Selective Control of Molecular Rotation

Sharly Fleischer, Erez Gershnabel, Yuri Khodorkovsky, Yehiam Prior, and Ilya Sh. Averbukh

Department of Chemical Physics
Weizmann Institute of Science,

Rehovot, Israel

KITP, Santa Barbara
May 2009

Motivation for controlling molecular rotation, alignment/orientation

Control of chemical kinetics
Pulse shaping
Pulse compression
HHG control
Molecular imaging
Quantum computation etc ...

Control of Laser induced Ionization/Dissociation

Sêlective Ionization/Dissociation of a single species in a mixture.

Purification of a sample by "blasting away" other components. HIGH probability

Outline

- Molecular alignment by femtosecond pulses
- Rotational revivals
- Experimental setup (as seen by a theorist)
- Addressing close molecular species in a mixture
- Selection of Isotopes
- Selection of nuclear spin Isomers
- Unidirectional rotation
- Summary

Outline

- Molecular alignment by femtosecond pulses

Rotational revivals

- Experimental observations
- Addressing close molecular species in a mixture
- Selection of Isotopes
- Selection of nuclear spin Isomers

Unidirectional rotation
Molecular alignment at liquid-air interfaces

Laser induced alignment

The laser field couples to the molecular rotation via the anisotropic polarizability

$\alpha_{\square} \alpha_{\perp}$

$\left.\left.V(\theta, t) \forall\left(\theta_{4} \theta^{H}\right)\right) \theta\left(\theta_{A} \Delta \alpha_{1} d \cos ^{2}(\theta)\right) \alpha_{1}\right]$

$$
\tau(\theta) \propto-\frac{d V}{d \theta} \quad, \quad \omega(\theta) \propto-\sin (2 \theta)
$$

$\omega(\theta) \propto-\sin (2 \theta)$

\mathbf{N}_{2} gas - 200torr

Outline

- Rotational revivals
- Experimental setup (as seen by a theorist)
- Addressing close molecular species in a mixture
- Selection of Isotopes
- Selection of nuclear spin Isomers
- Unidirectional rotation

Molecular alignment at lis uid-air interfaces

Revivals of rotational wave packets

Rotational energy: $E_{J}=h B c J(J+1)$

Rotational wave packet: $\Psi(t)=\sum_{J, m} c_{J}^{m} Y_{J}^{m} e^{-i \pi \underbrace{J(J+1) t / T_{r e v}}_{\varrho}}$

$$
\text { Quantum revival time: } T_{r e v}=\frac{1}{2 B c}
$$

The wavefunction is periodic:

$$
\Psi\left(t+T_{\text {rev }}\right)=\Psi(t) \quad-\text { full revival }
$$

φ

6π
12π

Outline

Rotational revivals

- Experimental setup (as seen by a theorist)
- Addressing close molecular species in a mixture
- Selection of Isotopes
- Selection of nuclear spin Isomers

Unidirectional rotation
Molecular alignment at liquid-air interfaces

Experimental: time delayed degenerate four wave mixing

~ 70 femtosecond pulses $\sim 0.1 \mathbf{m J}$ per pulse

Experimental: Transient Grating - TG

${ }^{14} \mathbf{N}_{2}$ gas at room temperature

Outline

Rotational revivals

- Experimental setup (as seen by a theorist)
- Addressing close molecular species in a mixture
- Selection of Isotopes
- Selection of nuclear spin Isomers

Unidirectional rotation
Molecular alignment at liquid-ain interfaces

Alignment of Chlorine isotopologues

Controlling rotations with two pulses - classical picture

Applying another pulse just on time !

$2^{\text {nd }}$ pulse
At $\frac{1}{2} T_{\text {rev }}$
$2^{\text {nd }}$ pulse
At full $T_{\text {rev }}$

Rotational control in ${ }^{14} \mathrm{~N}_{2}$

Fleischer, IA, Prior, Phys.Rev. A 74, 041403(R) (2006)

Selective alignment in isotopologues mixture

$$
{ }^{14} \mathrm{~N}_{2} \sim 8.3 \mathrm{ps} \quad{ }^{15} \mathrm{~N}_{2} \sim 8.9 \mathrm{ps}
$$

$71 / 2 \mathrm{~T}_{\text {rev }} \quad 7 \mathrm{~T}_{\text {rev }}$

Outline

Rotational revivals

- Experimental setup (as seen by a theorist)
- Addressing close molecular species in a mixture
- Selection of Isotopes
- Selection of nuclear spin Isomers

Unidirectional rotation
Molecular alignment at liquid-air interfaces
${ }^{15} \mathrm{~N}_{2}$ - homonuclear molecule with atomic nuclear spin $-I=1 / 2$

$$
\Psi=\Psi_{e l e c} \Psi_{v i b} \Psi_{r o t} \Psi_{\text {spin }}
$$

${ }^{15} \mathrm{~N}$ atoms are Fermions

Anti-symmetric upon exchange

Ortho (Triplet)

Symmetric
$\Psi_{s p}$ spin
 Para (Singlet)

Anti-Symmetric $\Psi_{\text {spin }}$ Symmetric Even J states

Calculated alignment factor for $\mathrm{N}_{2}, 300 \mathrm{~K}$

Decrease
Enhance

Enhance

Energy absorbed by odd and even wavepackets

Spin isomer-selective alignment by two pulses

Fleischer, IA, Prior, Phys.Rev.Lett., 99, 093002 (2007)

Frequency analysis

Signal $\propto \delta n$ $\delta n \propto\left\langle\cos ^{2} \theta\right\rangle$

Participating rotational state population

Signal $\propto(\delta n)^{2}$
$\propto\left\langle\cos ^{2} \theta\right\rangle^{2}$

Binary
 SUMS and

DIFFERENCES of the J states

Single pulse vs. double pulse

Odd Sum
Even Sum

Odd J + Even J
Odd J + Odd J , Even J + Even J

Laser Alighment of Ortho/Para Water Molecules
 E. Gershnabel, IA, Phys. Rev. A 78, 063416 (2008)

Rotational Hamiltonian (ridid rotor model)

$$
\hat{\mathrm{H}}=\frac{\hat{J}_{a}^{2}}{2 I_{a}}+\frac{\hat{J}_{b}{ }^{2}}{2 I_{b}}+\frac{\hat{J}_{c}{ }^{2}}{2 I_{c}}
$$

(a, b, c) are the molecule principal axes

Spin-Dependent Alignment

Calculated time dependent alignment factor after an excitation by a short linearly polarized 20 fs laser pulse of $10^{13} \mathrm{~W} / \mathrm{cm}^{2}$ maximal intensity, at 20 K .

Simultaneous alignment and antialignment of two different spin isomers can be achieved

Spin-Selective Alignment by Two Pulses

As a result, only the Para molecules experience transient alignment!

Outline

- Rotational revivals
- Experimental setup (as seen by a theorist)
- Addressing close molecular species in a mixture
- Selection of Isotopes
- Selection of nuclear spin Isomers
- Unidirectional rotation

$$
\begin{aligned}
& \left(-L_{y}\right)=0 \\
& L_{x}=0
\end{aligned}
$$

Controlling the sense of rotation

Optical Centrifuge for Molecules
Joanna Karczmarek, ${ }^{1}$ James Wright, ${ }^{2}$ Paul Corkum, ${ }^{1}$ and Misha Ivanov ${ }^{1}$ ${ }^{1}$ SIMS NRC, 100 Sussex Drive, Ottawa, Ontario, Canada Kla 0R6
${ }^{2}$ Ottawa-Carleton Chemistry Institute, Carleton University, Ottawa, Ontario, Canada K1S 5B6

Controlling the

Field free unidirectional rotation

Finite temperature simulations by:

- Spectral decomposition
- Direct FDTD
- Classical ensemble dynamics

Anisotropic time averaged angular distribution

Control of:
Collisional cross section Diffusion processes Surface scattering Deflection by external inhomogeneous fields

Yet to be demonstrated experimentally !

Outline

- Rotational revivals
- Experimental setun (as seen by a theorist)
- Addressing close molecular species in a mixture
- Selection of Isotopes
- Selection of nuclear spin Isomers
- Unidirectional rotation
- Molecular alignment at liquid-air interfaces
- Summary

Summary

Selective addressing of close molecular species:

- Molecular isotopes
- Spin Isomers
- Not based on specific molecular resonances.
- Conducted at room temperature.
- Can be applied to all symmetric linear molecules.

Double pulse scheme - selective ionization (dissociation).
Unidirectional rotation - anisotropic diffusion. directional surface scattering. interesting optical features.
-Should be implemented to molecules larger than diatomics

- May be useful for detection and identification in mixtures

The End

Thank you

