QUANTUM FEEDBACK IN A SUPERCONDUCTING QUBIT

<u>Collaborators</u> Prof. A.N. Korotkov (UCR) Prof. S.M. Girvin (Yale) Dr. Mohan Sarovar (Sandia) Prof. B. Whaley (UCB)

IRFAN SIDDIQI

Quantum Nanoelectronics Laboratory Department of Physics, UC Berkeley

THE CHALLENGE OF GREGARIOUS QUBITS...

- Current state of the art (no control): T_1 , $T_2 \sim 10-100 \ \mu s$
- Active control via engineered dissipation
 - quantum bath engineering
 - squeeze vacuum fluctuations
 - measurement based feedback

→ Remote Entanglement / Stabilization of Qubits

JOSEPHSON PARAMETRIC AMPLIFIERS

QUANTUM BATH ENGINEERING: COOLING

Vacuum Fluctuations

AUTONOMOUSLY COOL TO ANY ARBITRARY STATE ON THE BLOCH SPHERE

Poyatos, 20ller (1996) Lutkenhaus (1998) Wiseman (1994) Kraus (2008) Diehl (2008,2010) Schirmer (2010) Wang (2001,2005) Carvalho (2007, 2008) Marcos (2012)

QUANTUM BATH ENGINEERING: SQUEEZING

Vacuum Fluctuations

SQUEEZED LIGHT / MATTER INTERACTION MODIFIES TRANSVERSE/LONGITUDINAL DECAY

Slusher et al, PRL 1985 Treps et al, PRL 2002 Gardiner, PRL 1986

MEASUREMENT BASED FEEDBACK

THE QUBIT

SUPERCONDUCTING TRANSMON QUBIT

$$\omega_{01} \simeq \frac{1}{\sqrt{L_J C}}$$

$$\omega_{01} \neq \omega_{12}$$

• Tunable qubit frequency

THE MEASUREMENT APPARATUS

MEASUREMENT : COUPLE TO E-M FIELD OF CAVITY (Jaynes-Cummings)

$$H = \frac{1}{2}\hbar\omega_q\sigma_z + \hbar\omega_r(a^{\dagger}a + \frac{1}{2}) + \hbar g(a^{\dagger}\sigma_- + a\sigma_+)$$
$$H_{disp} = \frac{1}{2}\hbar\omega_q\sigma_z + \hbar\left(\omega_r + \chi\sigma_z\right)(a^{\dagger}a + \frac{1}{2})$$

T₁ ~ 40 μs T₂* ~ 35 μs

H. Paik et al., Phys. Rev. Lett. 107, 240501 (2011)

HOW DO WE STABILIZE A SUPERPOSITION ?

CAVITY ASSISTED QUANTUM BATH ENGINEERING

K. Murch et al., Phys. Rev. Lett. 109, 183602 (2012)

QUANTUM RESERVOIR: SHOT NOISE IN DRIVEN CAVITY

CAVITY ASSISTED COOLING

- \bullet Drive qubit at ω_{q} (on resonance)
- Ω_R / 2π ~ 10 MHz \rightarrow thermal state
- \bullet Apply additional tone at ω_{d} (red detuned)
- Cavity enhances anti-Stokes response
 → cool thermal state to |+>

BUILDING UP COHERENCE

RATES

The effective qubit Hamiltonian (dispersive, rotating) $H=-\frac{\Omega_{\rm R}}{2}\sigma_x-\chi a^{\dagger}a\sigma_z$

The rates between the two states + and - are:

$$\Gamma_{\pm} = \frac{1}{4} \left\{ \tilde{S}_{zz}(\mp \Omega_{\mathrm{R}}) + \tilde{S}_{yy}(\mp \Omega_{\mathrm{R}}) \right\}$$
$$= \frac{1}{4} \left\{ 4\chi^2 S_{nn}(\mp \Omega_{\mathrm{R}}) + \tilde{S}'_{zz}(\mp \Omega_{\mathrm{R}}) + \tilde{S}_{yy}(\mp \Omega_{\mathrm{R}}) \right\}$$

but, now we choose $\Delta_c = -\Omega_r$. The transition rates are now asymmetric.

$$\begin{split} \Gamma_{-} &= \frac{4\chi^{2}\bar{n}}{\kappa} + \frac{1}{2T_{2}}, \quad \Gamma_{+} = \frac{\kappa\chi^{2}\bar{n}}{(2\Omega_{R})^{2} + (\kappa/2)^{2}} + \frac{1}{2T_{2}}, \\ \text{If we choose } \bar{n}, \text{ such that } \quad \Gamma_{-} \gg \Gamma_{+}, \text{ the } |\text{+> state is preferred.} \end{split}$$

final state purity =
$$\frac{\Gamma_{-}}{\Gamma_{-} + \Gamma_{+}}$$

TOMOGRAPHY: RESONANT RABI DRIVE

- Indeed cool to |+>
- Maximum contrast ~ 70%
- Readout fidelity ~ 90%, Population in excited states ~ 20%
- \bullet Cool dressed state to a chilly 150 μK

TOMOGRAPHY: OFF RESONANT RABI

Drive qubit off resonance: $\Delta'_q = \omega'_q - \omega_r$ Drive cavity at effective Rabi frequency: $\Delta_c = -\tilde{\Omega}_R$

CAN WE OBSERVE THE "PHYSICAL" EFFECTS OF SQUEEZED VACUUM?

SUPPRESSION OF THE RADIATIVE DECAY OF ATOMIC COHERENCE IN SQUEEZED VACUUM

K. Murch et al., arXiv: 1301.6276

PARAMETRIC AMPLIFICATION

M. J. Hatridge et al., Phys. Rev. B 83, 134501 (2011)

Tunnel junction

Al Lumped LC Resonator 4-8 GHz Coupled to 50 Ω Q = 26 Nb

ground plane

Capacitor

Capacitor

3

-53

~

100 µm

Flux

line

SQUEEZING MOMENTS

N, M values:

$$\langle a^{\dagger}(t+\tau)a(t)\rangle = N\delta(\tau) \langle a(t+\tau)a(t)\rangle = M\delta(\tau)$$

Squeezed states: $N < M \le \sqrt{N(N+1)}$ classical states: N > Mvacuum: N = M = 0

atom decay:

$$\langle \dot{\sigma}_z \rangle = -\gamma (2N+1) \langle \sigma_z \rangle - \gamma \langle \dot{\sigma}_y \rangle = -\gamma (N+M+1/2) \langle \sigma_y \rangle \langle \dot{\sigma}_x \rangle = -\gamma (N-M+1/2) \langle \sigma_x \rangle$$

PHASE DEPENDENT DECAY!

QUBIT ENABLED RECONSTRUCTION OF AN ITINERANT SQUEEZED STATE

HOW DO WE STABILIZE AN OSCILLATION?

QUANTUM FEEDBACK via WEAK CONTINUOUS MEASUREMENT

R. Vijay et al., *Nature* **490**, 77 (2012).

MEASUREMENT: COUPLE TO E-M FIELD OF CAVITY (Jaynes-Cummings)

VARYING MEASUREMENT STRENGTH

- Integrate measurement trace for 400 ns
- Repeat and histogram
- ~ 2x quantum noise floor

RABI OSCILLATIONS with CONTINUOUS WEAK MEASUREMENT: ENSEMBLE AVERAGE

STABILIZING A QUANTUM "VOLTAGE CONTROLLED OSCILLATOR"

STABILIZED RABI OSCILLATIONS

STILL GOING...

REPHASING THE QUBIT

FUTURE DIRECTIONS

- QUANTUM FEEDBACK/CONTROL
 - OPTIMIZE EFFICIENCY
 - FULL BAYESIAN FEEDBACK
 - GENERATION/STABILIZATION OF ENTANGLED STATES
- MULTIPLEXED QUBIT READOUT
- ON-CHIP PARAMPS
 - BACKACTION OF NONLINEAR TANK CIRCUIT
 - TRANSMISSION LINE AMPLIFIERS

