Control of many-body quantum dynamics

 ω_2

WI

Simone Montangero - Ulm University

KITP - 01/03/2013

System

System

 Few-body quantum systems: standard optimal control (high-accuracy, complete knowledge, many iterations...)

> H. Rabitz, NJP (2009) Altafini & Ticozzi IEEE (2012)

 Few-body quantum systems: standard optimal control (high-accuracy, complete knowledge, many iterations...)

* Many-body?

H. Rabitz, NJP (2009) Altafini & Ticozzi IEEE (2012)

- Simple and versatile optimal control technique
- Unique optimal control integrated with tensor network methods (t-DMRG, ...)
- Works for open systems

Simple and versatile optimal control technique

Control

- Unique optimal control integrated with tensor network methods (t-DMRG, ...)
- Works for open systems

Simple and versatile optimal control technique

Control

 Unique optimal control integrated with tensor network methods (t-DMRG, ...) Many body quantum systems

Works for open systems

Simple and versatile optimal control technique

Control

- Unique optimal control integrated with tensor network methods (t-DMRG, ...)
 Many body quantum systems
- Works for open systems
 Decoherence

P. Doria, T. Calarco, SM PRL. (2011) F. Caruso, et.al. PRA (2012) T. Caneva, T. Calarco, SM PRA (2011), NJP (2012)

Functional minimization

Reduced basis method

Functional minimization

Expand control field over n_f "randomized" basis functions

Reduced basis method

Functional minimization

Expand control field over n_f "randomized" basis functions

Reduced basis method

Multivariable function minimization

Functional minimization

Expand control field over n_f "randomized" basis functions

Reduced basis method

Multivariable function minimization

Functional minimization

Direct Search methods

Expand control field over n_f "randomized" basis functions

Reduced basis method

Multivariable function minimization

Expand control field over n_f "randomized" basis functions

Reduced basis method

Multivariable function minimization

Applications

Entanglement Storage units

Light-harvesting dynamics

Adiabatic strategy

Е

Optimal QPT crossing

atoms in cavities!

Dicke model + adiabatic elimination

LMG model

 $\mathbf{H} = \sum_{i} \left[-J(b_{j}^{\dagger}b_{j+1} + \text{h.c.}) + \Omega(j - \frac{N}{2})^{2}n_{j} + \frac{U}{2}(n_{j}^{2} - n_{j}) \right]$

 $\begin{array}{lll} J & {\rm Hopping} \\ U & {\rm Onsite\ energy} \\ \Omega & {\rm Trapping} \end{array}$

M. Greiner, O. Mandel, T. Esslinger, T.W. Hansch and I. Bloch, Nature 415, 39 (2002).

CRAB Optimized dynamics

Residual density of defects

T=3ms

Residual density of defects

P. Doria, T. Calarco, SM Phys. Rev. Lett. 106, 190501 (2011)

Atom number fluctuations

Open loop optimization

Open loop optimization

Closed loop optimization

3D-1D crossover and QPT $T_{opt} \sim T_{ad}/3$ $FOM_{opt} \sim 0.9 \ FOM_{ad}$

Closed loop optimization

3D-1D crossover and QPT $T_{opt} \sim T_{ad}/3$ $FOM_{opt} \sim 0.9 \ FOM_{ad}$ S. Rosi, et. al. in preparation

Paradigm shift

Paradigm shift

How do we control MBQS?

Paradigm shift

Under which conditions can we control MBQS?

Quantum speed limit

Quantum speed limit

see also T. Caneva, M. Murphy, T. Calarco, R. Fazio, SM, V. Giovannetti, and G. E. Santoro, Phys. Rev. Lett. 103, 240501 (2009).

Optimal action

Optimal action

T. Caneva, T. Calarco, R. Fazio, G. E. Santoro, and SM Phys. Rev. A 84, 012312 (2011)

Kibble Zurek Q

QSL

Adiabatic

Optimal

Kibble Zurek QSL

Adiabatic

T. Caneva, T. Calarco, R. Fazio, G. E. Santoro, and SM Phys. Rev. A 84, 012312 (2011)

New questions

time 15 min

New questions

time 15 min

How do we control MBQS?

New questions

time 15 min

Is there something "new" we can learn/achieve/gain exploiting the control MBQS?

inset: T VS noise intensity

inset: T VS noise intensity

T. Caneva, T. Calarco, SM, New J. Phys. 14 093041 (2012)

T. Caneva, T. Calarco, SM, New J. Phys. 14 093041 (2012)

T. Caneva, T. Calarco, SM, New J. Phys. 14 093041 (2012)

see also R. Büker et. al. Nat. Phys. 2011

Picture: P. Treutlein (Basel, CH)

see also R. Büker et. al. Nat. Phys. 2011

 $|2,0;0\rangle$ $|0,0;0\rangle$ $|0,0;\pm k_{0}\rangle$

see also R. Büker et. al. Nat. Phys. 2011

Picture: P. Treutlein (Basel, CH)

see also R. Büker et. al. Nat. Phys. 2011

see also R. Büker et. al. Nat. Phys. 2011

Picture: P. Treutlein (Basel, CH)

20

20 min

Single Photon Source at 30

infidelity 1- $(\psi|\psi_{f})^{2}$

Rydberg atoms

#atoms on equidistant cha

20 min

Single Photon Source at 30

infidelity 1-(ψ|ψ_t)²

Rydberg atoms $V_{Int} = \frac{C_6}{r^6} |rr\rangle \langle rr|$

M. Mueller, et.al. arxive: 1212.2811

 10^{-4}

10⁻³

 10^{-4}

Optimal control limits

Optimal control limits

* What are the physical limits of control of MBQS?

Optimal control limits

* What are the physical limits of control of MBQS?

Controllability, Reachability, Quantum Speed Limit, ...

Control complexity

What are the physical limits of control of MBQS?
 Controllability, Reachability, Quantum Speed Limit, ...

Control complexity

- What are the physical limits of control of MBQS?
 Controllability, Reachability, Quantum Speed Limit, ...
- * Are there any algorithmic/informational limits?

* How to characterize the complexity of the optimization task?

T. Caneva, A. Silva, R. Fazio, T. Calarco, S. Montangero, Arxive: 1301.6015
- Closed systems
- Many-body
- State to state transformation

*
$$H(t) = H_0 + \sum \lambda_j(t)H_j$$

Drift Controls

- Closed systems
- Many-body
- State to state transformation

 $|\psi_0
angle$

*
$$H(t) = H_0 + \sum \lambda_j(t)H_j$$

Drift Controls

- Closed systems
- Many-body
- State to state transformation

*
$$H(t) = H_0 + \sum \lambda_j(t)H_j$$

Drift Controls

- Closed systems
- Many-body
- State to state transformation

*
$$H(t) = H_0 + \sum \lambda_j(t)H_j$$

Drift Controls

- Closed systems
- Many-body
- State to state transformation

*
$$H(t) = H_0 + \sum \lambda_j(t)H_j$$

Drift Controls

Reversibility

Is it possible? Is it difficult?

Diagonal Entropy

$$S_d = \sum \rho_{nn} \log \rho_{nn}$$

$$\rho = \sum \rho_{nm} |E_n(t)\rangle \langle E_m(t)|$$

$$H(t) = \sum E_n(t) |E_n(t)\rangle \langle E_n(t)|$$

we are interested in quantifying the state complexity

✓ Introduces a preferreasis ✓ At equilibrium for description of the equal to VN entropy (positive, additive, 0 for T=0) ✓ Constant for stationary (diagonal) states ✓ Constant for adiabatic processes ✓ Only increases from stationary states in closed systems $S_d(T) \ge S_d(0)$ ✓ Obeys fundamental Thermodynamical equation:

$$\Delta E = T\Delta S + \sum_{j} \left. \frac{\partial E}{\partial \lambda_{j}} \right|_{S} \Delta \lambda_{j}$$

Diagonal Entropy

$$S_d = \sum \rho_{nn} \log \rho_{nn}$$

$$\rho = \sum \rho_{nm} |E_n(t)\rangle \langle E_m(t)|$$

$$H(t) = \sum E_n(t) |E_n(t)\rangle \langle E_n(t)|$$

we are interested in quantifying the state complexity

✓ Introduces a preferreasis ✓ At equilibrium for description of the equal to VN entropy (positive, additive, 0 for T=0) ✓ Constant for stationary (diagonal) states ✓ Constant for adiabatic processes ✓ Only increases from stationary states in closed systems $S_d(T) \ge S_d(0)$ ✓ Obeys fundamental Thermodynamical equation:

$$\Delta E = T\Delta S + \sum_{j} \left. \frac{\partial E}{\partial \lambda_{j}} \right|_{S} \Delta \lambda_{j}$$

A. Polkovnikov, Annals of Physics (2011).

Multiple random (time & strength) quenches

Multiple random (time & strength) quenches

Initial ground state

Multiple random (time & strength) quenches

Initial ground state

CRAB optimization

Multiple random (time & strength) quenches

Initial ground state

CRAB optimization

$$H = -\sum_{i,j} J_{ij}\sigma_i^x \sigma_j^x - \Gamma(t) \sum_i^N \sigma_i^z$$

Multiple random (time & strength) quenches

Initial ground state

CRAB optimization

$$H = -\sum_{i,j} J_{ij}\sigma_i^x \sigma_j^x - \Gamma(t) \sum_i^N \sigma_i^z$$

Robustness

Is all that robust against noise?

Robustness

Is all that robust against noise?

Robustness

Is all that robust against noise?

Complexity

Complexity

Scaling of the number of parameters with the system size B(N)

The complexity of the control task (control bandwidth) scales as the dimension of the accessible Hilbert space

The complexity of the control task (control bandwidth) scales as the dimension of the accessible Hilbert space

$$H = -\sum_{i,j} J_{ij}\sigma_i^x \sigma_j^x - \Gamma(t) \sum_i^N \sigma_i^z - J_x \sum_i^N \sigma_i^x$$

The complexity of the control task (control bandwidth) scales as the dimension of the accessible Hilbert space

$$H = -\sum_{i,j} J_{ij}\sigma_i^x \sigma_j^x - \Gamma(t) \sum_i^N \sigma_i^z - J_x \sum_i^N \sigma_i^x$$

The complexity of the control task (control bandwidth) scales as the dimension of the accessible Hilbert space

$$H = -\sum_{i,j} J_{ij}\sigma_i^x \sigma_j^x - \Gamma(t) \sum_i^N \sigma_i^z - J_x \sum_i^N \sigma_i^x$$

 $B(N) \propto D_m(N)$

Conclusions

- CRAB optimization can be applied successfully to MBQS dynamics opening new perspectives.
- Using optimal control it is possible investigate qualitatively new phenomena
- Optimal trajectories are robust with respect to noise and perturbations.
- * Complexity of control task can be characterized by the degrees of freedom of the optimal driving field.
- * Non-integrable MBQS are exponentially complex to be optimized

Thank you for your attention!

In collaboration with: Tommaso Calarco Tommaso Caneva Matthias Mueller Antonio Negretti Thomas Pichler Susana Huelga Martin Plenio Filippo Caruso

Universität Stuttgar

Tilman Pfau **Robert Löwe**

Massimo Inguscio Leonardo Fallani Chiara Fort Nicole Fabbri

Misha Lukin Markus Greiner Jon Simon

Immanuel Bloch Marc Cheneau Sebastian Hild

Rosario Fazio Alessandro Silva **Giuseppe Santoro**

Jörg Schmiedmayer **Thorsten Schumm** Sandrine van Frank Wolfgang Rohringer

WIEN

Funds: SFB/TRR21 Co.Co.Mat.

DFG Deutsche Forschungsgemeinschaft

IP-AQUTE STREP-DIAMANT STREP-PICC STREP-MALICIA

Numerics: **BW-Grid** www.dmrg.it

Simone Montangero - QIV, Ulm University