimensional gases

where the transverse degrees of freedom are completely

frozen and the tunneling rate of atoms between differ-
ent sites is negligible on the time scale of the experiment

(smax = 32). The thermalization time is ∆tth = 1 s.

Before running the optimization algorithm, as the fi-

nal thermal fraction is a two-dimensional function of the

free parameters (∆t, τ) and thus easily representable, we

plotted it in the two-dimensional parameter phase-space

(blue-coloured contour plot in Fig. 2(a)). This allows the

results of the closed-loop optimization to be compared

with a brute-force approach, that is an extensive search

in the parameter space. The contour plot gives us in-

teresting information on the problem structure, notice

for example that as expected for very short ramps the

FOM is clearly higher than in case of longer ones. The

extensive mapping approach is unfeasible as soon as the

number of the parameters increases, however in this case

where only two parameters are considered we show that

the CRAB optimization finds very quickly the minima.

Fig. 2 presents two tests of the optimization loop char-

acterized by the same initial guesses ∆t0 = 15ms and

τ0 = 3ms: F is reported for both runs in Fig. 2(b) as

a function of the iteration number n of the optimization

loop. The possibility of finding different final results is

due to the fact that performing an experiment charac-

terized by a finite number of iterations and experimental

errors, we may bump into little deviations in the mea-

surements from run to run. As it can be seen, in both

cases after a quick convergence to a minima the algorithm

looks for other solutions possibly present in case the first

were a local minima, but it founds none. In Fig. 2(a) the

trajectories in the space of parameters clearly reflect this

behavior. Finally, as reported in the table in Fig. 2, the

two loops gave as optimal parameters (∆topt, τopt) two

pairs of slightly different values. This can be explained

by the fact that for high values of ∆topt and τopt there is
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FIG. 2: (Color online) Infidelity I as a function of the adi-
mensional scaling variable T/T ∗ for the LMG (red squares),
Grover (blue circles) and the LZ model (green triangles).
Data correspond to half of the maximum size analyzed (N =
64).

adiabatic and an optimal evolution are compared. Quite
surprisingly our study shows that the the optimized dy-
namical process for the many-body systems analyzed is
analogous to that of a two-level system, see Fig. 2. We in-
terpret this result as the natural manifestation of the in-
trinsic metric of the Hilbert space for pure states [21, 26].
Finally studying the QSL as a function of the system
size, we show that the speed up obtained by the adia-
batic GSA [24, 27] can be reproduced and extended to
other models with optimized, non-adiabatic evolutions.
Models.— We study two paradigmatic critical systems,

the adiabatic GSA [24] and the LMG model [28] and we
compare them with the Landau-Zener (LZ) model to bet-
ter understand the physics of the process. The Hamilto-
nians of the models are collected in the left side of Table I,
where the σα

i ’s (α = x, y, z ) are the Pauli matrices on
the ith site, |ψi〉 and |ψG〉 are respectively the initial and
the target state. For the GSA model the initial state
is an equal superposition of all N computational basis
states, and the final target is the specific marked state
we want to extract from the database. The system under-
goes a 1st order QPT at a critical value of the transverse
field Γc = 0.5 (from now on we set J = ! = 1). The
gap between the ground and the first excited state closes
polynomially with the number of states N at the critical
point: ∆GSA ∼ N−1/2. The LMG model instead, second
line of Table I, undergoes a 2nd order QPT from a quan-
tum paramagnet to a quantum ferromagnet at a critical
value of the transverse field |Γc| = 1. The gap between
the ground and the first excited state closes polynomi-
ally with the number of spins N at the critical point:
∆LMG ∼ N−1/3. We chose as initial state the ground
state (GS) at Γi # 1, i.e. the state in which all the
spins are polarized along the positive z-axis (paramag-
netic phase). As target state we chose the GS of at Γ = 0.
Finally for the LZ model, third line of Table I, the off-
diagonal terms give the amplitude of the minimum gap
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FIG. 3: (Color online) The action s∗ = T ∗∆ as a function
of the size N (for the LZ model we define an effective size
N = ∆−1), where ∆ is the minimum spectral gap and T ∗ the
time required to reach an infidelity I∗ ∼ 10−3 for the linear
(full symbols) and optimized (empty symbols) driving field
for the LMG (red squares), Grover (blue circles) and the LZ
model (green triangles).

∆LZ = 2ω at the anticrossing point Γ = 0, here assumed
to be at t = 0 [29, 30]. In this case the initial state is
the GS for Γ(−T/2) = −Γ0 and the target is the GS for
Γ(T/2) = Γ0, that is —in this effective model— we want
to transform the initial GS into the initial excited state
in an optimal and fastest way.

For all the models considered our goal is to find the
optimal driving control field Γ(t) to transform the ini-
tial in the goal state in a given total time T . At the
limit when the gap closes (the thermodynamical limit for
GSA and LMG) adiabatic dynamics is forbidden in finite
time due to the adiabatic condition T # ∆−1 [31]: how-
ever, for finite size systems, an adiabatic strategy might
be successful. Here we relax the adiabaticity condition,
exploring a different regime of fast non adiabatic trans-
formations. Given the total evolution time T , we use
optimal control through the Krotov’s algorithm to find
the optimal control field Γ(t) to minimize the infidelity
I(T ) = 1− |〈ψG|ψ(T )〉|2 at the end of the evolution, i.e.
the discrepancy between the final and the goal state [5].
The determination of Γopt(t) can be recast in a minimiza-
tion problem subject to constraints determined by look-
ing for the stationary points of a functional L[ψ, ψ̇,χ,Γ]
in which the auxiliary states |χ(T )〉 = |ψG〉〈ψG|ψ(T )〉
play the role of a continuous set of Lagrange multipliers
to impose the fulfillment of the Schrödinger equation at
each time during the dynamics, as described in details
in [5, 8, 11]. Previous studies [12] revealed that only
when the total evolution time exceeds a certain thresh-
old, by iterating the algorithm it is possible to reduce
arbitrarily the value of the final infidelity I. In order to
identify such a threshold, we fix a target value of the in-
fidelity I∗ ∼ 10−3 and we determined the minimum total
evolution time T ∗ for which it is possible to satisfy our
goal. In Fig. 2 we show the value of the infidelity for
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adiabatic and an optimal evolution are compared. Quite
surprisingly our study shows that the the optimized dy-
namical process for the many-body systems analyzed is
analogous to that of a two-level system, see Fig. 2. We in-
terpret this result as the natural manifestation of the in-
trinsic metric of the Hilbert space for pure states [21, 26].
Finally studying the QSL as a function of the system
size, we show that the speed up obtained by the adia-
batic GSA [24, 27] can be reproduced and extended to
other models with optimized, non-adiabatic evolutions.
Models.— We study two paradigmatic critical systems,

the adiabatic GSA [24] and the LMG model [28] and we
compare them with the Landau-Zener (LZ) model to bet-
ter understand the physics of the process. The Hamilto-
nians of the models are collected in the left side of Table I,
where the σα

i ’s (α = x, y, z ) are the Pauli matrices on
the ith site, |ψi〉 and |ψG〉 are respectively the initial and
the target state. For the GSA model the initial state
is an equal superposition of all N computational basis
states, and the final target is the specific marked state
we want to extract from the database. The system under-
goes a 1st order QPT at a critical value of the transverse
field Γc = 0.5 (from now on we set J = ! = 1). The
gap between the ground and the first excited state closes
polynomially with the number of states N at the critical
point: ∆GSA ∼ N−1/2. The LMG model instead, second
line of Table I, undergoes a 2nd order QPT from a quan-
tum paramagnet to a quantum ferromagnet at a critical
value of the transverse field |Γc| = 1. The gap between
the ground and the first excited state closes polynomi-
ally with the number of spins N at the critical point:
∆LMG ∼ N−1/3. We chose as initial state the ground
state (GS) at Γi # 1, i.e. the state in which all the
spins are polarized along the positive z-axis (paramag-
netic phase). As target state we chose the GS of at Γ = 0.
Finally for the LZ model, third line of Table I, the off-
diagonal terms give the amplitude of the minimum gap

100
N

101

102

103

s* =T
* "

GSA lin
GSA opt
LMG opt
LMG lin
LZ opt
LZ lin 

N2/3

N1/2

N

!

20

FIG. 3: (Color online) The action s∗ = T ∗∆ as a function
of the size N (for the LZ model we define an effective size
N = ∆−1), where ∆ is the minimum spectral gap and T ∗ the
time required to reach an infidelity I∗ ∼ 10−3 for the linear
(full symbols) and optimized (empty symbols) driving field
for the LMG (red squares), Grover (blue circles) and the LZ
model (green triangles).

∆LZ = 2ω at the anticrossing point Γ = 0, here assumed
to be at t = 0 [29, 30]. In this case the initial state is
the GS for Γ(−T/2) = −Γ0 and the target is the GS for
Γ(T/2) = Γ0, that is —in this effective model— we want
to transform the initial GS into the initial excited state
in an optimal and fastest way.

For all the models considered our goal is to find the
optimal driving control field Γ(t) to transform the ini-
tial in the goal state in a given total time T . At the
limit when the gap closes (the thermodynamical limit for
GSA and LMG) adiabatic dynamics is forbidden in finite
time due to the adiabatic condition T # ∆−1 [31]: how-
ever, for finite size systems, an adiabatic strategy might
be successful. Here we relax the adiabaticity condition,
exploring a different regime of fast non adiabatic trans-
formations. Given the total evolution time T , we use
optimal control through the Krotov’s algorithm to find
the optimal control field Γ(t) to minimize the infidelity
I(T ) = 1− |〈ψG|ψ(T )〉|2 at the end of the evolution, i.e.
the discrepancy between the final and the goal state [5].
The determination of Γopt(t) can be recast in a minimiza-
tion problem subject to constraints determined by look-
ing for the stationary points of a functional L[ψ, ψ̇,χ,Γ]
in which the auxiliary states |χ(T )〉 = |ψG〉〈ψG|ψ(T )〉
play the role of a continuous set of Lagrange multipliers
to impose the fulfillment of the Schrödinger equation at
each time during the dynamics, as described in details
in [5, 8, 11]. Previous studies [12] revealed that only
when the total evolution time exceeds a certain thresh-
old, by iterating the algorithm it is possible to reduce
arbitrarily the value of the final infidelity I. In order to
identify such a threshold, we fix a target value of the in-
fidelity I∗ ∼ 10−3 and we determined the minimum total
evolution time T ∗ for which it is possible to satisfy our
goal. In Fig. 2 we show the value of the infidelity for

see also T. Caneva, M. Murphy, T. Calarco, R. Fazio, SM, V. Giovannetti, and G. E. Santoro, 
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FIG. 2: (Color online) Infidelity I as a function of the adi-
mensional scaling variable T/T ∗ for the LMG (red squares),
Grover (blue circles) and the LZ model (green triangles).
Data correspond to half of the maximum size analyzed (N =
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for the LMG model, and an adiabatic and an op-
timal evolution are compared. Quite surprisingly
our study shows that the the optimized dynami-
cal process for the many-body systems analyzed is
analogous to that of a two-level system, see Fig. 2.
We interpret this result as the natural manifes-
tation of the intrinsic metric of the Hilbert space
for pure states [21, 26]. Finally studying the QSL
as a function of the system size, we show that the
speed up obtained by the adiabatic GSA [24, 27]
can be reproduced and extended to other models
with optimized, non-adiabatic evolutions.

Models.— We study two paradigmatic critical systems,
the adiabatic GSA [24] and the LMG model [28] and we
compare them with the Landau-Zener (LZ) model to bet-
ter understand the physics of the process. The Hamilto-
nians of the models are collected in the left side of Table I,
where the σα

i ’s (α = x, y, z ) are the Pauli matrices on
the ith site, |ψi〉 and |ψG〉 are respectively the initial and
the target state. For the GSA model the initial state
is an equal superposition of all N computational basis
states, and the final target is the specific marked state
we want to extract from the database. The system under-
goes a 1st order QPT at a critical value of the transverse
field Γc = 0.5 (from now on we set J = ! = 1). The
gap between the ground and the first excited state closes
polynomially with the number of states N at the critical
point: ∆GSA ∼ N−1/2. The LMG model instead, second
line of Table I, undergoes a 2nd order QPT from a quan-
tum paramagnet to a quantum ferromagnet at a critical
value of the transverse field |Γc| = 1. The gap between
the ground and the first excited state closes polynomi-
ally with the number of spins N at the critical point:
∆LMG ∼ N−1/3. We chose as initial state the ground
state (GS) at Γi # 1, i.e. the state in which all the
spins are polarized along the positive z-axis (paramag-
netic phase). As target state we chose the GS of at Γ = 0.
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FIG. 3: (Color online) The action s∗ = T ∗∆ as a function
of the size N (for the LZ model we define an effective size
N = ∆−1), where ∆ is the minimum spectral gap and T ∗ the
time required to reach an infidelity I∗ ∼ 10−3 for the linear
(full symbols) and optimized (empty symbols) driving field
for the LMG (red squares), Grover (blue circles) and the LZ
model (green triangles).

Finally for the LZ model, third line of Table I, the off-
diagonal terms give the amplitude of the minimum gap
∆LZ = 2ω at the anticrossing point Γ = 0, here assumed
to be at t = 0 [29, 30]. In this case the initial state is
the GS for Γ(−T/2) = −Γ0 and the target is the GS
for Γ(T/2) = Γ0, that is —in this effective model— we
want to transform the initial GS into the initial excited
state in an optimal and fastest way.

For all the models considered our goal is to find the
optimal driving control field Γ(t) to transform the ini-
tial in the goal state in a given total time T . At the
limit when the gap closes (the thermodynamical limit for
GSA and LMG) adiabatic dynamics is forbidden in finite
time due to the adiabatic condition T # ∆−1 [31]: how-
ever, for finite size systems, an adiabatic strategy might
be successful. Here we relax the adiabaticity condition,
exploring a different regime of fast non adiabatic trans-
formations. Given the total evolution time T , we use
optimal control through the Krotov’s algorithm to find
the optimal control field Γ(t) to minimize the infidelity
I(T ) = 1 − |〈ψG|ψ(T )〉|2 at the end of the evolution, i.e.
the discrepancy between the final and the goal state [5].
The determination of Γopt(t) can be recast in a minimiza-
tion problem subject to constraints determined by look-
ing for the stationary points of a functional L[ψ, ψ̇, χ,Γ]
in which the auxiliary states |χ(T )〉 = |ψG〉〈ψG|ψ(T )〉
play the role of a continuous set of Lagrange multipliers
to impose the fulfillment of the Schrödinger equation at
each time during the dynamics, as described in details
in [5, 8, 11]. Previous studies [12] revealed that only
when the total evolution time exceeds a certain thresh-
old, by iterating the algorithm it is possible to reduce
arbitrarily the value of the final infidelity I. In order to
identify such a threshold, we fix a target value of the in-
fidelity I∗ ∼ 10−3 and we determined the minimum total
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for the LMG model, and an adiabatic and an op-
timal evolution are compared. Quite surprisingly
our study shows that the the optimized dynami-
cal process for the many-body systems analyzed is
analogous to that of a two-level system, see Fig. 2.
We interpret this result as the natural manifes-
tation of the intrinsic metric of the Hilbert space
for pure states [21, 26]. Finally studying the QSL
as a function of the system size, we show that the
speed up obtained by the adiabatic GSA [24, 27]
can be reproduced and extended to other models
with optimized, non-adiabatic evolutions.

Models.— We study two paradigmatic critical systems,
the adiabatic GSA [24] and the LMG model [28] and we
compare them with the Landau-Zener (LZ) model to bet-
ter understand the physics of the process. The Hamilto-
nians of the models are collected in the left side of Table I,
where the σα

i ’s (α = x, y, z ) are the Pauli matrices on
the ith site, |ψi〉 and |ψG〉 are respectively the initial and
the target state. For the GSA model the initial state
is an equal superposition of all N computational basis
states, and the final target is the specific marked state
we want to extract from the database. The system under-
goes a 1st order QPT at a critical value of the transverse
field Γc = 0.5 (from now on we set J = ! = 1). The
gap between the ground and the first excited state closes
polynomially with the number of states N at the critical
point: ∆GSA ∼ N−1/2. The LMG model instead, second
line of Table I, undergoes a 2nd order QPT from a quan-
tum paramagnet to a quantum ferromagnet at a critical
value of the transverse field |Γc| = 1. The gap between
the ground and the first excited state closes polynomi-
ally with the number of spins N at the critical point:
∆LMG ∼ N−1/3. We chose as initial state the ground
state (GS) at Γi # 1, i.e. the state in which all the
spins are polarized along the positive z-axis (paramag-
netic phase). As target state we chose the GS of at Γ = 0.
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of the size N (for the LZ model we define an effective size
N = ∆−1), where ∆ is the minimum spectral gap and T ∗ the
time required to reach an infidelity I∗ ∼ 10−3 for the linear
(full symbols) and optimized (empty symbols) driving field
for the LMG (red squares), Grover (blue circles) and the LZ
model (green triangles).

Finally for the LZ model, third line of Table I, the off-
diagonal terms give the amplitude of the minimum gap
∆LZ = 2ω at the anticrossing point Γ = 0, here assumed
to be at t = 0 [29, 30]. In this case the initial state is
the GS for Γ(−T/2) = −Γ0 and the target is the GS
for Γ(T/2) = Γ0, that is —in this effective model— we
want to transform the initial GS into the initial excited
state in an optimal and fastest way.

For all the models considered our goal is to find the
optimal driving control field Γ(t) to transform the ini-
tial in the goal state in a given total time T . At the
limit when the gap closes (the thermodynamical limit for
GSA and LMG) adiabatic dynamics is forbidden in finite
time due to the adiabatic condition T # ∆−1 [31]: how-
ever, for finite size systems, an adiabatic strategy might
be successful. Here we relax the adiabaticity condition,
exploring a different regime of fast non adiabatic trans-
formations. Given the total evolution time T , we use
optimal control through the Krotov’s algorithm to find
the optimal control field Γ(t) to minimize the infidelity
I(T ) = 1 − |〈ψG|ψ(T )〉|2 at the end of the evolution, i.e.
the discrepancy between the final and the goal state [5].
The determination of Γopt(t) can be recast in a minimiza-
tion problem subject to constraints determined by look-
ing for the stationary points of a functional L[ψ, ψ̇, χ,Γ]
in which the auxiliary states |χ(T )〉 = |ψG〉〈ψG|ψ(T )〉
play the role of a continuous set of Lagrange multipliers
to impose the fulfillment of the Schrödinger equation at
each time during the dynamics, as described in details
in [5, 8, 11]. Previous studies [12] revealed that only
when the total evolution time exceeds a certain thresh-
old, by iterating the algorithm it is possible to reduce
arbitrarily the value of the final infidelity I. In order to
identify such a threshold, we fix a target value of the in-
fidelity I∗ ∼ 10−3 and we determined the minimum total
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Entanglement Storage Units

Tommaso Caneva1, Tommaso Calarco1, and Simone Montangero1
1Institut für Quanteninformationsverarbeitung, Universität Ulm, D-89069 Ulm, Germany

(Dated: August 17, 2011)

We introduce a protocol to drive many body quantum systems into long-lived entangled states,
protected from decoherence by big energy gaps. With this approach it is possible to implement
scalable entanglement-storage units. We test the protocol in the Lipkin-Meshkov-Glick model, a
prototype many-body quantum system that describes different experimental setups.

PACS numbers:

Entanglement represents the manifestation of correla-
tions without a classical counterpart and it is regarded as
the necessary ingredient at the basis of the power of quan-
tum information processing. Indeed quantum informa-
tion applications as teleportation, quantum criptography
or quantum computers rely on entanglement as a crucial
resource [1]. Within the current state-of-art, promising
candidates for truly scalable quantum information pro-
cessors are considered architectures that interface hard-
ware components playing different roles like for exam-
ple solid-state systems as stationary qubits combined in
hybrid architectures with optical devices [3]. In this sce-
nario, the stationary qubits are a collection of engineered
qubits with desired properties, as decoupled as possible
from one another to prevent errors. However, this archi-
tecture is somehow unfavorable to the creation and the
conservation of entanglement. Indeed, it would be desir-
able to have a hardware where “naturally” entanglement
is present and that can be prepared in a highly entan-
gled state that persists without any external control: the
closest quantum entanglement analogue of a classical in-
formation memory support, i.e. an entanglement-storage
unit (ESU). Such hardware once prepared can be used
at later times (alone or with duplicates) – once the de-
sired kind of entanglement has been distilled – to perform
quantum information protocols [1].

The biggest challenge in the development of an ESU is
entanglement frailty: it is strongly affected by the detri-
mental presence of decoherence [1]. Furthermore the
search for a proper system to build an ESU is under-
mined by the increasing complexity of quantum systems
with a growing number of components, which makes en-
tanglement more frail, more difficult to characterize, to
create and to control [2]. Moreover, given a many body
quantum system, the search for a state with the desired
properties might be very difficult. Indeed, a direct and
comprehensive study of a many body quantum system
is an exponentially hard task in the system size. Nev-
ertheless, in many-body quantum systems entanglement
naturally arises: for example –when undergoing a quan-
tum phase transition – in proximity of a critical point the
amount of entanglement possessed by the ground state
scales with the size [2, 4]. Unfortunately, due to the clo-
sure of the energy gap at the critical point, the ground
state is an extremely frail state: even very little pertur-
bations might destroy it, inducing excitations towards

FIG. 1: (Color online) Entanglement Storage Units protocol:
a system is initially in a reference state |ψ(−T )〉, e.g. the
ground state, and is optimally driven via a control field Γ(t)
in an entangled eigenstate |ψ(0)〉, protected from decoherence
by an energy gap.

other states. Very recently, the entanglement properties
of the eigenstates of many-body Hamiltonians have been
investigated, and it has been shown that in some cases
they are characterized by entanglement growing with the
system size [5, 13].

In this letter we show that by means of recently devel-
oped optimal control technique [7] it is possible to iden-
tify and prepare a many body quantum system in robust,
long-lived entangled states (ESU states). More impor-
tantly, we drive the system towards ESU states without
the need of any apriori information on the system, either
about the eigenstates or about the energy spectrum. Fi-
nally, we show that properly prepared systems can be ef-
fectively used as ESU exploiting the fact that ESU states
are well protected by large energy gaps.

Recently, optimal control has been used to drive quan-
tum systems in entangled states or to improve the gen-
eration of entanglement [6]. However, here we have in
mind a different scenario: to exploit the control to steer
a system into a highly entangled state that is stable and
robust even after switching off the control (see Fig. 1). In
the following we show that ESU states are gap-protected
entangled eigenstates of the system Hamiltonian in the
absence of the control. Here we show that for an ex-
perimentally relevant model this is indeed possible, and
that it is possible to drive the system in gap-protected

inset:
T VS noise intensity
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tum information processing. Indeed quantum informa-
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or quantum computers rely on entanglement as a crucial
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candidates for truly scalable quantum information pro-
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hybrid architectures with optical devices [3]. In this sce-
nario, the stationary qubits are a collection of engineered
qubits with desired properties, as decoupled as possible
from one another to prevent errors. However, this archi-
tecture is somehow unfavorable to the creation and the
conservation of entanglement. Indeed, it would be desir-
able to have a hardware where “naturally” entanglement
is present and that can be prepared in a highly entan-
gled state that persists without any external control: the
closest quantum entanglement analogue of a classical in-
formation memory support, i.e. an entanglement-storage
unit (ESU). Such hardware once prepared can be used
at later times (alone or with duplicates) – once the de-
sired kind of entanglement has been distilled – to perform
quantum information protocols [1].

The biggest challenge in the development of an ESU is
entanglement frailty: it is strongly affected by the detri-
mental presence of decoherence [1]. Furthermore the
search for a proper system to build an ESU is under-
mined by the increasing complexity of quantum systems
with a growing number of components, which makes en-
tanglement more frail, more difficult to characterize, to
create and to control [2]. Moreover, given a many body
quantum system, the search for a state with the desired
properties might be very difficult. Indeed, a direct and
comprehensive study of a many body quantum system
is an exponentially hard task in the system size. Nev-
ertheless, in many-body quantum systems entanglement
naturally arises: for example –when undergoing a quan-
tum phase transition – in proximity of a critical point the
amount of entanglement possessed by the ground state
scales with the size [2, 4]. Unfortunately, due to the clo-
sure of the energy gap at the critical point, the ground
state is an extremely frail state: even very little pertur-
bations might destroy it, inducing excitations towards

FIG. 1: (Color online) Entanglement Storage Units protocol:
a system is initially in a reference state |ψ(−T )〉, e.g. the
ground state, and is optimally driven via a control field Γ(t)
in an entangled eigenstate |ψ(0)〉, protected from decoherence
by an energy gap.

other states. Very recently, the entanglement properties
of the eigenstates of many-body Hamiltonians have been
investigated, and it has been shown that in some cases
they are characterized by entanglement growing with the
system size [5, 13].

In this letter we show that by means of recently devel-
oped optimal control technique [7] it is possible to iden-
tify and prepare a many body quantum system in robust,
long-lived entangled states (ESU states). More impor-
tantly, we drive the system towards ESU states without
the need of any apriori information on the system, either
about the eigenstates or about the energy spectrum. Fi-
nally, we show that properly prepared systems can be ef-
fectively used as ESU exploiting the fact that ESU states
are well protected by large energy gaps.

Recently, optimal control has been used to drive quan-
tum systems in entangled states or to improve the gen-
eration of entanglement [6]. However, here we have in
mind a different scenario: to exploit the control to steer
a system into a highly entangled state that is stable and
robust even after switching off the control (see Fig. 1). In
the following we show that ESU states are gap-protected
entangled eigenstates of the system Hamiltonian in the
absence of the control. Here we show that for an ex-
perimentally relevant model this is indeed possible, and
that it is possible to drive the system in gap-protected

inset:
T VS noise intensity
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FIG. 3: (Color online) Entanglement entropy S(t) (left) and
survival probability P (t) (right) as a function of time for dif-
ferent λ values: λ = 0 (black) continuous, λ = 5 (red) dash-
dash-dotted, λ = 1.8 (green) dot-dashed, λ = 1.9 (orange)
dot-dot-dashed, λ = 1.2 (cyan) dashed line. Blue circles rep-
resent the entropy of the eigenstates for N = 64 and Γ0 = 10.
Inset: Optimal driving field Γ(t) for λ = 1.8 and N = 64
(time unit J−1).

titions, i.e. S ≡ SN/2,N . In the inset of Fig. 2 we report
the entanglement SN/2,N of the eigenstates deeply inside
the paramagnetic phase at Γ = 10, for systems of differ-
ent sizes. Clearly, also far from the critical point Γ = 1
many eigenstates possess a remarkable amount of entan-
glement that scales with the system size. The effect is
shown more clearly in Fig. 2, where the entanglement of
the central eigenstate (red full circles) at Γ0 = 10 is com-
pared with the entanglement of the ground state at the
critical point (blue continuous line, from Ref. [12]). Both
sets of data show a logarithmic scaling with the size, but
the entanglement of the central eigenstate is systemati-
cally higher and grows more rapidly.

Dynamics.— We prepare the system in the ground
state of the Hamiltonian H = H0 + H1(Γ0) so that in
the absence of control, i.e., Γ ≡ Γ0 independent from
the time, the state does not evolve apart from a phase
factor. After the action of the CRAB-optimized driving
field Γ(t) for a time T the state is prepared in |ψ(0)〉 (a
typical optimal pulse is shown in the inset of Fig. 3), we
observe the evolution of the state over times t > 0. The
behavior of the entanglement is shown in the left panel
of Fig. 3 for different values of the weighing factor λ and
N = 64; the control is active for negative times, i.e., in
the interval [−T, 0]. For λ = 0 highly entangled states
are produced, however the entanglement S(t) oscillates
indefinitely with the time, reflecting the fact that the
system state is changing over time. On the contrary, if
the energy fluctuations are included in the cost function
(λ $= 0), the optimal driving field steers the system into
entangled eigenstates, as confirmed by the absence of the
oscillations in the entanglement and by the entanglement
eigenstate reference values (empty blue circles). These
results are confirmed by the survival probability in the
initial state P (t) = |〈ψ(0)|ψ(t)〉|2 reported in the right
panel of Fig. 3: the state prepared with λ = 0 decays
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FIG. 4: (Color online) Lower panel: Survival probability P (t)
as a function of time in the presence for three realizations of
the noise with Iα = Iβ = 0.01 at frequency νR, system size
N = 64, and λ = 1.8 (full symbols) or λ = 0 (empty symbols).
Upper left panel: Blow up of the region around t = 0. Upper
right panel: Survival probability P (t) as a function of time,
averaged over 30 noise instances for Iα = Iβ = 0.2, N = 64,
r = 1.8, and different noise frequencies. The worst case is for
νR = 0.78J .

over very fast timescales τ0, while for λ $= 0 it remains
close to the unity for very long times τλ >> τ0. The
small residual oscillations for N = 64 and λ = 1.2 are
due to the fact that in this case the optimization leads to
a state corresponding to an eigenstate up to 98%. We re-
peated the optimal preparation for different system sizes
and initial states, and show the entanglement of the opti-
mized states for λ = 0 (empty green triangles) and λ $= 0
( ∆E0/E0 < 0.05, P > 95% empty red circles) for dif-
ferent system sizes in Fig. 2. In all cases a logarithmic
scaling with the size is achieved.
Noise.— A reliable ESU should be robust against ex-

ternal noise and decoherence even when the control is
switched off, in such a way that it could be used for sub-
sequent quantum operations. In order to test the robust-
ness of the optimized states, we model the effect of deco-
herence by adding a random telegraph noise and we mon-
itor the time evolution in such noisy environment [1]. In
particular we study the evolution induced by the Hamil-
tonian

H = −
1

N
[1 + Iαα(t)]J

2
x − Γ0[1 + Iββ(t)]Jz (3)

where α(t),β(t) are random functions of the time with
a flat distribution in [−Ij , Ij ] (j = α,β), changing ran-
dom value every typical time 1/ν. The case Iα = Iβ = 0
corresponds to a noiseless evolution. The first important
observation is that the frequency ν of the signal fluctua-
tions is crucial in determining its effects [14]. Indeed in
the right upper panel of Fig. 4, the survival probability
P (t) is plotted as a function of the time in the presence
of a strong noise, Iα = Iβ = 0.2, for a system of N = 64
spins and for a given initial optimal state obtained with
λ = 1.8 (corresponding to the third eigenstate in Fig. 3).
When ν is either too low (empty circles) or too high

inset:
T VS noise intensity
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FIG. 3: (Color online) Entanglement entropy S(t) (left) and
survival probability P (t) (right) as a function of time for dif-
ferent λ values: λ = 0 (black) continuous, λ = 5 (red) dash-
dash-dotted, λ = 1.8 (green) dot-dashed, λ = 1.9 (orange)
dot-dot-dashed, λ = 1.2 (cyan) dashed line. Blue circles rep-
resent the entropy of the eigenstates for N = 64 and Γ0 = 10.
Inset: Optimal driving field Γ(t) for λ = 1.8 and N = 64
(time unit J−1).

titions, i.e. S ≡ SN/2,N . In the inset of Fig. 2 we report
the entanglement SN/2,N of the eigenstates deeply inside
the paramagnetic phase at Γ = 10, for systems of differ-
ent sizes. Clearly, also far from the critical point Γ = 1
many eigenstates possess a remarkable amount of entan-
glement that scales with the system size. The effect is
shown more clearly in Fig. 2, where the entanglement of
the central eigenstate (red full circles) at Γ0 = 10 is com-
pared with the entanglement of the ground state at the
critical point (blue continuous line, from Ref. [12]). Both
sets of data show a logarithmic scaling with the size, but
the entanglement of the central eigenstate is systemati-
cally higher and grows more rapidly.

Dynamics.— We prepare the system in the ground
state of the Hamiltonian H = H0 + H1(Γ0) so that in
the absence of control, i.e., Γ ≡ Γ0 independent from
the time, the state does not evolve apart from a phase
factor. After the action of the CRAB-optimized driving
field Γ(t) for a time T the state is prepared in |ψ(0)〉 (a
typical optimal pulse is shown in the inset of Fig. 3), we
observe the evolution of the state over times t > 0. The
behavior of the entanglement is shown in the left panel
of Fig. 3 for different values of the weighing factor λ and
N = 64; the control is active for negative times, i.e., in
the interval [−T, 0]. For λ = 0 highly entangled states
are produced, however the entanglement S(t) oscillates
indefinitely with the time, reflecting the fact that the
system state is changing over time. On the contrary, if
the energy fluctuations are included in the cost function
(λ $= 0), the optimal driving field steers the system into
entangled eigenstates, as confirmed by the absence of the
oscillations in the entanglement and by the entanglement
eigenstate reference values (empty blue circles). These
results are confirmed by the survival probability in the
initial state P (t) = |〈ψ(0)|ψ(t)〉|2 reported in the right
panel of Fig. 3: the state prepared with λ = 0 decays
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FIG. 4: (Color online) Lower panel: Survival probability P (t)
as a function of time in the presence for three realizations of
the noise with Iα = Iβ = 0.01 at frequency νR, system size
N = 64, and λ = 1.8 (full symbols) or λ = 0 (empty symbols).
Upper left panel: Blow up of the region around t = 0. Upper
right panel: Survival probability P (t) as a function of time,
averaged over 30 noise instances for Iα = Iβ = 0.2, N = 64,
r = 1.8, and different noise frequencies. The worst case is for
νR = 0.78J .

over very fast timescales τ0, while for λ $= 0 it remains
close to the unity for very long times τλ >> τ0. The
small residual oscillations for N = 64 and λ = 1.2 are
due to the fact that in this case the optimization leads to
a state corresponding to an eigenstate up to 98%. We re-
peated the optimal preparation for different system sizes
and initial states, and show the entanglement of the opti-
mized states for λ = 0 (empty green triangles) and λ $= 0
( ∆E0/E0 < 0.05, P > 95% empty red circles) for dif-
ferent system sizes in Fig. 2. In all cases a logarithmic
scaling with the size is achieved.
Noise.— A reliable ESU should be robust against ex-

ternal noise and decoherence even when the control is
switched off, in such a way that it could be used for sub-
sequent quantum operations. In order to test the robust-
ness of the optimized states, we model the effect of deco-
herence by adding a random telegraph noise and we mon-
itor the time evolution in such noisy environment [1]. In
particular we study the evolution induced by the Hamil-
tonian

H = −
1

N
[1 + Iαα(t)]J

2
x − Γ0[1 + Iββ(t)]Jz (3)

where α(t),β(t) are random functions of the time with
a flat distribution in [−Ij , Ij ] (j = α,β), changing ran-
dom value every typical time 1/ν. The case Iα = Iβ = 0
corresponds to a noiseless evolution. The first important
observation is that the frequency ν of the signal fluctua-
tions is crucial in determining its effects [14]. Indeed in
the right upper panel of Fig. 4, the survival probability
P (t) is plotted as a function of the time in the presence
of a strong noise, Iα = Iβ = 0.2, for a system of N = 64
spins and for a given initial optimal state obtained with
λ = 1.8 (corresponding to the third eigenstate in Fig. 3).
When ν is either too low (empty circles) or too high
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FIG. 5: (Color online) Time T0.8 required to reduce the sur-
vival probability P below 0.8 for different prepared states
|ψ(0)〉 with λ = 0 (red squares) and λ "= 0 (black triangles) as
a function of the system size N . The dashed lines are fits of
the four rightmost points (biggest system sizes) resulting in
N−0.97 and N−0.03 respectively. Inset: Time T0.8 as a func-
tion of the intensity I = Iα = Iβ of the disorder for different
system sizes N .

(full diamonds) the effect of the noise is reduced; how-
ever around a resonant frequency νR (dashed line with
crosses) its effect is enhanced and the state is quickly de-
stroyed. We checked that the resonant frequency is the
same for different eigenvalues, different sizes, and dif-
ferent noise strengths (data not shown), reflecting the
fact that in the paramagnetic phase (Γ0 ! 1) the gap
separating the eigenstates is proportional to Γ0 indepen-
dently of the size of the system and of the state itself, see
Eq. (2). Therefore we analyze this worst case scenario,
setting ν = νR from now on. The results of this anal-
ysis, show that ESU states – differently from the states
produced optimizing only entanglement – are extremely
robust to noise at the resonant frequency. This is shown
in Fig. 4 where we compare the survival probability P (t)
for three instances of the disorder at the resonant fre-
quency with an intensity of the disorder Iα = Iβ = 0.01.
The noise-induce dynamics of the states obtained opti-
mizing only with respect to the entanglement (i.e. setting
λ = 0) drastically depends on the (in general unknown)
details of the noise affecting the system, as shown by
the different evolutions induced by different instances of
the noise. Thus, such states cannot be used as ESU,
unlike those prepared with λ "= 0 that are stable, noise-
independent long-living entanglement states. Finally, in
Fig. 5 we study the decay times of the survival probability
P (t) studying the time T0.8 needed to drop below a given

threshold Pmin = 0.8 as a function of the system size N
and of the intensity of the disorder I = Iα = Iβ (inset).
These results clearly show that T0.8 for ESU states is al-
most independent from the system size, reflecting the fact
that the energy gaps in this region of the spectrum are
mostly size independent. Notice that, on the contrary,
T0.8 for maximally entangled states decays linearly with
the system size and that there are more than four orders
of magnitude of difference in the decay times τλ and τ0.
Finally, the inset of Fig. 5 shows that the scaling of T0.8

with the noise strength for ESU states is approximately
linear and again depends very weakly on the system size
N .

Conclusions.— Exploiting optimal control we pro-
posed a method to steer a system into apriori unknown
eigenstates satisfying desired properties. We demon-
strated, on a particular system, that this protocol can
be effectively used to build long-lived entangled states
with many-body systems, indicating a possible imple-
mentations of an Entanglement Storage Unit scalable
with the system size. The presented method is com-
patible with different measures of entanglement and it
can be extended to any other property one is interested
in, as for example the squeezing of the target state. It
can be applied to different systems with apriori unknown
properties: optimal control will select the states (if any)
satisfying the desired property and robust to system per-
turbations. We underscore that an adiabatic strategy is
absolutely ineffective for this purpose, as transitions be-
tween different eigenstates are forbidden. Applying this
protocol to the full open-dynamics description of the sys-
tem, e.g. via a CRAB optimization of the Lindblad dy-
namics as done in [16], will result in an optimal search of
a Decoherence Free Subspace (DFS) with desired prop-
erties [17]. If no DFS exists, the optimization would lead
the system in an eigenstate of the superoperator with
longest lifetime and desired properties [15]. Although
the state so prepared may be unstable over long times,
it represents the best and most robust state attainable,
and additional (weak) control might be used to preserve
its stability. Finally, working with excited states would
reduce finite temperature effects, relaxing low temper-
atures working-point conditions, simplifying the experi-
mental requirements to build a reliable ESU.
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F. Improved electronics

Alternatively to the use of the inverse filter, one might

use a more sophisticated electronics such that the cut-

off frequency of the filter becomes about 100 kHz. This

is indeed the case we have investigated and optimized.

We used the same optimization procedure as previously

described, but with a different response function g(t).
Such a function looks like the one displayed in Fig. 4, but

with a significantly smaller width, that is, it goes to zero

for times larger than Tr � 0.05 ms, which basically sets

the retardation imposed by the new filter. Hence, the

effect of the new filter is merely to smooth the control

pulse at the boundaries with a very small retardation

with respect to the older setup of Ref. [1] that we have

investigated in Sec. VIII C.

The best optimal control pulse in the shortest possible

time T � � 1.1 ms within the experimental constraints is

illustrated in Fig. 7. The overlap fidelity at that time

is about 97%. To achieve such a performance we opti-

mized both the coefficients and the frequencies (i.e., 80

is the total number of frequency components). We note,

however, that with the new electronics we were also able

to align the y axis with the wire axis of the Z-trap, and

therefore to set θ = 0 in Eq. (9). As a consequence,

since the fit parameters of the trapping potential are the

same in both cases (see table I) and since in both cases

maxt{λ(t)} = 1µm, in the first case (i.e., θ �= 0) the trap

is actually displaced by the amount λ cos(θ) while in the

other case by λ. This means that for the former scenario

the atomic ensemble can actually achieve a smaller po-

tential energy at the maximum displacement of the trap,

and therefore have a lower kinetic energy when passing

the centre of the trap. A very simple estimate of the

coherent transfer time, due to such an effect, is the fol-

lowing: Let us consider the best time for which both

filters have been applied, that is, 1.83 ms, and multiply

it by cos(θ) � 0.94. This yields a coherent transfer time

of about 1.73 ms. Thus, even though the attainable dis-

placement is a bit smaller for the scenario for which both

filters have been applied, this is not enough to explain

why the improved filter outperforms the former. Hence,

although a larger displacement can reduce the needed

transfer time, we attribute its reduction of more than 0.5

ms, with respect to results discussed in Sec. VIII C, by

the larger bandwidth of the new filter and by the signif-

icantly smaller width of its response function.

Additionally, the strategy based on the new filter pro-

vides a smoother control pulse at the boundaries (see

Figs. 6 and 7), and therefore more amenable to an exper-

imental implementation. It is remarkable, however, that

with such an approach we were able to achieve a coher-

ent transfer time which is almost one-fifth shorter than

the one (∼ 5 ms) of the optimized dynamics reported in

Ref. [1], that is, not so far from the estimated QSL of 0.6

ms. Hence, given this result, in the next sections, where

we shall analyze the performance of the interferometer,

we shall use the new filter.
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Figure 7. (Color online). Optimal control pulse with the
application of the filter for the improved electronics with a
cut-off frequency of about 100 kHz. The total coherent trans-
fer time, including the retardation effect due to the filter, is
about 1.1 ms.

IX. RAMSEY-TYPE INTERFEROMETER

In this section we analyze the performance of an inter-

ferometer based on the manipulation of vibrational states

of the radial anharmonic confinement. The experimental

sequence of such an interferometer is similar to the one

of the Ramsey interferometer for internal atomic levels,

exploited, for instance, in the assessment of the coher-

ence of a two-level atom via Rabi oscillations [13]. The

sequence, adapted to our scenario, works as follows:

1. Preparation of the equal superposition state:

ψg(y) =
φ0(y) + φ1(y)√

2
. (20)

Here the states φ0,1(y), assumed to be real-valued

functions, have been introduced in Sec. IV. The

preparation of such a state will require some time

T1. The generation of such a state is performed

by shaking the potential (9), similarly to what

has been outlined above for the twin-atom beams

experiment, with an optimal control pulse ΛR(t)
∀t ∈ [0, T1].

2. Leave the condensate to freely evolve in the trap-

ping potential for a given hold time Th. At such

time the state will be (approximatively) given by:

ψ(y, T1 + Th) �
φ0(y) + eiϕ(Th)φ1(y)√

2
. (21)

97%

see also R. Büker et. al. Nat. Phys. 2011 
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F. Improved electronics

Alternatively to the use of the inverse filter, one might

use a more sophisticated electronics such that the cut-

off frequency of the filter becomes about 100 kHz. This

is indeed the case we have investigated and optimized.

We used the same optimization procedure as previously

described, but with a different response function g(t).
Such a function looks like the one displayed in Fig. 4, but

with a significantly smaller width, that is, it goes to zero

for times larger than Tr � 0.05 ms, which basically sets

the retardation imposed by the new filter. Hence, the

effect of the new filter is merely to smooth the control

pulse at the boundaries with a very small retardation

with respect to the older setup of Ref. [1] that we have

investigated in Sec. VIII C.

The best optimal control pulse in the shortest possible

time T � � 1.1 ms within the experimental constraints is

illustrated in Fig. 7. The overlap fidelity at that time

is about 97%. To achieve such a performance we opti-

mized both the coefficients and the frequencies (i.e., 80

is the total number of frequency components). We note,

however, that with the new electronics we were also able

to align the y axis with the wire axis of the Z-trap, and

therefore to set θ = 0 in Eq. (9). As a consequence,

since the fit parameters of the trapping potential are the

same in both cases (see table I) and since in both cases

maxt{λ(t)} = 1µm, in the first case (i.e., θ �= 0) the trap

is actually displaced by the amount λ cos(θ) while in the

other case by λ. This means that for the former scenario

the atomic ensemble can actually achieve a smaller po-

tential energy at the maximum displacement of the trap,

and therefore have a lower kinetic energy when passing

the centre of the trap. A very simple estimate of the

coherent transfer time, due to such an effect, is the fol-

lowing: Let us consider the best time for which both

filters have been applied, that is, 1.83 ms, and multiply

it by cos(θ) � 0.94. This yields a coherent transfer time

of about 1.73 ms. Thus, even though the attainable dis-

placement is a bit smaller for the scenario for which both

filters have been applied, this is not enough to explain

why the improved filter outperforms the former. Hence,

although a larger displacement can reduce the needed

transfer time, we attribute its reduction of more than 0.5

ms, with respect to results discussed in Sec. VIII C, by

the larger bandwidth of the new filter and by the signif-

icantly smaller width of its response function.

Additionally, the strategy based on the new filter pro-

vides a smoother control pulse at the boundaries (see

Figs. 6 and 7), and therefore more amenable to an exper-

imental implementation. It is remarkable, however, that

with such an approach we were able to achieve a coher-

ent transfer time which is almost one-fifth shorter than

the one (∼ 5 ms) of the optimized dynamics reported in

Ref. [1], that is, not so far from the estimated QSL of 0.6

ms. Hence, given this result, in the next sections, where

we shall analyze the performance of the interferometer,

we shall use the new filter.
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Figure 7. (Color online). Optimal control pulse with the
application of the filter for the improved electronics with a
cut-off frequency of about 100 kHz. The total coherent trans-
fer time, including the retardation effect due to the filter, is
about 1.1 ms.

IX. RAMSEY-TYPE INTERFEROMETER

In this section we analyze the performance of an inter-

ferometer based on the manipulation of vibrational states

of the radial anharmonic confinement. The experimental

sequence of such an interferometer is similar to the one

of the Ramsey interferometer for internal atomic levels,

exploited, for instance, in the assessment of the coher-

ence of a two-level atom via Rabi oscillations [13]. The

sequence, adapted to our scenario, works as follows:

1. Preparation of the equal superposition state:

ψg(y) =
φ0(y) + φ1(y)√

2
. (20)

Here the states φ0,1(y), assumed to be real-valued

functions, have been introduced in Sec. IV. The

preparation of such a state will require some time

T1. The generation of such a state is performed

by shaking the potential (9), similarly to what

has been outlined above for the twin-atom beams

experiment, with an optimal control pulse ΛR(t)
∀t ∈ [0, T1].

2. Leave the condensate to freely evolve in the trap-

ping potential for a given hold time Th. At such

time the state will be (approximatively) given by:

ψ(y, T1 + Th) �
φ0(y) + eiϕ(Th)φ1(y)√

2
. (21)

97%

see also R. Büker et. al. Nat. Phys. 2011 
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Alternatively to the use of the inverse filter, one might

use a more sophisticated electronics such that the cut-

off frequency of the filter becomes about 100 kHz. This

is indeed the case we have investigated and optimized.

We used the same optimization procedure as previously

described, but with a different response function g(t).
Such a function looks like the one displayed in Fig. 4, but

with a significantly smaller width, that is, it goes to zero

for times larger than Tr � 0.05 ms, which basically sets

the retardation imposed by the new filter. Hence, the

effect of the new filter is merely to smooth the control

pulse at the boundaries with a very small retardation

with respect to the older setup of Ref. [1] that we have

investigated in Sec. VIII C.

The best optimal control pulse in the shortest possible

time T � � 1.1 ms within the experimental constraints is

illustrated in Fig. 7. The overlap fidelity at that time

is about 97%. To achieve such a performance we opti-

mized both the coefficients and the frequencies (i.e., 80

is the total number of frequency components). We note,

however, that with the new electronics we were also able

to align the y axis with the wire axis of the Z-trap, and

therefore to set θ = 0 in Eq. (9). As a consequence,

since the fit parameters of the trapping potential are the

same in both cases (see table I) and since in both cases

maxt{λ(t)} = 1µm, in the first case (i.e., θ �= 0) the trap

is actually displaced by the amount λ cos(θ) while in the

other case by λ. This means that for the former scenario

the atomic ensemble can actually achieve a smaller po-

tential energy at the maximum displacement of the trap,

and therefore have a lower kinetic energy when passing

the centre of the trap. A very simple estimate of the

coherent transfer time, due to such an effect, is the fol-

lowing: Let us consider the best time for which both

filters have been applied, that is, 1.83 ms, and multiply

it by cos(θ) � 0.94. This yields a coherent transfer time

of about 1.73 ms. Thus, even though the attainable dis-

placement is a bit smaller for the scenario for which both

filters have been applied, this is not enough to explain

why the improved filter outperforms the former. Hence,

although a larger displacement can reduce the needed

transfer time, we attribute its reduction of more than 0.5

ms, with respect to results discussed in Sec. VIII C, by

the larger bandwidth of the new filter and by the signif-

icantly smaller width of its response function.

Additionally, the strategy based on the new filter pro-

vides a smoother control pulse at the boundaries (see

Figs. 6 and 7), and therefore more amenable to an exper-

imental implementation. It is remarkable, however, that

with such an approach we were able to achieve a coher-

ent transfer time which is almost one-fifth shorter than

the one (∼ 5 ms) of the optimized dynamics reported in

Ref. [1], that is, not so far from the estimated QSL of 0.6

ms. Hence, given this result, in the next sections, where

we shall analyze the performance of the interferometer,

we shall use the new filter.
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fer time, including the retardation effect due to the filter, is
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IX. RAMSEY-TYPE INTERFEROMETER

In this section we analyze the performance of an inter-

ferometer based on the manipulation of vibrational states

of the radial anharmonic confinement. The experimental

sequence of such an interferometer is similar to the one

of the Ramsey interferometer for internal atomic levels,

exploited, for instance, in the assessment of the coher-

ence of a two-level atom via Rabi oscillations [13]. The

sequence, adapted to our scenario, works as follows:

1. Preparation of the equal superposition state:

ψg(y) =
φ0(y) + φ1(y)√

2
. (20)

Here the states φ0,1(y), assumed to be real-valued

functions, have been introduced in Sec. IV. The

preparation of such a state will require some time

T1. The generation of such a state is performed

by shaking the potential (9), similarly to what

has been outlined above for the twin-atom beams

experiment, with an optimal control pulse ΛR(t)
∀t ∈ [0, T1].

2. Leave the condensate to freely evolve in the trap-

ping potential for a given hold time Th. At such

time the state will be (approximatively) given by:

ψ(y, T1 + Th) �
φ0(y) + eiϕ(Th)φ1(y)√

2
. (21)

97%
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see also R. Büker et. al. Nat. Phys. 2011 
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Single Photon Source at 300K
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FIG. 1. Level Scheme of the Rb87 atoms and sketched in-

teraction. The used states are |g� = 5
2S1/2, |i� = 5

2P3/2,

|r� = 44D, |e� = 5
2P1/2. Interaction occurs between Ry-

dberg (|r�) states. The interaction potential is C6/r
6
with

C6 = 2π · h · 5880MHzµm6
[3].

we will consider the three level system |g�, |r� and |e� and
two driving lasers with Rabi frequencies Ωgr = −Ω1Ω2

2∆0

and Ωre = Ω3. The density of the vapor can be var-

ied changing the gas temperature, at 220
◦
C this gives a

density of Rubidium 87 (27.83% of all Rubidium atoms)

of 543 atoms/µm
3
. The velocity distribution is Gaus-

sian corresponding to thermal distribution. The decay

rates are τ1 = 26.2 ns for the |i� ↔ |g� transition, and

τ2 = 27.7 ns for the |e� ↔ |g� transition, where γ = 1/τ2
[5]. As by the latter transition the single photon shall

be emitted, this sets also the time scale for the decay

process. This also limits the duration of the exciting

laser pulses, that we set to be T = 10 ns. Given the

separated timescales with respect to the observed coher-

ence times of about a hundred ns, we simulate a closed,

coherent system as far as concern the state preparation

and analyze the non-coherent part of the system evolu-

tion separately. Finally, the Hamiltonian of the system

H =
�

i Hloc,i+Hint after the adiabatic elimination, to-

gether with the conditions δ0 = 0 and Ω1 = Ω2 and the

approximation ∆0 +∆i ≈ ∆0 is given by

Hloc,i =
Ωgr

2
(|g��r|+ |r��g|) + Ω3

2
(|r��e|+ |e��r|)

+ δi|r��r| (1)

Hint =

�

i �=j

C6

r
6
ij

|rirj��rirj |. (2)

estimate size of Rydberg atoms, collision rates (for

ground state atoms and Rydberg state atoms?) or cite

just [4],[18]

State preparation - The goal of the manipulation pro-

tocol is to prepare a collective single excitation state

|W � = 1√
N

N�

i=1

e
ı�k0�ri |ei� , (3)

where |ei� = |g...geg...g� means atom i in state e and all

other atoms in state g, starting front he system ground
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FIG. 2. Final infidelity � for a pi-pulses (squares??) and

optimal pulses (circles???) in a one dimensional chain with

lattice constant a = 0.5µm and a pulse duration of T = 10 ns.

state |ψ(0)� = |gg . . . gg�.
In order to engineer the preparation of the W-state

(equation 3) we simulate the time evolution of the sys-

tem and optimize the pulse sequence. The time evolution

is obtained by a tensor-network algorithm including two-

body long-range interactions [25? ]. The optimization

is performed by means of the Chopped RAndom Bases

(CRAB) optimal control technique for many-body quan-

tum systems dynamics recently introduced in [20, 21].

The optimal control technique and the simulation of the

many-body dynamics are based on the a priori reduc-

tion of the problem complexity via a proper truncation

of the accessible space used to describe the system wave

function and the control field. In particular, in the sys-

tem introduced above, the Rabi frequencies of two driv-

ing lasers Ωgr(t) and Ωer(t) are subject to optimization

by the CRAB optimization method. The pulses are ex-

panded in a truncated basis Ωi =
�Ni

j=1 ci,jfi,j(t) where

the ci,j are the coefficients of the expansion and the basis

functions fi,j(t) are chosen according to physical proper-

ties of the system. In particular here we choose the first

principal harmonics of the Fourier expansion. The fig-

ure of merit to be minimized is the final infidelity of the

time-evolved ground state of the system by the pulses Ω
with the target state |W �, namely

� = 1− |�W |ψ(T )�|2. (4)

The multi-variable function defined by (4), � ≡ �(ci,j) is
finally minimized by means of direct-search methods [20].

Typical parameters are Ni =, iterations etc., trotter, chi,

errors etc.???

Results - We first concentrate on a simple scenario

of a one-dimensional chain of N Rydberg atoms with

fixed positions. Despite its simplicity – as we shall show

later – this model already grasps the essential features

of the system dynamics as the long range interactions ef-

Rydberg atoms

Picture: 5th institute of Physics, Stuttgart
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FIG. 5. 3D cloud of N = 10 randomly distributed atoms:
Errors in the state preparation. Pi calculated by MPS simu-
lation is compared to theory curve from P (r) model.

going up to having a fraction of
Ω2

gr

Ω2
gr+V 2 = 1− 1

1+c2d12
ij

in

the excited (Rydberg) state (c = Ωgr/C6). This double
excitation part is missing in the population Pi represent-
ing the first excitation sector. Summing this up over all
neighbors gives

Pi ≈
1

N(N − 1)

N�

j=1,j �=i

1

1 + c2d12ij

. (4)

In the thermodynamical limit an analogous continuous
expression can be obtained by considering a homogeneous
spherical cloud of radius R, introducing P (r) as the single
atom excitation. This yields

P (r) ≈ 1

NV

�
ρ2 sin2 θ dρ dθ dφ

1 + c2(r2 + ρ2 − 2rρ sin θ cosφ)6
(5)

with r the radial position (distance from center of mass of
the cloud) of atom i in the cloud and integrating over the
sphere’s volume. Fig. 5 shows the comparison between
Eq. (5) and the Pi obtained from a numerical simulation
of the dynamics of ten atoms. The good correspondence
of this high density limit theory and numerical results of
the few body simulation supports the previous finding of
the very weak dependence of the results on the number
of atoms N , that is considering only ten atoms already is
enough to get the major features of the state preparation.

If we include now in our theoretical description the fact
that the atoms are moving with thermal distribution we
shall consider the lasers’ Doppler shifts depending on the
velocity of the atoms. Furthermore we shall analyze the
effects of a time-dependent interaction V (t) and the fact
that the atoms might move out of the laser beam dur-
ing state preparation as at room temperature an average
atom moves about 0.5µm in T0 time. For this time scale
we can achieve good blockade within a sphere of radius
0.5 − 0.55µm (corresponding to L0 = 1 − 1.1µm). As
the pulse is robust with respect to random positions we
expect that the thermal motion will not affect drastically
the results.

Finally, the Doppler effect will cause a widening of the
excitation populations with a Lorentzian shape P

D
i ∝

1/(1 + v
2
i,�k

2
/Ω2) depending on the velocity vi,� of atom

i in the direction of the incoming lasers. The Doppler
shift enters as an additional term (k1 ± k2)vi,�|r��r| into
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FIG. 6. Directionality p as a function of temperature ϑ for
parallel lasers (red) and anti parallel lasers (black). Squares
are values from state preparation with optimized pulses, cir-
cles from Gaussian π-pulses. The inset shows the emission
cone on resonance for ϑ = 220◦C and anti parallel lasers.

Hloc,i (we neglect the Doppler shift of the third laser as
Ωre � krevi). The wave numbers ki of lasers 1 (|g� ↔ |i�
transition) and 2 (|i� ↔ |r� transition) are summed up or
subtracted depending on whether the lasers are parallel
or anti parallel. We consider a sphere of radius 0.53µm
and an atomic density and velocity distribution corre-
sponding to temperatures of 200−260 ◦C, that is approx-
imatively N = 200− 1200 atoms and a velocity distribu-
tion characterized by a Gaussian width of 213−226m/s.
We calculate the approximate W-state |W̃ � =

�
i αi|ei�

(where the αi contain the Doppler widening depending on
the directions of the lasers) obtained by our state prepa-
ration pulses by simulating the evolution by Ωgr for N

atoms assuming perfect blockade thus keeping track only
of the ground state and the N singly excited states thus
constraining the system evolution to the ground state and
the first excitation sector. To model the decay of |W̃ � we
follow the full exponential kernel description [14–18, 31]
and in addition we include also the motion of the parti-
cles.
Fig. 6 shows the resulting directionality p (the fraction

of the photon emitted in forward direction) as a function
of the temperature, each value averaged over 240 random
realizations of uniform position distribution and Gaus-
sian velocity distribution after decay time 100 ns. The in-
set shows the emission cone on resonance for ϑ = 220 ◦C.
The forward cone is defined to cover about 3% of the
solid angle corresponding to a maximum deviation from
forward direction of 0.3 rad (dashed lines). Values for p

are black for parallel and red for anti parallel lasers on
the |g� ↔ |i� and |i� ↔ |r� transitions. Clearly highest
directionality is obtained for anti parallel lasers. Squares
correspond to state preparation with the optimized pulse.
Circles mean state preparation with Gaussian π-pulses -
in this case we have to decrease the cloud radius and thus
deal only with about half as many atoms participating in
the W-state leading to a reduction of the directionality.
At higher temperatures samples are denser and thus
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optimization of 4 atoms chain. Right: Guess optimized for 3D
cloud. Red: Ωgr, blue: Ωre.

excitations and enhances the driving Rabi frequency for

the |g� ↔ |r� transition by a factor of
√
N in an ensemble

of N atoms as one excitation suppresses N−1 other pos-

sible excitations [13, 30]. Fig. 2 shows the final infidelity

� with respect to the |W � state obtained via Gaussian

π-pulses (Fig. 3, left) of atoms in a 1D chain with lattice

spacing a0 = 0.35µm for T0 = 2.5 ns and total exten-

sion L0 = a0(N − 1). Notice that for different numbers

of atoms N the Rabi frequency Ωgr has been rescaled by

1/
√
N to correct for the

√
N enhancement due to the Ry-

dberg blockade effect. From the figure it is clear that the

Gaussian π-pulses fail for L0 > 0.7µm (corresponding to

more than three atoms) where Ωgr gets comparable to

the interaction strength. On the contrary the optimized

pulses yield infidelity � < 10−2 up to L0 ≈ 1.4µm thus

allow to almost double the system size. So by optimiza-

tion we can beat the blockade radius associated with the

guess pulse. This effect exceeds what one can expect by

just stretching Ωgr over the whole operation time and

thus lowering its bandwidth. The presented pulses have

only real Rabi frequencies. Allowing also for complex

values roughly results in a 15% relative improvement of

the state preparation error.

As stated in the introduction, our final goal is to pre-

pare an ensemble of atoms with (uniformly distributed)

random positions in 3D space moving randomly with

thermally distributed velocities in the W-state. We thus

now consider a 3D cloud of N frozen atoms at random

positions. Differently from the previous case, the inter-

actions between atoms are random due to the distance-

dependent interaction terms and this means that we have

to produce very robust pulses “on average” at the cost

of some fidelity loss for each given sample of atoms. For

this aim we extract the relevant features of the optimized

pulses e.g. Fig. 3 (middle) and optimize only few param-

eters as the height and the width of the two pulses. The

resulting optimal pulses are reported in the right panel of

Fig. 3; improvement here is mainly due to the reduction

of the bandwidth. The |g� ↔ |r� transition is performed

via a long flat pulse followed by a fast kick in the |r� ↔ |e�
transition. Finally, we compared the performance of the

two schemes: the infidelity � obtained by W-state prepa-

ration with the optimized pulse and with the guessed
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FIG. 4. 3D cloud of 10 randomly distributed atoms: infidelity
� as a function of the cloud’s diameter L0 plotted for Gaus-
sian π-pulses (circles) and an optimized sequence (squares).
The inset shows that N has almost no influence on �. The
curves in the inset correspond to L0 = 0.83 . . . 1.46µm and
the optimized pulse.

Gaussian π-pulses averaged over different system samples

(i.e. different instances of the random positions). Fig. 4

shows the infidelity � for clouds of ten atoms as a func-

tion of different maximum cloud extension L0 while in

the inset of Fig. 4 � is shown as a function of the number

of atoms N = 7, 8, . . . 11 in the sample. In both cases the

errorbars correspond to the statistical noise from 8 real-

izations of random atoms positions within a cloud of fixed

maximum diameter L0. The optimized pulses clearly re-

sult in improved infidelities and most importantly with

almost no dependency on the number of atoms. This

result, as we shall show below, is corroborated also by

our analytical estimate of accuracy of the optimal state

preparation. An additional complexity toward the exper-

imental realization of the proposed protocol arises from

the fact that the number N of atoms in the ensemble

depends on the density and the excitation volume and

can only be determined with Poisson precision (±
√
N)

changing a π-pulse roughly as cos(
π
2

√
1±N) ≈ 1− π2

32N .

This very weak dependence on the atom number N of the

final fidelity paves the way to a successful experimental

realization of the W-state at room temperature.

We can provide an analytical estimate of the state

preparation error under the hypothesis that: a) the major

deviation of the prepared state from the desired W-state

is given by the population on the two-excitations sector,

b) each Rydberg atom is approximatively performing an

independent Rabi oscillation between the |g� and |r� and
c) the influence of an atom by means of another nearby

excited one is to detune the single atom dynamics. The

detuning will just be the van-der-Waals interaction be-

tween two Rydberg excited atoms V = C6d
−6
ij , with dij

the distance between atom i and atom j and thus the re-

sulting Rabi oscillation for this single atom is then only
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2P1/2. Interaction occurs between Ry-

dberg (|r�) states. The interaction potential is C6/r
6
with

C6 = 2π · h · 5880MHzµm6
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we will consider the three level system |g�, |r� and |e� and
two driving lasers with Rabi frequencies Ωgr = −Ω1Ω2

2∆0

and Ωre = Ω3. The density of the vapor can be var-

ied changing the gas temperature, at 220
◦
C this gives a

density of Rubidium 87 (27.83% of all Rubidium atoms)

of 543 atoms/µm
3
. The velocity distribution is Gaus-

sian corresponding to thermal distribution. The decay

rates are τ1 = 26.2 ns for the |i� ↔ |g� transition, and

τ2 = 27.7 ns for the |e� ↔ |g� transition, where γ = 1/τ2
[5]. As by the latter transition the single photon shall

be emitted, this sets also the time scale for the decay

process. This also limits the duration of the exciting

laser pulses, that we set to be T = 10 ns. Given the

separated timescales with respect to the observed coher-

ence times of about a hundred ns, we simulate a closed,

coherent system as far as concern the state preparation

and analyze the non-coherent part of the system evolu-

tion separately. Finally, the Hamiltonian of the system

H =
�

i Hloc,i+Hint after the adiabatic elimination, to-

gether with the conditions δ0 = 0 and Ω1 = Ω2 and the

approximation ∆0 +∆i ≈ ∆0 is given by

Hloc,i =
Ωgr

2
(|g��r|+ |r��g|) + Ω3

2
(|r��e|+ |e��r|)

+ δi|r��r| (1)

Hint =

�

i �=j

C6

r
6
ij

|rirj��rirj |. (2)

estimate size of Rydberg atoms, collision rates (for

ground state atoms and Rydberg state atoms?) or cite

just [4],[18]

State preparation - The goal of the manipulation pro-

tocol is to prepare a collective single excitation state

|W � = 1√
N

N�

i=1

e
ı�k0�ri |ei� , (3)

where |ei� = |g...geg...g� means atom i in state e and all

other atoms in state g, starting front he system ground
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FIG. 2. Final infidelity � for a pi-pulses (squares??) and

optimal pulses (circles???) in a one dimensional chain with

lattice constant a = 0.5µm and a pulse duration of T = 10 ns.

state |ψ(0)� = |gg . . . gg�.
In order to engineer the preparation of the W-state

(equation 3) we simulate the time evolution of the sys-

tem and optimize the pulse sequence. The time evolution

is obtained by a tensor-network algorithm including two-

body long-range interactions [25? ]. The optimization

is performed by means of the Chopped RAndom Bases

(CRAB) optimal control technique for many-body quan-

tum systems dynamics recently introduced in [20, 21].

The optimal control technique and the simulation of the

many-body dynamics are based on the a priori reduc-

tion of the problem complexity via a proper truncation

of the accessible space used to describe the system wave

function and the control field. In particular, in the sys-

tem introduced above, the Rabi frequencies of two driv-

ing lasers Ωgr(t) and Ωer(t) are subject to optimization

by the CRAB optimization method. The pulses are ex-

panded in a truncated basis Ωi =
�Ni

j=1 ci,jfi,j(t) where

the ci,j are the coefficients of the expansion and the basis

functions fi,j(t) are chosen according to physical proper-

ties of the system. In particular here we choose the first

principal harmonics of the Fourier expansion. The fig-

ure of merit to be minimized is the final infidelity of the

time-evolved ground state of the system by the pulses Ω
with the target state |W �, namely

� = 1− |�W |ψ(T )�|2. (4)

The multi-variable function defined by (4), � ≡ �(ci,j) is
finally minimized by means of direct-search methods [20].

Typical parameters are Ni =, iterations etc., trotter, chi,

errors etc.???

Results - We first concentrate on a simple scenario

of a one-dimensional chain of N Rydberg atoms with

fixed positions. Despite its simplicity – as we shall show

later – this model already grasps the essential features

of the system dynamics as the long range interactions ef-

Rydberg atoms

11%
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FIG. 5. 3D cloud of N = 10 randomly distributed atoms:
Errors in the state preparation. Pi calculated by MPS simu-
lation is compared to theory curve from P (r) model.

going up to having a fraction of
Ω2

gr

Ω2
gr+V 2 = 1− 1

1+c2d12
ij

in

the excited (Rydberg) state (c = Ωgr/C6). This double
excitation part is missing in the population Pi represent-
ing the first excitation sector. Summing this up over all
neighbors gives

Pi ≈
1

N(N − 1)

N�

j=1,j �=i

1

1 + c2d12ij

. (4)

In the thermodynamical limit an analogous continuous
expression can be obtained by considering a homogeneous
spherical cloud of radius R, introducing P (r) as the single
atom excitation. This yields

P (r) ≈ 1

NV

�
ρ2 sin2 θ dρ dθ dφ

1 + c2(r2 + ρ2 − 2rρ sin θ cosφ)6
(5)

with r the radial position (distance from center of mass of
the cloud) of atom i in the cloud and integrating over the
sphere’s volume. Fig. 5 shows the comparison between
Eq. (5) and the Pi obtained from a numerical simulation
of the dynamics of ten atoms. The good correspondence
of this high density limit theory and numerical results of
the few body simulation supports the previous finding of
the very weak dependence of the results on the number
of atoms N , that is considering only ten atoms already is
enough to get the major features of the state preparation.

If we include now in our theoretical description the fact
that the atoms are moving with thermal distribution we
shall consider the lasers’ Doppler shifts depending on the
velocity of the atoms. Furthermore we shall analyze the
effects of a time-dependent interaction V (t) and the fact
that the atoms might move out of the laser beam dur-
ing state preparation as at room temperature an average
atom moves about 0.5µm in T0 time. For this time scale
we can achieve good blockade within a sphere of radius
0.5 − 0.55µm (corresponding to L0 = 1 − 1.1µm). As
the pulse is robust with respect to random positions we
expect that the thermal motion will not affect drastically
the results.

Finally, the Doppler effect will cause a widening of the
excitation populations with a Lorentzian shape P

D
i ∝

1/(1 + v
2
i,�k

2
/Ω2) depending on the velocity vi,� of atom

i in the direction of the incoming lasers. The Doppler
shift enters as an additional term (k1 ± k2)vi,�|r��r| into
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FIG. 6. Directionality p as a function of temperature ϑ for
parallel lasers (red) and anti parallel lasers (black). Squares
are values from state preparation with optimized pulses, cir-
cles from Gaussian π-pulses. The inset shows the emission
cone on resonance for ϑ = 220◦C and anti parallel lasers.

Hloc,i (we neglect the Doppler shift of the third laser as
Ωre � krevi). The wave numbers ki of lasers 1 (|g� ↔ |i�
transition) and 2 (|i� ↔ |r� transition) are summed up or
subtracted depending on whether the lasers are parallel
or anti parallel. We consider a sphere of radius 0.53µm
and an atomic density and velocity distribution corre-
sponding to temperatures of 200−260 ◦C, that is approx-
imatively N = 200− 1200 atoms and a velocity distribu-
tion characterized by a Gaussian width of 213−226m/s.
We calculate the approximate W-state |W̃ � =

�
i αi|ei�

(where the αi contain the Doppler widening depending on
the directions of the lasers) obtained by our state prepa-
ration pulses by simulating the evolution by Ωgr for N

atoms assuming perfect blockade thus keeping track only
of the ground state and the N singly excited states thus
constraining the system evolution to the ground state and
the first excitation sector. To model the decay of |W̃ � we
follow the full exponential kernel description [14–18, 31]
and in addition we include also the motion of the parti-
cles.
Fig. 6 shows the resulting directionality p (the fraction

of the photon emitted in forward direction) as a function
of the temperature, each value averaged over 240 random
realizations of uniform position distribution and Gaus-
sian velocity distribution after decay time 100 ns. The in-
set shows the emission cone on resonance for ϑ = 220 ◦C.
The forward cone is defined to cover about 3% of the
solid angle corresponding to a maximum deviation from
forward direction of 0.3 rad (dashed lines). Values for p

are black for parallel and red for anti parallel lasers on
the |g� ↔ |i� and |i� ↔ |r� transitions. Clearly highest
directionality is obtained for anti parallel lasers. Squares
correspond to state preparation with the optimized pulse.
Circles mean state preparation with Gaussian π-pulses -
in this case we have to decrease the cloud radius and thus
deal only with about half as many atoms participating in
the W-state leading to a reduction of the directionality.
At higher temperatures samples are denser and thus
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FIG. 3. Left: Guessed Gaussian π-pulses. Middle: Pulse from
optimization of 4 atoms chain. Right: Guess optimized for 3D
cloud. Red: Ωgr, blue: Ωre.

excitations and enhances the driving Rabi frequency for

the |g� ↔ |r� transition by a factor of
√
N in an ensemble

of N atoms as one excitation suppresses N−1 other pos-

sible excitations [13, 30]. Fig. 2 shows the final infidelity

� with respect to the |W � state obtained via Gaussian

π-pulses (Fig. 3, left) of atoms in a 1D chain with lattice

spacing a0 = 0.35µm for T0 = 2.5 ns and total exten-

sion L0 = a0(N − 1). Notice that for different numbers

of atoms N the Rabi frequency Ωgr has been rescaled by

1/
√
N to correct for the

√
N enhancement due to the Ry-

dberg blockade effect. From the figure it is clear that the

Gaussian π-pulses fail for L0 > 0.7µm (corresponding to

more than three atoms) where Ωgr gets comparable to

the interaction strength. On the contrary the optimized

pulses yield infidelity � < 10−2 up to L0 ≈ 1.4µm thus

allow to almost double the system size. So by optimiza-

tion we can beat the blockade radius associated with the

guess pulse. This effect exceeds what one can expect by

just stretching Ωgr over the whole operation time and

thus lowering its bandwidth. The presented pulses have

only real Rabi frequencies. Allowing also for complex

values roughly results in a 15% relative improvement of

the state preparation error.

As stated in the introduction, our final goal is to pre-

pare an ensemble of atoms with (uniformly distributed)

random positions in 3D space moving randomly with

thermally distributed velocities in the W-state. We thus

now consider a 3D cloud of N frozen atoms at random

positions. Differently from the previous case, the inter-

actions between atoms are random due to the distance-

dependent interaction terms and this means that we have

to produce very robust pulses “on average” at the cost

of some fidelity loss for each given sample of atoms. For

this aim we extract the relevant features of the optimized

pulses e.g. Fig. 3 (middle) and optimize only few param-

eters as the height and the width of the two pulses. The

resulting optimal pulses are reported in the right panel of

Fig. 3; improvement here is mainly due to the reduction

of the bandwidth. The |g� ↔ |r� transition is performed

via a long flat pulse followed by a fast kick in the |r� ↔ |e�
transition. Finally, we compared the performance of the

two schemes: the infidelity � obtained by W-state prepa-

ration with the optimized pulse and with the guessed
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FIG. 4. 3D cloud of 10 randomly distributed atoms: infidelity
� as a function of the cloud’s diameter L0 plotted for Gaus-
sian π-pulses (circles) and an optimized sequence (squares).
The inset shows that N has almost no influence on �. The
curves in the inset correspond to L0 = 0.83 . . . 1.46µm and
the optimized pulse.

Gaussian π-pulses averaged over different system samples

(i.e. different instances of the random positions). Fig. 4

shows the infidelity � for clouds of ten atoms as a func-

tion of different maximum cloud extension L0 while in

the inset of Fig. 4 � is shown as a function of the number

of atoms N = 7, 8, . . . 11 in the sample. In both cases the

errorbars correspond to the statistical noise from 8 real-

izations of random atoms positions within a cloud of fixed

maximum diameter L0. The optimized pulses clearly re-

sult in improved infidelities and most importantly with

almost no dependency on the number of atoms. This

result, as we shall show below, is corroborated also by

our analytical estimate of accuracy of the optimal state

preparation. An additional complexity toward the exper-

imental realization of the proposed protocol arises from

the fact that the number N of atoms in the ensemble

depends on the density and the excitation volume and

can only be determined with Poisson precision (±
√
N)

changing a π-pulse roughly as cos(
π
2

√
1±N) ≈ 1− π2

32N .

This very weak dependence on the atom number N of the

final fidelity paves the way to a successful experimental

realization of the W-state at room temperature.

We can provide an analytical estimate of the state

preparation error under the hypothesis that: a) the major

deviation of the prepared state from the desired W-state

is given by the population on the two-excitations sector,

b) each Rydberg atom is approximatively performing an

independent Rabi oscillation between the |g� and |r� and
c) the influence of an atom by means of another nearby

excited one is to detune the single atom dynamics. The

detuning will just be the van-der-Waals interaction be-

tween two Rydberg excited atoms V = C6d
−6
ij , with dij

the distance between atom i and atom j and thus the re-

sulting Rabi oscillation for this single atom is then only

20 min
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Control complexity

✤ Are there any algorithmic/informational limits?

✤ How to characterize the complexity of the optimization task?

Controllability, Reachability, Quantum Speed Limit, ...
✤ What are the physical limits of control of MBQS?

T. Caneva, A. Silva, R. Fazio, T. Calarco, S. Montangero, Arxive: 1301.6015
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Reversibility

On the reversal of quantum many body dynamics and its complexity

Tommaso Caneva1, Alessandro Silva2 3, Rosario Fazio4, Tommaso Calarco1, and Simone Montangero1
1Institut für Quanteninformationsverarbeitung, Universität Ulm, 89069 Ulm, Germany

2 SISSA – International School for Advanced Studies, via Bonomea 265, 34136 Trieste, Italy.
3 Abdus Salam ICTP, Strada Costiera 11, 34100 Trieste, Italy and

4NEST CNR-INFM & Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy

We demonstrate that via optimal control arbitrary time evolutions of many-body quantum systems
can be reversed. The optimal reversed dynamics –contrary to standard time-reversal procedures–
is extremely robust with respect to external source of noise. We propose a conjecture establishing
a relation between control complexity and the dimension of the manifold supporting the dynamics
of a quantum system, verifying its validity in three different models and elucidating the role of the
integrability of the model.

PACS numbers:

In recent years, fast progress on the understanding
non-equilibrium dynamics of many-body quantum sys-
tems has been spurred by unprecedented opportunities
offered by cold atom quantum simulators as well as by
the development of powerful numerical tools [1, 2]. In-
deed, numerical methods like tensor networks have made
it possible to investigate the out-of-equilibrium dynamics
of many-body quantum systems and to compare theoreti-
cal results with experimental data obtained in highly con-
trolled and clean systems. Many interesting effects have
been investigated so far including (just to give a few ex-
amples) quench dynamics [3–5], thermalization [6], quan-
tum phase transition dynamics [7], effects of disorder [8]
and of periodic perturbations [9, 10] both in fermonic and
bosonic systems [11]. These advances in manipulating
and characterising non equilibrium dynamics may result
in the development of strategies to control the quantum
evolution of many-body systems. This task, unthinkable
till a few years ago, paves the way for the realisation of
many-body state engineering where optimal control tech-
niques [12] appear to be the ideal tool to use.

Quantum optimal control has been applied only re-
cently to quantum many-body systems, e.g. to the adi-
abatic dynamics through a quantum critical point [13]
or to the cooling of Luttinger liquids [14]. In particu-
lar, an algorithm for optimal control particularly suited
for many-body problems, the CRAB optimization, has
been recently developed and applied to state prepara-
tion of strongly interacting cold atoms in optical lattices
and spin systems [15]. The theoretical study and ex-
perimental implementation of optimal control strategies
to quantum many-body systems poses in turn a number
of important questions. While it has been shown how
quantum control can drive a system up to its quantum
speed limit [16, 17], to which extent it is possible to con-
trol a quantum many-body systems? Which resources
are needed in terms of complexity, in particular in con-
nection to the integrable/chaotic dynamics of the system
under investigation? And how efficient and robust will
the resulting control strategy be?
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FIG. 1: Dynamical scheme to optimally reverse the system
dynamics: a system in the ground state is taken out of equilib-
rium by multiple random quenches. Reversing the dynamics
can be obtained in general via a time-inversion or by solving
an optimal control problem.

In this Letter we address these questions by character-
ising qualitatively and quantitatively the ability to reach,
from a given input, a predetermined final state of a many-
body system through the time dependence of some global
couplings. We will in particular consider the problem of
reversing complex quantum dynamics: a system is first
taken from the ground state to a highly disordered state
via random quenches (see Fig. 1), characterised by a high
diagonal entropy Sd (see Ref. [18]), and then driven back
to the initial states. We will first address the robust-
ness problem, showing that while the obvious strategy
of returning to the ground state by time-reversing the
protocol is highly sensitive to external noise in the cou-
plings [18], an optimal protocol based on CRAB, is in
turn much more robust against errors, making it a good
candidate for experimental realizations. We then address
the problem on a more general ground, elucidating for
the first time the relationship between control complex-
ity and dimension of the manifold in which the dynam-
ics occurs. In particular, we demonstrate that the com-
plexity is weakly dependent on the initial and final state
properties while it is instead strongly influenced by the
integrability of the system.

Is it possible? Is it difficult?
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Diagonal Entropy

Sd =
�

ρnn log ρnn

ρ =
�

ρnm|En(t)��Em(t)|

H(t) =
�

En(t)|En(t)��En(t)|

✓ Introduces a preferred “natural” basis
✓ At equilibrium for diagonal states: equal 
to VN entropy (positive, additive, 0 for T=0)
✓ Constant for stationary (diagonal) states 
✓ Constant for adiabatic processes
✓ Only increases from stationary states in 
closed systems
✓ Obeys fundamental Thermodynamical 
equation: 

∆E = T∆S +
�

j

∂E

∂λj

����
S

∆λj

Sd(T ) ≥ Sd(0)

we are interested in 
quantifying the state 
complexity  
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FIG. 2: Diagonal entropy Sd for the Ising model (black line)
and for the LMG model (red line) as a function of time during
the disordering procedure (left side of the figure, logarithmic
scale for the time) and during the optimization (right side of
the figure, linear scale for the time) with N = 20, Tmax =
100/∆, where ∆ is the critical gap. Time is in units of J.

These results bring together in a new perspective, op-

timal control, complexity theory and thermodynamics,

paving the way to further developments and investiga-

tions. In particular, an interesting aspect related to our

study is the reversibility of a closed many-body quan-

tum systems dynamics which might have intriguing con-

sequences on a fundamental problem in physics that is,

the emergence of the arrow of time. Indeed, one can re-

vert the dynamics by inverting the time propagator, as it

is typically done in spin-echo experiments [20]. This pro-

cedure is a highly non trivial task in a general many-body

system and requires an enormous accuracy in the knowl-

edge of the history of the dynamical process and control

of the system: the minimum deviation from the exact

path inversion has dramatic consequences [18]. In prac-

tice very few systems are amenable to such operations,

since quantum systems are typically only partially tun-

able. The results presented here suggest that the intrin-

sic complexity of inverting the arrow of time rests on the

tensor-product structure of many-body quantum system

Hamiltonians, that is on the fact that in a non-integrable

system the amount of information (or band-width) to be

encoded in the optimal controlling field scales exponen-

tially with the number of constituents.

Optimal reversed dynamics– In the following we will

focus on the following dynamical scheme (see Fig. 1): i)

we first initialize the system in an eigenstate (Sd = 0, sta-

tionarity); ii) then apply of a disordering quench process,

generating high diagonal entropy Sd (out of equilibrium

states); iii) and finally steering the system back into the

initial state (Sd = 0) either using an optimized protocol

or time-reversal. For our numerical computations we con-

sider systems described by the following N -spin quantum

spin Hamiltonian:

H = −
�

i,j

Jijσ
x
i σ

x
j − Γ(t)

N�

i

σz
i − Jx

N�

i

σx
i , (1)

For vanishing longitudinal field (Jx = 0), this Hamilto-

nian has two obvious integrable limits, the quantum Ising

chain in transverse field, where Jij = Jδi,i+1, and the

infinite-range quantum Ising model (or Lipkin-Meshkov-

Glick (LMG) model [22]) when Jij = J/N for i < j

(Jij = 0 otherwise). In the presence of a longitudinal

field (Jx �= 0), the quantum Ising chain loses its inte-

grability [23], unless at the critical point (in the scaling

limit) [24]. From now on we set � = 1 and time in units

of J .

Due to the various integrals of motion, the dynamics

of the LMG model is effectively described in the sub-

space generated by the Dicke states |S,Sz�, where S
is the conserved total angular momentum and −S ≤
Sz ≤ S are the allowed possible projections along the

z-axis [25]. The ground state of the Hamiltonian be-

longs to the subspace with S = N/2 and in the fol-

lowing we are working within this subspace. We stress

that in such subspace there are ∼ N/2 Dicke states dy-

namically accessible (corresponding to the allowed values

of Sz with the correct parity) and therefore the maxi-

mal diagonal entropy scales logarithmically with the size,

S
LMG
d ∼ log(N/2 + 1).

The Ising chain in transverse field for Jx = 0 can in turn

be solved exactly through the Jordan-Wigner transfor-

mation mapping the spins onto free fermions [26]. For

the Ising chain the maximal diagonal entropy scales lin-

early with the size S
I
d ∼ (N/2) log(2); indeed the dimen-

sion of the Hilbert space is 2
N/2

due to the conservation

of the parity of the number of fermions obtained with the

Jordan-Wigner transformation.

For both models, we prepare the system in the ground

state |ψ(0)� = |GS� at large value of the driving field Γ
– a fully polarized spin state along the positive z-axis.

We then drive the system out of equilibrium perform-

ing a repeated quench between two values Γ1 and Γ2 of

the control field Γ; each quench lasts a random wait-

ing time Tmax · ri, where Tmax is the maximum allowed

waiting time and ri ∈ [0, 1] is a uniformly distributed

random number [18]. We verified that after a sufficiently

large number of cycles the average Sd produced with the

disordering procedure is approximately independent of

the amplitude |Γ1 −Γ2| and of the waiting time between

two consecutive quenches. Finally we use optimal con-

trol to drive the system from the out of equilibrium state

back to the initial state |ψ(0)�, in a given time T to ob-

tain the final state |ψ(T )�. The optimization is imple-

mented through the Chopped RAndom Basis (CRAB)

technique [15]: after making a guess for a possible re-

turn path Γ0(t), we introduce a correction of the form

Γ(t) = Γ0(t)f(t), where the function f(t) is expressed as
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These results bring together in a new perspective, op-

timal control, complexity theory and thermodynamics,

paving the way to further developments and investiga-

tions. In particular, an interesting aspect related to our

study is the reversibility of a closed many-body quan-

tum systems dynamics which might have intriguing con-

sequences on a fundamental problem in physics that is,

the emergence of the arrow of time. Indeed, one can re-

vert the dynamics by inverting the time propagator, as it

is typically done in spin-echo experiments [20]. This pro-

cedure is a highly non trivial task in a general many-body

system and requires an enormous accuracy in the knowl-

edge of the history of the dynamical process and control

of the system: the minimum deviation from the exact

path inversion has dramatic consequences [18]. In prac-

tice very few systems are amenable to such operations,

since quantum systems are typically only partially tun-

able. The results presented here suggest that the intrin-

sic complexity of inverting the arrow of time rests on the

tensor-product structure of many-body quantum system

Hamiltonians, that is on the fact that in a non-integrable

system the amount of information (or band-width) to be

encoded in the optimal controlling field scales exponen-

tially with the number of constituents.

Optimal reversed dynamics– In the following we will

focus on the following dynamical scheme (see Fig. 1): i)

we first initialize the system in an eigenstate (Sd = 0, sta-

tionarity); ii) then apply of a disordering quench process,

generating high diagonal entropy Sd (out of equilibrium

states); iii) and finally steering the system back into the

initial state (Sd = 0) either using an optimized protocol

or time-reversal. For our numerical computations we con-

sider systems described by the following N -spin quantum

spin Hamiltonian:

H = −
�

i,j

Jijσ
x
i σ

x
j − Γ(t)

N�

i

σz
i − Jx

N�

i

σx
i , (1)

For vanishing longitudinal field (Jx = 0), this Hamilto-

nian has two obvious integrable limits, the quantum Ising

chain in transverse field, where Jij = Jδi,i+1, and the

infinite-range quantum Ising model (or Lipkin-Meshkov-

Glick (LMG) model [22]) when Jij = J/N for i < j

(Jij = 0 otherwise). In the presence of a longitudinal

field (Jx �= 0), the quantum Ising chain loses its inte-

grability [23], unless at the critical point (in the scaling

limit) [24]. From now on we set � = 1 and time in units

of J .

Due to the various integrals of motion, the dynamics

of the LMG model is effectively described in the sub-

space generated by the Dicke states |S,Sz�, where S
is the conserved total angular momentum and −S ≤
Sz ≤ S are the allowed possible projections along the

z-axis [25]. The ground state of the Hamiltonian be-

longs to the subspace with S = N/2 and in the fol-

lowing we are working within this subspace. We stress

that in such subspace there are ∼ N/2 Dicke states dy-

namically accessible (corresponding to the allowed values

of Sz with the correct parity) and therefore the maxi-

mal diagonal entropy scales logarithmically with the size,

S
LMG
d ∼ log(N/2 + 1).

The Ising chain in transverse field for Jx = 0 can in turn

be solved exactly through the Jordan-Wigner transfor-

mation mapping the spins onto free fermions [26]. For

the Ising chain the maximal diagonal entropy scales lin-

early with the size S
I
d ∼ (N/2) log(2); indeed the dimen-

sion of the Hilbert space is 2
N/2

due to the conservation

of the parity of the number of fermions obtained with the

Jordan-Wigner transformation.

For both models, we prepare the system in the ground

state |ψ(0)� = |GS� at large value of the driving field Γ
– a fully polarized spin state along the positive z-axis.

We then drive the system out of equilibrium perform-

ing a repeated quench between two values Γ1 and Γ2 of

the control field Γ; each quench lasts a random wait-

ing time Tmax · ri, where Tmax is the maximum allowed

waiting time and ri ∈ [0, 1] is a uniformly distributed

random number [18]. We verified that after a sufficiently

large number of cycles the average Sd produced with the

disordering procedure is approximately independent of

the amplitude |Γ1 −Γ2| and of the waiting time between

two consecutive quenches. Finally we use optimal con-

trol to drive the system from the out of equilibrium state

back to the initial state |ψ(0)�, in a given time T to ob-

tain the final state |ψ(T )�. The optimization is imple-

mented through the Chopped RAndom Basis (CRAB)

technique [15]: after making a guess for a possible re-

turn path Γ0(t), we introduce a correction of the form

Γ(t) = Γ0(t)f(t), where the function f(t) is expressed as

Disordering Control 2

1 10 100 1000

0

1

2

3

4

5

6

7

S
d

10 20 30 40 50
t

1 10 100 1000
t

0

1

2

3

4

5

6

7

S
d

FIG. 2: Diagonal entropy Sd for the Ising model (black line)
and for the LMG model (red line) as a function of time during
the disordering procedure (left side of the figure, logarithmic
scale for the time) and during the optimization (right side of
the figure, linear scale for the time) with N = 20, Tmax =
100/∆, where ∆ is the critical gap. Time is in units of J.

These results bring together in a new perspective, op-

timal control, complexity theory and thermodynamics,

paving the way to further developments and investiga-

tions. In particular, an interesting aspect related to our

study is the reversibility of a closed many-body quan-

tum systems dynamics which might have intriguing con-

sequences on a fundamental problem in physics that is,

the emergence of the arrow of time. Indeed, one can re-

vert the dynamics by inverting the time propagator, as it

is typically done in spin-echo experiments [20]. This pro-

cedure is a highly non trivial task in a general many-body

system and requires an enormous accuracy in the knowl-

edge of the history of the dynamical process and control

of the system: the minimum deviation from the exact

path inversion has dramatic consequences [18]. In prac-

tice very few systems are amenable to such operations,

since quantum systems are typically only partially tun-

able. The results presented here suggest that the intrin-

sic complexity of inverting the arrow of time rests on the

tensor-product structure of many-body quantum system

Hamiltonians, that is on the fact that in a non-integrable

system the amount of information (or band-width) to be

encoded in the optimal controlling field scales exponen-

tially with the number of constituents.

Optimal reversed dynamics– In the following we will

focus on the following dynamical scheme (see Fig. 1): i)

we first initialize the system in an eigenstate (Sd = 0, sta-

tionarity); ii) then apply of a disordering quench process,

generating high diagonal entropy Sd (out of equilibrium

states); iii) and finally steering the system back into the

initial state (Sd = 0) either using an optimized protocol

or time-reversal. For our numerical computations we con-

sider systems described by the following N -spin quantum

spin Hamiltonian:

H = −
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Jijσ
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i σ
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i − Jx

N�

i

σx
i , (1)

For vanishing longitudinal field (Jx = 0), this Hamilto-

nian has two obvious integrable limits, the quantum Ising

chain in transverse field, where Jij = Jδi,i+1, and the

infinite-range quantum Ising model (or Lipkin-Meshkov-

Glick (LMG) model [22]) when Jij = J/N for i < j

(Jij = 0 otherwise). In the presence of a longitudinal

field (Jx �= 0), the quantum Ising chain loses its inte-

grability [23], unless at the critical point (in the scaling

limit) [24]. From now on we set � = 1 and time in units

of J .

Due to the various integrals of motion, the dynamics

of the LMG model is effectively described in the sub-

space generated by the Dicke states |S,Sz�, where S
is the conserved total angular momentum and −S ≤
Sz ≤ S are the allowed possible projections along the

z-axis [25]. The ground state of the Hamiltonian be-

longs to the subspace with S = N/2 and in the fol-

lowing we are working within this subspace. We stress

that in such subspace there are ∼ N/2 Dicke states dy-

namically accessible (corresponding to the allowed values

of Sz with the correct parity) and therefore the maxi-

mal diagonal entropy scales logarithmically with the size,

S
LMG
d ∼ log(N/2 + 1).

The Ising chain in transverse field for Jx = 0 can in turn

be solved exactly through the Jordan-Wigner transfor-

mation mapping the spins onto free fermions [26]. For

the Ising chain the maximal diagonal entropy scales lin-

early with the size S
I
d ∼ (N/2) log(2); indeed the dimen-

sion of the Hilbert space is 2
N/2

due to the conservation

of the parity of the number of fermions obtained with the

Jordan-Wigner transformation.

For both models, we prepare the system in the ground

state |ψ(0)� = |GS� at large value of the driving field Γ
– a fully polarized spin state along the positive z-axis.

We then drive the system out of equilibrium perform-

ing a repeated quench between two values Γ1 and Γ2 of

the control field Γ; each quench lasts a random wait-

ing time Tmax · ri, where Tmax is the maximum allowed

waiting time and ri ∈ [0, 1] is a uniformly distributed

random number [18]. We verified that after a sufficiently

large number of cycles the average Sd produced with the

disordering procedure is approximately independent of

the amplitude |Γ1 −Γ2| and of the waiting time between

two consecutive quenches. Finally we use optimal con-

trol to drive the system from the out of equilibrium state

back to the initial state |ψ(0)�, in a given time T to ob-

tain the final state |ψ(T )�. The optimization is imple-

mented through the Chopped RAndom Basis (CRAB)

technique [15]: after making a guess for a possible re-

turn path Γ0(t), we introduce a correction of the form

Γ(t) = Γ0(t)f(t), where the function f(t) is expressed as
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uniformly distributed in [−1, 1].

and of the waiting time between two consecutive quenches.
Then the out of equilibrium state is assumed as a starting state for the optimization process; the infidelity
1 − |〈ψ(T )|ψin〉|2 is taken as cost function in the CRAB optimization (T is the fixed total time allowed for the
optimization). In Fig. 5 the behavior of the diagonal entropy Sd (left panel) and of the infidelity (right panel) as a
function of time during the quench and the optimization phases are shown. We also test the robustness of the optimal
reverse protocol with respect to the noise, by adding to the optimal field a random classical telegraph noise, so that
we have a new driving field in presence of noise

Γni = Γ[1 + ni · rn(t)], (5)

where Γ is the driving field in absence of the noise, rn(t) is a random variable uniformly distributed in [−1, 1] and ni

is the intensity of the noise. In the optimization part of Fig. 5 the effect of the noise onto the instantaneous dynamics
is shown using different colors for different noise intensities; in Fig. 6 we show instead the effect of the noise onto the
final results of the optimization: Sd (black circles) and infidelity (red triangles).

V. COMPLEXITY CLASSIFICATION

In this section we summarize our results regarding to the optimization of different states in different models, with
the aim of estimating the complexity of the state-to-state transformation problem. The idea at the basis of this section
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reverse protocol with respect to the noise, by adding to the optimal field a random classical telegraph noise, so that
we have a new driving field in presence of noise

Γni = Γ[1 + ni · rn(t)], (5)

where Γ is the driving field in absence of the noise, rn(t) is a random variable uniformly distributed in [−1, 1] and ni

is the intensity of the noise. In the optimization part of Fig. 5 the effect of the noise onto the instantaneous dynamics
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truncated Fourier series, i.e.

f(t) = 1 +

�
k Aksin(νkt) +Bkcos(νkt)

λ(t)
(2)

Here, k = 1, ..., nf , and νk = 2πk(1 + rk)/T are random-

ized Fourier harmonics, T is the total time evolution,

rk ∈ [0, 1] are random numbers with a flat distribution,

and λ(t) is a normalization function to keep the initial

and final control pulse values fixed. The optimization

problem is then reformulated as the extremization of a

multivariable function F (Ak, Bk, νk), which can be nu-

merically approached with a suitable method [15].

In Fig. 2 typical results of this procedure are shown

for the LMG model (red line) and the Ising model (black

line): in the left half of the picture the disordering pro-

cess is applied and the diagonal entropy increases reach-

ing an average maximal value (SLMG
d ∼ log(N/2) and

SI
d ∼ N/2 log(2)). In the right half of the picture the

optimization phase is shown: even though the Hamil-

tonian is partially tunable (i.e. we do not allow for a

sign-reversal of all couplings) the control is able to steer

the system towards the desired initial stationary state,

reducing Sd to zero, without using information of the

history of the disordering process. We verified that this

holds for different system sizes and different total times

T (data not shown).

As discussed in Ref. [18], driving a system back to its

initial state by a full time-reversal of a protocol is a proce-

dure extremely sensitive to minimal noisy perturbations

It is therefore natural to compare the effects of noise on a

naively time-reversed protocols to those on an optimised

CRAB protocol. In order to do so, we will consider a per-

turbed protocol Γ̃(t) = Γ(t)[1 + r(t)ξ], where Γ(t) is the
original protocol (including a sign change of the couplings

for the time reversed one) and r(t) is a random variable

uniformly distributed in [−1, 1] and ξ is the intensity of

the noise. In Fig. 3 we plot the final infidelity I as a
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α in the Ising (upper panels) and LMG (lower
panels) models, for the two transition |C� → |GS� (left pan-
els) and |MS� → |GS� (right panels) with T = 50 (ising) and
T = 100 (LMG) and N = 10, 20, 30, 40 (black circles, red
squares, blue triangles, green triangles respectively).

function of the intensity of noise ξ for the exact reverse

dynamics (black circles continuous line) and for the op-

timized reverse dynamics (red triangle continuous line).

The robustness of the optimized protocol emerges strik-

ingly: more than six orders of magnitude in the intensity

of the noise are needed to affect the optimal protocol as

much as the time-reversed one. In order to verify that the

stability of the optimized protocol is not simply due to

the reduced total evolution time, we repeated the analy-

sis with a time-reversed protocol lasting a time compara-

ble with that one of the optimized process: the minimal

time to obtain a maximal entropy state is around T ∼ 90

(black circles dashed line), to be compared with the du-

ration of the optimal process, T ∼ 50. The results shown

in Fig. 3 confirm that the optimal protocol is intrinsi-

cally more stable than the time-reversed one, making it

an excellent candidate for experimental implementations.

Control complexity– We demonstrated the feasibility of

reversing a dynamics connecting maximal entropy states

with vanishing entropy states. We would like now to

characterize the complexity of such a generic state-to-

state conversion problem. Let us first give an operative

definition of complexity: within the CRAB algorithm

we will measure the complexity in terms of the number

nf of Fourier components needed to solve the optimisa-

tion problem below a certain chosen infidelity. Intuitively

transformations from a state with maximal diagonal en-

tropy (i.e. completely delocalized in phase space) to one

with low diagonal entropy (i.e. well localized) are ex-

pected to be more difficult than those between localized

states or between adiabatically connected states. It turns

out however that the complexity of an optimisation pro-

tocol depends only weakly on the choice of initial and fi-

nal states. Let us illustrate this considering two different

-t

CRAB

29



Complexity 

1000 20 40 60 80

1

0.001

0.01

0.1

nf

Er
ro

r

g(nf/B(N))= exp[(nf/B(N))^2]

30



Complexity 

Scaling of the number of parameters with the system size B(N)

1000 20 40 60 80

1

0.001

0.01

0.1

nf

Er
ro

r

g(nf/B(N))= exp[(nf/B(N))^2]

30



Reversibility and Information

N=10,...,40

Ising

LMG

3

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

 ξ

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

I

FIG. 3: Infidelity I as a function of the intensity of the noise
ξ in the Ising model for N = 20, with Γ(t) = Γ(1 + ξ · r(t)),
where Γ is the driving field in the absence of noise and r(t) is a
random variable uniformly distributed in [−1, 1]. Black circles
continuous (dashed) line: exact reverse dynamics T ∼ 2 · 103
(T ∼ 90); red triangles continuous line: optimized reverse
T ∼ 50.

truncated Fourier series, i.e.

f(t) = 1 +
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Here, k = 1, ..., nf , and νk = 2πk(1 + rk)/T are random-

ized Fourier harmonics, T is the total time evolution,

rk ∈ [0, 1] are random numbers with a flat distribution,

and λ(t) is a normalization function to keep the initial

and final control pulse values fixed. The optimization

problem is then reformulated as the extremization of a

multivariable function F (Ak, Bk, νk), which can be nu-

merically approached with a suitable method [15].

In Fig. 2 typical results of this procedure are shown

for the LMG model (red line) and the Ising model (black

line): in the left half of the picture the disordering pro-

cess is applied and the diagonal entropy increases reach-

ing an average maximal value (SLMG
d ∼ log(N/2) and

SI
d ∼ N/2 log(2)). In the right half of the picture the

optimization phase is shown: even though the Hamil-

tonian is partially tunable (i.e. we do not allow for a

sign-reversal of all couplings) the control is able to steer

the system towards the desired initial stationary state,

reducing Sd to zero, without using information of the

history of the disordering process. We verified that this

holds for different system sizes and different total times

T (data not shown).

As discussed in Ref. [18], driving a system back to its

initial state by a full time-reversal of a protocol is a proce-

dure extremely sensitive to minimal noisy perturbations

It is therefore natural to compare the effects of noise on a

naively time-reversed protocols to those on an optimised

CRAB protocol. In order to do so, we will consider a per-

turbed protocol Γ̃(t) = Γ(t)[1 + r(t)ξ], where Γ(t) is the
original protocol (including a sign change of the couplings

for the time reversed one) and r(t) is a random variable
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timized reverse dynamics (red triangle continuous line).

The robustness of the optimized protocol emerges strik-

ingly: more than six orders of magnitude in the intensity

of the noise are needed to affect the optimal protocol as

much as the time-reversed one. In order to verify that the

stability of the optimized protocol is not simply due to

the reduced total evolution time, we repeated the analy-

sis with a time-reversed protocol lasting a time compara-

ble with that one of the optimized process: the minimal

time to obtain a maximal entropy state is around T ∼ 90

(black circles dashed line), to be compared with the du-

ration of the optimal process, T ∼ 50. The results shown

in Fig. 3 confirm that the optimal protocol is intrinsi-

cally more stable than the time-reversed one, making it

an excellent candidate for experimental implementations.

Control complexity– We demonstrated the feasibility of

reversing a dynamics connecting maximal entropy states

with vanishing entropy states. We would like now to

characterize the complexity of such a generic state-to-

state conversion problem. Let us first give an operative

definition of complexity: within the CRAB algorithm

we will measure the complexity in terms of the number

nf of Fourier components needed to solve the optimisa-

tion problem below a certain chosen infidelity. Intuitively

transformations from a state with maximal diagonal en-

tropy (i.e. completely delocalized in phase space) to one

with low diagonal entropy (i.e. well localized) are ex-

pected to be more difficult than those between localized

states or between adiabatically connected states. It turns

out however that the complexity of an optimisation pro-

tocol depends only weakly on the choice of initial and fi-
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merically approached with a suitable method [15].

In Fig. 2 typical results of this procedure are shown

for the LMG model (red line) and the Ising model (black

line): in the left half of the picture the disordering pro-

cess is applied and the diagonal entropy increases reach-
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d ∼ log(N/2) and

SI
d ∼ N/2 log(2)). In the right half of the picture the

optimization phase is shown: even though the Hamil-

tonian is partially tunable (i.e. we do not allow for a
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the system towards the desired initial stationary state,

reducing Sd to zero, without using information of the

history of the disordering process. We verified that this

holds for different system sizes and different total times
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The robustness of the optimized protocol emerges strik-
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of the noise are needed to affect the optimal protocol as

much as the time-reversed one. In order to verify that the

stability of the optimized protocol is not simply due to

the reduced total evolution time, we repeated the analy-

sis with a time-reversed protocol lasting a time compara-

ble with that one of the optimized process: the minimal

time to obtain a maximal entropy state is around T ∼ 90

(black circles dashed line), to be compared with the du-

ration of the optimal process, T ∼ 50. The results shown

in Fig. 3 confirm that the optimal protocol is intrinsi-

cally more stable than the time-reversed one, making it

an excellent candidate for experimental implementations.

Control complexity– We demonstrated the feasibility of

reversing a dynamics connecting maximal entropy states

with vanishing entropy states. We would like now to

characterize the complexity of such a generic state-to-

state conversion problem. Let us first give an operative

definition of complexity: within the CRAB algorithm

we will measure the complexity in terms of the number

nf of Fourier components needed to solve the optimisa-

tion problem below a certain chosen infidelity. Intuitively
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pected to be more difficult than those between localized

states or between adiabatically connected states. It turns
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much as the time-reversed one. In order to verify that the

stability of the optimized protocol is not simply due to

the reduced total evolution time, we repeated the analy-

sis with a time-reversed protocol lasting a time compara-

ble with that one of the optimized process: the minimal

time to obtain a maximal entropy state is around T ∼ 90

(black circles dashed line), to be compared with the du-

ration of the optimal process, T ∼ 50. The results shown

in Fig. 3 confirm that the optimal protocol is intrinsi-

cally more stable than the time-reversed one, making it

an excellent candidate for experimental implementations.

Control complexity– We demonstrated the feasibility of

reversing a dynamics connecting maximal entropy states

with vanishing entropy states. We would like now to

characterize the complexity of such a generic state-to-

state conversion problem. Let us first give an operative

definition of complexity: within the CRAB algorithm

we will measure the complexity in terms of the number

nf of Fourier components needed to solve the optimisa-

tion problem below a certain chosen infidelity. Intuitively

transformations from a state with maximal diagonal en-

tropy (i.e. completely delocalized in phase space) to one

with low diagonal entropy (i.e. well localized) are ex-

pected to be more difficult than those between localized

states or between adiabatically connected states. It turns

out however that the complexity of an optimisation pro-

tocol depends only weakly on the choice of initial and fi-

nal states. Let us illustrate this considering two different
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FIG. 2: Diagonal entropy Sd for the Ising model (black line)
and for the LMG model (red line) as a function of time during
the disordering procedure (left side of the figure, logarithmic
scale for the time) and during the optimization (right side of
the figure, linear scale for the time) with N = 20, Tmax =
100/∆, where ∆ is the critical gap. Time is in units of J.

These results bring together in a new perspective, op-

timal control, complexity theory and thermodynamics,

paving the way to further developments and investiga-

tions. In particular, an interesting aspect related to our

study is the reversibility of a closed many-body quan-

tum systems dynamics which might have intriguing con-

sequences on a fundamental problem in physics that is,

the emergence of the arrow of time. Indeed, one can re-

vert the dynamics by inverting the time propagator, as it

is typically done in spin-echo experiments [20]. This pro-

cedure is a highly non trivial task in a general many-body

system and requires an enormous accuracy in the knowl-

edge of the history of the dynamical process and control

of the system: the minimum deviation from the exact

path inversion has dramatic consequences [18]. In prac-

tice very few systems are amenable to such operations,

since quantum systems are typically only partially tun-

able. The results presented here suggest that the intrin-

sic complexity of inverting the arrow of time rests on the

tensor-product structure of many-body quantum system

Hamiltonians, that is on the fact that in a non-integrable

system the amount of information (or band-width) to be

encoded in the optimal controlling field scales exponen-

tially with the number of constituents.

Optimal reversed dynamics– In the following we will

focus on the following dynamical scheme (see Fig. 1): i)

we first initialize the system in an eigenstate (Sd = 0, sta-

tionarity); ii) then apply of a disordering quench process,

generating high diagonal entropy Sd (out of equilibrium

states); iii) and finally steering the system back into the

initial state (Sd = 0) either using an optimized protocol

or time-reversal. For our numerical computations we con-

sider systems described by the following N -spin quantum

spin Hamiltonian:

H = −
�

i,j

Jijσ
x
i σ

x
j − Γ(t)

N�

i

σz
i − Jx

N�

i

σx
i , (1)

For vanishing longitudinal field (Jx = 0), this Hamilto-

nian has two obvious integrable limits, the quantum Ising

chain in transverse field, where Jij = Jδi,i+1, and the

infinite-range quantum Ising model (or Lipkin-Meshkov-

Glick (LMG) model [22]) when Jij = J/N for i < j

(Jij = 0 otherwise). In the presence of a longitudinal

field (Jx �= 0), the quantum Ising chain loses its inte-

grability [23], unless at the critical point (in the scaling

limit) [24]. From now on we set � = 1 and time in units

of J .

Due to the various integrals of motion, the dynamics

of the LMG model is effectively described in the sub-

space generated by the Dicke states |S,Sz�, where S
is the conserved total angular momentum and −S ≤
Sz ≤ S are the allowed possible projections along the

z-axis [25]. The ground state of the Hamiltonian be-

longs to the subspace with S = N/2 and in the fol-

lowing we are working within this subspace. We stress

that in such subspace there are ∼ N/2 Dicke states dy-

namically accessible (corresponding to the allowed values

of Sz with the correct parity) and therefore the maxi-

mal diagonal entropy scales logarithmically with the size,

S
LMG
d ∼ log(N/2 + 1).

The Ising chain in transverse field for Jx = 0 can in turn

be solved exactly through the Jordan-Wigner transfor-

mation mapping the spins onto free fermions [26]. For

the Ising chain the maximal diagonal entropy scales lin-

early with the size S
I
d ∼ (N/2) log(2); indeed the dimen-

sion of the Hilbert space is 2
N/2

due to the conservation

of the parity of the number of fermions obtained with the

Jordan-Wigner transformation.

For both models, we prepare the system in the ground

state |ψ(0)� = |GS� at large value of the driving field Γ
– a fully polarized spin state along the positive z-axis.

We then drive the system out of equilibrium perform-

ing a repeated quench between two values Γ1 and Γ2 of

the control field Γ; each quench lasts a random wait-

ing time Tmax · ri, where Tmax is the maximum allowed

waiting time and ri ∈ [0, 1] is a uniformly distributed

random number [18]. We verified that after a sufficiently

large number of cycles the average Sd produced with the

disordering procedure is approximately independent of

the amplitude |Γ1 −Γ2| and of the waiting time between

two consecutive quenches. Finally we use optimal con-

trol to drive the system from the out of equilibrium state

back to the initial state |ψ(0)�, in a given time T to ob-

tain the final state |ψ(T )�. The optimization is imple-

mented through the Chopped RAndom Basis (CRAB)

technique [15]: after making a guess for a possible re-

turn path Γ0(t), we introduce a correction of the form

Γ(t) = Γ0(t)f(t), where the function f(t) is expressed as
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vert the dynamics by inverting the time propagator, as it
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Hamiltonians, that is on the fact that in a non-integrable

system the amount of information (or band-width) to be
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σx
i , (1)

For vanishing longitudinal field (Jx = 0), this Hamilto-

nian has two obvious integrable limits, the quantum Ising

chain in transverse field, where Jij = Jδi,i+1, and the

infinite-range quantum Ising model (or Lipkin-Meshkov-

Glick (LMG) model [22]) when Jij = J/N for i < j

(Jij = 0 otherwise). In the presence of a longitudinal

field (Jx �= 0), the quantum Ising chain loses its inte-

grability [23], unless at the critical point (in the scaling

limit) [24]. From now on we set � = 1 and time in units

of J .

Due to the various integrals of motion, the dynamics

of the LMG model is effectively described in the sub-

space generated by the Dicke states |S,Sz�, where S
is the conserved total angular momentum and −S ≤
Sz ≤ S are the allowed possible projections along the

z-axis [25]. The ground state of the Hamiltonian be-

longs to the subspace with S = N/2 and in the fol-

lowing we are working within this subspace. We stress

that in such subspace there are ∼ N/2 Dicke states dy-

namically accessible (corresponding to the allowed values

of Sz with the correct parity) and therefore the maxi-

mal diagonal entropy scales logarithmically with the size,

S
LMG
d ∼ log(N/2 + 1).

The Ising chain in transverse field for Jx = 0 can in turn

be solved exactly through the Jordan-Wigner transfor-

mation mapping the spins onto free fermions [26]. For

the Ising chain the maximal diagonal entropy scales lin-

early with the size S
I
d ∼ (N/2) log(2); indeed the dimen-

sion of the Hilbert space is 2
N/2

due to the conservation

of the parity of the number of fermions obtained with the

Jordan-Wigner transformation.

For both models, we prepare the system in the ground

state |ψ(0)� = |GS� at large value of the driving field Γ
– a fully polarized spin state along the positive z-axis.

We then drive the system out of equilibrium perform-

ing a repeated quench between two values Γ1 and Γ2 of

the control field Γ; each quench lasts a random wait-

ing time Tmax · ri, where Tmax is the maximum allowed

waiting time and ri ∈ [0, 1] is a uniformly distributed

random number [18]. We verified that after a sufficiently

large number of cycles the average Sd produced with the

disordering procedure is approximately independent of

the amplitude |Γ1 −Γ2| and of the waiting time between

two consecutive quenches. Finally we use optimal con-

trol to drive the system from the out of equilibrium state

back to the initial state |ψ(0)�, in a given time T to ob-

tain the final state |ψ(T )�. The optimization is imple-

mented through the Chopped RAndom Basis (CRAB)

technique [15]: after making a guess for a possible re-

turn path Γ0(t), we introduce a correction of the form

Γ(t) = Γ0(t)f(t), where the function f(t) is expressed as

4

state-to-state transformations: from a maximal entropy
state to the ground state (|MS� → |GS�) and from an
eigenstate at the center of the spectrum to the ground
state (|C� → |GS�), for both the Ising model and LMG
model. In Fig. 4 we show the final infidelity for different
system sizes as a function of the number of frequencies
nf , at fixed total time T . In all cases considered, the
infidelity decays exponentially with the rescaled num-
ber of frequencies nF /B(N) = nf/N

α, showing a very
similar behavior for both states in both models: indeed
we have I ∼ g(nf/N

α), g(x) being a scaling function of
the form exp(−x

η), with 5 > η > 2 and 1 < α < 1.5.
The first interesting feature emerging from our analy-
sis is that within each model the two transformations
|MS� → |GS� and |C� → |GS� approximately present
the same complexity: α is only slightly larger for the
|MS� → |GS� conversion. This result can be explained
by the fact that the states |C� and |GS� are not triv-
ially connected through the Hamiltonian, although they
are both localized with respect to H[Γ] for Γ � 1. In
practice also in this case the transformation is performed
by first spreading the state onto the whole Hilbert space
and then recombining the different amplitudes into the
desired state. Such an operation requires approximately
the same complexity as the state-to-state conversion be-
tween the maximally spread state and the ground state,
|MS� → |GS�. The second feature is instead emerging
from the comparison between the two different models:
the complexity scales approximately linearly with the size
for both the LMG and the Ising model.

Conjecture– The previous arguments suggest that the
number of frequencies nf required in the optimal control
field to achieve full control is not strongly dependent on
the initial and final states but rather of the dimension of
the manifold supporting the dynamics, namely Dm(N).
Here we conjecture that the number of independent basis
functions nf needed to achieve a given level of fidelity, i.e.
the complexity of the control problem, is nf � Dm(N)
up subleading corrections. Since in both models con-
sidered above the dynamics is supported by a manifold
that scales linearly with the number of spins N , in or-
der to further support and verify our conjecture we will
consider in addition a non integrable system, namely the
Ising model in presence of a longitudinal field Jx �= 0
in Eq. 1. In this case, we expect that the optimization
complexity should increase drastically since the effective
manifold supporting the dynamics has dimension Dm(N)
scaling now exponentially with N . We performed simu-
lations for both cases, Jx = 0 (integrable system) and
Jx �= 0 (non integrable system), analyzing the behaviour
of the infidelity as a function of the number of frequencies
for systems of different sizes. As before, in both cases the
infidelity decays exponentially as a function of the num-
ber of frequencies, I ∼ g(−nf/B(N)) (data not shown).
In Fig. 5 we show the fitted decay rate B(N) values as a
function of the size N for Jx �= 0 (full circles) and Jx = 0
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FIG. 5: Decay rate B as a function of the size N for the Ising
model with Jx �= 0 (black circles) and Jx = 0 (red triangles).

(empty triangles). Despite the fact that due to the ex-
ponentially growing Hilbert space we are now restricted
to small sizes 2 < N < 8, as clearly shown by the fits,
the rate B(N) for the integrable model (Jx = 0) scales
linearly with the size, while the non integrable model
(Jx �= 0) it scales as an exponential with N , that is
B(N) ∝ Dm(N). This implies that to keep a constant
infidelity g(−nf/B(N)) = const while increasing the sys-
tem size N , we need to scale the number of frequencies
as nf � B(N) � Dm(N) in perfect agreement with the
prediction of our conjecture. Interestingly, in the case
Jx = 0, optimal control complexity scales approxima-
tively linearly even though those results have been ob-
tained simulating the Ising model in the full exponential
Hilbert space without using the Wigner-Jordan transfor-
mation. Thus, optimal control complexity appears to be
not influenced by the simulation details and thus CRAB
control might be very effective in any integrable system,
even in cases where the exact solution is unknown.

Conclusions– In this work we demonstrated for the
first time the possibility of employing optimal control to
reverse the dynamics of many-body quantum systems,
effectively reducing the quantum entropy generated with
strongly disordering processes. We showed that it might
be possible to optimal reverse the system dynamics even
in cases in which an exact reverse evolution cannot be re-
alized (i.e. partially tunable Hamiltonians). Furthermore
we demonstrated that optimized reverse dynamics are ex-
tremely robust against external sources of noise. Finally,
we proposed a conjecture establishing a relationship be-
tween optimization complexity and effective dynamical
dimension of quantum many-body systems. We verified
our conjecture in three different systems, demonstrating
that optimal control can work effectively in exponentially
large Hilbert spaces as long as the systems under consid-
eration are exactly solvable (integrable). Our results are
relevant both for experiments, providing an alternative
and more convenient implementation of reverse dynam-
ics, and establish a connection among entropy, optimal
control and integrability. We plan to extend these anal-
ysis to open system dynamics.
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Conjecture

The complexity of the control task (control bandwidth) scales
as the dimension of the accessible Hilbert space
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FIG. 2: Diagonal entropy Sd for the Ising model (black line)
and for the LMG model (red line) as a function of time during
the disordering procedure (left side of the figure, logarithmic
scale for the time) and during the optimization (right side of
the figure, linear scale for the time) with N = 20, Tmax =
100/∆, where ∆ is the critical gap. Time is in units of J.
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timal control, complexity theory and thermodynamics,
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tions. In particular, an interesting aspect related to our

study is the reversibility of a closed many-body quan-

tum systems dynamics which might have intriguing con-

sequences on a fundamental problem in physics that is,

the emergence of the arrow of time. Indeed, one can re-

vert the dynamics by inverting the time propagator, as it

is typically done in spin-echo experiments [20]. This pro-

cedure is a highly non trivial task in a general many-body

system and requires an enormous accuracy in the knowl-

edge of the history of the dynamical process and control

of the system: the minimum deviation from the exact

path inversion has dramatic consequences [18]. In prac-

tice very few systems are amenable to such operations,

since quantum systems are typically only partially tun-

able. The results presented here suggest that the intrin-

sic complexity of inverting the arrow of time rests on the

tensor-product structure of many-body quantum system

Hamiltonians, that is on the fact that in a non-integrable

system the amount of information (or band-width) to be

encoded in the optimal controlling field scales exponen-

tially with the number of constituents.
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generating high diagonal entropy Sd (out of equilibrium

states); iii) and finally steering the system back into the

initial state (Sd = 0) either using an optimized protocol

or time-reversal. For our numerical computations we con-

sider systems described by the following N -spin quantum

spin Hamiltonian:

H = −
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For vanishing longitudinal field (Jx = 0), this Hamilto-

nian has two obvious integrable limits, the quantum Ising

chain in transverse field, where Jij = Jδi,i+1, and the

infinite-range quantum Ising model (or Lipkin-Meshkov-

Glick (LMG) model [22]) when Jij = J/N for i < j

(Jij = 0 otherwise). In the presence of a longitudinal

field (Jx �= 0), the quantum Ising chain loses its inte-

grability [23], unless at the critical point (in the scaling

limit) [24]. From now on we set � = 1 and time in units

of J .

Due to the various integrals of motion, the dynamics

of the LMG model is effectively described in the sub-

space generated by the Dicke states |S,Sz�, where S
is the conserved total angular momentum and −S ≤
Sz ≤ S are the allowed possible projections along the

z-axis [25]. The ground state of the Hamiltonian be-

longs to the subspace with S = N/2 and in the fol-

lowing we are working within this subspace. We stress

that in such subspace there are ∼ N/2 Dicke states dy-

namically accessible (corresponding to the allowed values

of Sz with the correct parity) and therefore the maxi-

mal diagonal entropy scales logarithmically with the size,

S
LMG
d ∼ log(N/2 + 1).

The Ising chain in transverse field for Jx = 0 can in turn

be solved exactly through the Jordan-Wigner transfor-

mation mapping the spins onto free fermions [26]. For

the Ising chain the maximal diagonal entropy scales lin-

early with the size S
I
d ∼ (N/2) log(2); indeed the dimen-

sion of the Hilbert space is 2
N/2

due to the conservation

of the parity of the number of fermions obtained with the

Jordan-Wigner transformation.

For both models, we prepare the system in the ground

state |ψ(0)� = |GS� at large value of the driving field Γ
– a fully polarized spin state along the positive z-axis.

We then drive the system out of equilibrium perform-

ing a repeated quench between two values Γ1 and Γ2 of

the control field Γ; each quench lasts a random wait-

ing time Tmax · ri, where Tmax is the maximum allowed

waiting time and ri ∈ [0, 1] is a uniformly distributed

random number [18]. We verified that after a sufficiently

large number of cycles the average Sd produced with the

disordering procedure is approximately independent of

the amplitude |Γ1 −Γ2| and of the waiting time between

two consecutive quenches. Finally we use optimal con-

trol to drive the system from the out of equilibrium state

back to the initial state |ψ(0)�, in a given time T to ob-

tain the final state |ψ(T )�. The optimization is imple-

mented through the Chopped RAndom Basis (CRAB)

technique [15]: after making a guess for a possible re-

turn path Γ0(t), we introduce a correction of the form

Γ(t) = Γ0(t)f(t), where the function f(t) is expressed as
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state-to-state transformations: from a maximal entropy
state to the ground state (|MS� → |GS�) and from an
eigenstate at the center of the spectrum to the ground
state (|C� → |GS�), for both the Ising model and LMG
model. In Fig. 4 we show the final infidelity for different
system sizes as a function of the number of frequencies
nf , at fixed total time T . In all cases considered, the
infidelity decays exponentially with the rescaled num-
ber of frequencies nF /B(N) = nf/N

α, showing a very
similar behavior for both states in both models: indeed
we have I ∼ g(nf/N

α), g(x) being a scaling function of
the form exp(−x

η), with 5 > η > 2 and 1 < α < 1.5.
The first interesting feature emerging from our analy-
sis is that within each model the two transformations
|MS� → |GS� and |C� → |GS� approximately present
the same complexity: α is only slightly larger for the
|MS� → |GS� conversion. This result can be explained
by the fact that the states |C� and |GS� are not triv-
ially connected through the Hamiltonian, although they
are both localized with respect to H[Γ] for Γ � 1. In
practice also in this case the transformation is performed
by first spreading the state onto the whole Hilbert space
and then recombining the different amplitudes into the
desired state. Such an operation requires approximately
the same complexity as the state-to-state conversion be-
tween the maximally spread state and the ground state,
|MS� → |GS�. The second feature is instead emerging
from the comparison between the two different models:
the complexity scales approximately linearly with the size
for both the LMG and the Ising model.

Conjecture– The previous arguments suggest that the
number of frequencies nf required in the optimal control
field to achieve full control is not strongly dependent on
the initial and final states but rather of the dimension of
the manifold supporting the dynamics, namely Dm(N).
Here we conjecture that the number of independent basis
functions nf needed to achieve a given level of fidelity, i.e.
the complexity of the control problem, is nf � Dm(N)
up subleading corrections. Since in both models con-
sidered above the dynamics is supported by a manifold
that scales linearly with the number of spins N , in or-
der to further support and verify our conjecture we will
consider in addition a non integrable system, namely the
Ising model in presence of a longitudinal field Jx �= 0
in Eq. 1. In this case, we expect that the optimization
complexity should increase drastically since the effective
manifold supporting the dynamics has dimension Dm(N)
scaling now exponentially with N . We performed simu-
lations for both cases, Jx = 0 (integrable system) and
Jx �= 0 (non integrable system), analyzing the behaviour
of the infidelity as a function of the number of frequencies
for systems of different sizes. As before, in both cases the
infidelity decays exponentially as a function of the num-
ber of frequencies, I ∼ g(−nf/B(N)) (data not shown).
In Fig. 5 we show the fitted decay rate B(N) values as a
function of the size N for Jx �= 0 (full circles) and Jx = 0
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FIG. 5: Decay rate B as a function of the size N for the Ising
model with Jx �= 0 (black circles) and Jx = 0 (red triangles).

(empty triangles). Despite the fact that due to the ex-
ponentially growing Hilbert space we are now restricted
to small sizes 2 < N < 8, as clearly shown by the fits,
the rate B(N) for the integrable model (Jx = 0) scales
linearly with the size, while the non integrable model
(Jx �= 0) it scales as an exponential with N , that is
B(N) ∝ Dm(N). This implies that to keep a constant
infidelity g(−nf/B(N)) = const while increasing the sys-
tem size N , we need to scale the number of frequencies
as nf � B(N) � Dm(N) in perfect agreement with the
prediction of our conjecture. Interestingly, in the case
Jx = 0, optimal control complexity scales approxima-
tively linearly even though those results have been ob-
tained simulating the Ising model in the full exponential
Hilbert space without using the Wigner-Jordan transfor-
mation. Thus, optimal control complexity appears to be
not influenced by the simulation details and thus CRAB
control might be very effective in any integrable system,
even in cases where the exact solution is unknown.

Conclusions– In this work we demonstrated for the
first time the possibility of employing optimal control to
reverse the dynamics of many-body quantum systems,
effectively reducing the quantum entropy generated with
strongly disordering processes. We showed that it might
be possible to optimal reverse the system dynamics even
in cases in which an exact reverse evolution cannot be re-
alized (i.e. partially tunable Hamiltonians). Furthermore
we demonstrated that optimized reverse dynamics are ex-
tremely robust against external sources of noise. Finally,
we proposed a conjecture establishing a relationship be-
tween optimization complexity and effective dynamical
dimension of quantum many-body systems. We verified
our conjecture in three different systems, demonstrating
that optimal control can work effectively in exponentially
large Hilbert spaces as long as the systems under consid-
eration are exactly solvable (integrable). Our results are
relevant both for experiments, providing an alternative
and more convenient implementation of reverse dynam-
ics, and establish a connection among entropy, optimal
control and integrability. We plan to extend these anal-
ysis to open system dynamics.
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model. In Fig. 4 we show the final infidelity for different
system sizes as a function of the number of frequencies
nf , at fixed total time T . In all cases considered, the
infidelity decays exponentially with the rescaled num-
ber of frequencies nF /B(N) = nf/N

α, showing a very
similar behavior for both states in both models: indeed
we have I ∼ g(nf/N

α), g(x) being a scaling function of
the form exp(−x

η), with 5 > η > 2 and 1 < α < 1.5.
The first interesting feature emerging from our analy-
sis is that within each model the two transformations
|MS� → |GS� and |C� → |GS� approximately present
the same complexity: α is only slightly larger for the
|MS� → |GS� conversion. This result can be explained
by the fact that the states |C� and |GS� are not triv-
ially connected through the Hamiltonian, although they
are both localized with respect to H[Γ] for Γ � 1. In
practice also in this case the transformation is performed
by first spreading the state onto the whole Hilbert space
and then recombining the different amplitudes into the
desired state. Such an operation requires approximately
the same complexity as the state-to-state conversion be-
tween the maximally spread state and the ground state,
|MS� → |GS�. The second feature is instead emerging
from the comparison between the two different models:
the complexity scales approximately linearly with the size
for both the LMG and the Ising model.

Conjecture– The previous arguments suggest that the
number of frequencies nf required in the optimal control
field to achieve full control is not strongly dependent on
the initial and final states but rather of the dimension of
the manifold supporting the dynamics, namely Dm(N).
Here we conjecture that the number of independent basis
functions nf needed to achieve a given level of fidelity, i.e.
the complexity of the control problem, is nf � Dm(N)
up subleading corrections. Since in both models con-
sidered above the dynamics is supported by a manifold
that scales linearly with the number of spins N , in or-
der to further support and verify our conjecture we will
consider in addition a non integrable system, namely the
Ising model in presence of a longitudinal field Jx �= 0
in Eq. 1. In this case, we expect that the optimization
complexity should increase drastically since the effective
manifold supporting the dynamics has dimension Dm(N)
scaling now exponentially with N . We performed simu-
lations for both cases, Jx = 0 (integrable system) and
Jx �= 0 (non integrable system), analyzing the behaviour
of the infidelity as a function of the number of frequencies
for systems of different sizes. As before, in both cases the
infidelity decays exponentially as a function of the num-
ber of frequencies, I ∼ g(−nf/B(N)) (data not shown).
In Fig. 5 we show the fitted decay rate B(N) values as a
function of the size N for Jx �= 0 (full circles) and Jx = 0
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FIG. 5: Decay rate B as a function of the size N for the Ising
model with Jx �= 0 (black circles) and Jx = 0 (red triangles).

(empty triangles). Despite the fact that due to the ex-
ponentially growing Hilbert space we are now restricted
to small sizes 2 < N < 8, as clearly shown by the fits,
the rate B(N) for the integrable model (Jx = 0) scales
linearly with the size, while the non integrable model
(Jx �= 0) it scales as an exponential with N , that is
B(N) ∝ Dm(N). This implies that to keep a constant
infidelity g(−nf/B(N)) = const while increasing the sys-
tem size N , we need to scale the number of frequencies
as nf � B(N) � Dm(N) in perfect agreement with the
prediction of our conjecture. Interestingly, in the case
Jx = 0, optimal control complexity scales approxima-
tively linearly even though those results have been ob-
tained simulating the Ising model in the full exponential
Hilbert space without using the Wigner-Jordan transfor-
mation. Thus, optimal control complexity appears to be
not influenced by the simulation details and thus CRAB
control might be very effective in any integrable system,
even in cases where the exact solution is unknown.

Conclusions– In this work we demonstrated for the
first time the possibility of employing optimal control to
reverse the dynamics of many-body quantum systems,
effectively reducing the quantum entropy generated with
strongly disordering processes. We showed that it might
be possible to optimal reverse the system dynamics even
in cases in which an exact reverse evolution cannot be re-
alized (i.e. partially tunable Hamiltonians). Furthermore
we demonstrated that optimized reverse dynamics are ex-
tremely robust against external sources of noise. Finally,
we proposed a conjecture establishing a relationship be-
tween optimization complexity and effective dynamical
dimension of quantum many-body systems. We verified
our conjecture in three different systems, demonstrating
that optimal control can work effectively in exponentially
large Hilbert spaces as long as the systems under consid-
eration are exactly solvable (integrable). Our results are
relevant both for experiments, providing an alternative
and more convenient implementation of reverse dynam-
ics, and establish a connection among entropy, optimal
control and integrability. We plan to extend these anal-
ysis to open system dynamics.
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Conclusions

✤ CRAB optimization can be applied successfully to MBQS dynamics 
opening new perspectives.

✤ Using optimal control it is possible investigate qualitatively new 
phenomena

✤ Optimal trajectories are robust with respect to noise and 
perturbations. 

✤ Complexity of control task can be characterized by the degrees of 
freedom of the optimal driving field.

✤ Non-integrable MBQS are exponentially complex to be optimized  
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