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Motivation for controlling
molecular rotation, alignment/orientation

Control of chemical kinetics
Pulse shaping

Pulse compression
HHG control

Molecular imaging

Quantum computation
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Control of Laser induced lonization/Dissociation
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Outline

Molecular alignment by femtosecond pulses
Rotational revivals
Experimental setup (as seen by a theorist)

Addressing close molecular species in a
mixture

— Selection of Isotopes
— Selection of nuclear spin Isomers

Unidirectional rotation
Summary



Rotational revivals
Experimental observations

Addressing close molecular species in a mixture
— Selection of Isotopes
— Selection of nuclear spin Isomers

Unidirectional rotation
Molecular alignment at liquid-air interfaces




Laser induced alignment

The laser field couples to the molecular
rotation via the anisotropic polarizability
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N, gas — 200torr

Periodic signal
T= 8.3 ps
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Rotational revivals
Experimental setup (as seen by a theorist)

Addressing close molecular species in a mixture
— Selection of Isotopes
— Selection of nuclear spin Isomers

Unidirectional rotation
Molecular alignment at liquid-air interfaces




Revivals of rotational wave packets

Rotational energy: E; =hBc J(J +1)

Rotational wave packet: \P(t) ZCmY pi7JU Ji)t/Trev
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The wavefunction is periodic:

Yt -I-Trev) =Y (t) - full revival

Quantum revival time: Trev —
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Alignment evolution through time
For N, , 100 fs pulse
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Rotational revivals
Experimental setup (as seen by a theorist)

Addressing close molecular species in a mixture
— Selection of Isotopes
— Selection of nuclear spin Isomers

Unidirectional rotation
Molecular alignment at liquid-air interfaces




~

Phase matching
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Rotational revivals
Experimental setup (as seen by a theorist)

Addressing close molecular species in a mixture
— Selection of Isotopes
— Selection of nuclear spin Isomers

Unidirectional rotation
Molecular alignment at liquid-air interfaces
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Rotational revivals
Experimental setup (as seen by a theorist)

Addressing close molecular species in a mixture
— Selection of Isotopes
— Selection of nuclear spin Isomers

Unidirectional rotation
Molecular alignment at liquid-air interfaces




15N, - homonuclear molecule with atomic nuclear spin— | = %2

Y=y Y ¥ W

elec spin

15N atoms are Fermions

Antl-symmetrlc upon exchange

Ortho
(Triplet)

Para
(Singlet)

Symmetric LPspin Anti-Symmetric LI”Spin
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Intensity (a.u)

15N, FWM signal - Time domain

/ |

b

0.5

1 [ ! | | i
0l tar 'I.-uru-' '-l.u.r-n'rw Sagattal fmnd ] mat St e W"‘,_.':

Iml.e nsity {a. u}l

VA

14 \
| ‘ '
0 CRPTIY L T L gy .L.-.- T I P T N LR 'rr'\la

0 026 05 076 1 126 15 175 2 225 25 275
Time delay (T, units)

0z

0.15

=
L

E

018+

0+

0.08-

100

F1I-'r of FWM slgngl

:.l, lm_x_ll‘.l..-

Single pulse excitation -

Double pulse excitation

w0 200 fem )
20 22 24 2%
Sums of J states

Odd Sum

>

Odd J + Even J



Asymmetric top
3 Rotational Hamiltonian
(ridid rotor model)

J2 J2 32
+ 2+
21, 21, 2l

H-=

c

(a,b,c) are the molecule principal axes

C,, symmetry, irreducible




Alignment
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Antialignment
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Simultaneous alignment and antialignment of two
different spin isomers can be achieved
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After application of an
additional pulse (of the
same intensity

and duration) at t=1.9 ps




 Rotational revivals

o Experimental setup (as seen by a theorist)

e Addressing close molecular species in a
mixture

— Selection of Isotopes
— Selection of nuclear spin Isomers

e Unidirectional rotation




tional Rotation
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Controlling the sense of rotation

VOLUME 82, NUMBER 17 PHYSICAL REVIEW LETTERS 26 APRIL 1999

Optical Centrifuge for Molecules

Joanna Karczmarek,! James Tl.ﬁ.-’ﬂght,2 Paul Corkum.! and Misha Ivanov!

| SIMS NRC, 100 Sussex Drive, Ottawa, Ontario, Canada K14 OR6

FRESENTEN




a

[ Controlling the Jlse of rotg




Alignment factor

O
-
S
o
Y
-
-
\Y
S
-
.9
<

Angular momentum as a function of 2nd pulse polarization
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Field free unidirectional rotation

Finite temperature simulations by:
e  Spectral decomposition

« Direct FDTD

o Classical ensemble dynamics
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Anisotropic time averaged
angular distribution

Control of:

Collisional cross section
Diffusion processes
Surface scattering
Deflection by external
inhomogeneous fields

Yet to be demonstrated experimentally !



Rotational revivals
Experimental setup (as seen by a theorist)

Addressing close molecular species in a mixture
— Selection of Isotopes
— Selection of nuclear spin Isomers

Unidirectional rotation
Molecular alignment at liquid-air interfaces




Summary

Selective addressing of close molecular species:
- Molecular isotopes
- Spin Isomers

Not based on specific molecular resonances.

Conducted at room temperature.
Can be applied to all symmetric linear molecules.

Double pulse scheme - selective ionization (dissociation).

Unidirectional rotation — anisotropic diffusion.
directional surface scattering.
Interesting optical features.

*Should be implemented to molecules larger than diatomics
*May be useful for detection and identification in mixtures
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