Selective Control of Molecular Rotation

Sharly Fleischer, Erez Gershnabel, Yuri Khodorkovsky, Yehiam Prior, and <u>Ilya Sh. Averbukh</u>

> Department of Chemical Physics Weizmann Institute of Science, Rehovot, Israel

KITP, Santa Barbara

May 2009

Motivation for controlling molecular rotation, alignment/orientation

- Control of chemical kinetics
- Pulse shaping
- Pulse compression
- HHG control
- Molecular imaging
- Quantum computation
 - etc ...

Control of Laser induced Ionization/Dissociation

- Molecular alignment by femtosecond pulses
- Rotational revivals
- Experimental setup (as seen by a theorist)
- Addressing close molecular species in a mixture
 - Selection of Isotopes
 - Selection of nuclear spin Isomers
- Unidirectional rotation
- Summary

- Molecular alignment by femtosecond pulses
- Rotational revivals
- Experimental observations
- Addressing close molecular species in a mixture
 - Selection of Isotopes
 - Selection of nuclear spin Isomers
- Unidirectional rotation
- Molecular alignment at liquid-air interfaces
- Summary

Laser induced alignment

 $\alpha_{\Box} \Box \alpha_{\bot}$

The laser field couples to the molecular rotation via the anisotropic polarizability

 $\hat{H} = \frac{\hat{L}^2}{2I} + V(\theta, t)$

 $V(\theta,t) \not = (\stackrel{1}{\theta}, \stackrel{1}{H}) (t) (\alpha_{\Box} \Delta \alpha_{\bot} \partial \cos^{2}(\theta) + \alpha_{\bot}]$

$$\tau(\theta) \propto -\frac{dV}{d\theta}$$
, $\omega(\theta) \propto -\sin(2\theta)$

 $\omega(\theta) \propto -\sin(2\theta)$

- Molecular alignment by femtosecond pulses
- Rotational revivals
- Experimental setup (as seen by a theorist)
- Addressing close molecular species in a mixture
 - Selection of Isotopes
 - Selection of nuclear spin Isomers
- Unidirectional rotation
- Molecular alignment at liquid-air interfaces
- Summary

Revivals of rotational wave packets

Rotational energy:
$$E_J = hBc J(J+1)$$

Rotational wave packet: $\Psi(t) = \sum_{J,m} c_J^m Y_J^m e^{-i\pi J(J+1)t/T_{rev}}$
Quantum revival time: $T_{rev} = \frac{1}{2Bc}$
The wavefunction is periodic:
 $\Psi(t + T_{rev}) = \Psi(t)$ - full revival
 $2\pi = 6\pi = 12\pi = 20\pi = 30\pi$
Accumulated phase

φ Γ 0

- Molecular alignment by femtosecond pulses
- Rotational revivals
- Experimental setup (as seen by a theorist)
- Addressing close molecular species in a mixture
 - Selection of Isotopes
 - Selection of nuclear spin Isomers
- Unidirectional rotation
- Molecular alignment at liquid-air interfaces
- Summary

Experimental: time delayed degenerate four wave mixing

~ 70 femtosecond pulses ~ 0.1 mJ per pulse

Experimental: Transient Grating - TG

¹⁴N₂ gas at room temperature

- Molecular alignment by femtosecond pulses
- Rotational revivals
- Experimental setup (as seen by a theorist)
- Addressing close molecular species in a mixture
 - Selection of Isotopes
 - Selection of nuclear spin Isomers
- Unidirectional rotation
- Molecular alignment at liquid-air interfaces
- Summary

Alignment of Chlorine isotopologues

Controlling rotations with two pulses – classical picture

Applying another pulse just on time !

 2^{nd} pulse At $\frac{1}{2}$ T_{rev}

2nd pulse At full T_{rev}

Rotational control in ¹⁴N₂

Fleischer, IA, Prior, Phys.Rev. A 74, 041403(R) (2006)

Selective alignment in isotopologues mixture

- Molecular alignment by femtosecond pulses
- Rotational revivals
- Experimental setup (as seen by a theorist)
- Addressing close molecular species in a mixture
 - Selection of Isotopes
 - Selection of nuclear spin Isomers
- Unidirectional rotation
- Molecular alignment at liquid-air interfaces
- Summary

Calculated alignment factor for N₂, 300 K

Energy absorbed by odd and even wavepackets

Spin isomer-selective alignment by two pulses

Fleischer, IA, Prior, Phys.Rev.Lett., 99, 093002 (2007)

Frequency analysis

Participating rotational state population

Signal $\propto (\delta n)^2$ $\propto \left\langle \cos^2 \theta \right\rangle^2$

Binary SUMS and DIFFERENCES of the J states

Single pulse vs. double pulse

Odd SumOdd J + Even JEven SumOdd J + Odd J , Even J + Even J

Laser Alighment of Ortho/Para Water Molecules

E. Gershnabel, IA, Phys. Rev. A 78, 063416 (2008)

 C_{2v} symmetry, irreducible representations: A_1, A_2, B_1, B_2 . Rotational Hamiltonian (ridid rotor model)

$$\hat{H} = \frac{\hat{J}_a^2}{2I_a} + \frac{\hat{J}_b^2}{2I_b} + \frac{\hat{J}_c^2}{2I_c}$$

(a,b,c) are the molecule principal axes

Spin-Dependent Alignment

Calculated time dependent alignment factor after an excitation by a short linearly polarized 20 fs laser pulse of $10^{13}W/cm^2$ maximal intensity, at 20K.

Simultaneous alignment and antialignment of two different spin isomers can be achieved

Spin-Selective Alignment by Two Pulses

After application of an additional pulse (of the same intensity and duration) at t=1.9 ps

As a result, only the Para molecules experience transient alignment!

- Molecular alignment by femtosecond pulses
- Rotational revivals
- Experimental setup (as seen by a theorist)
- Addressing close molecular species in a mixture
 - Selection of Isotopes
 - Selection of nuclear spin Isomers
- Unidirectional rotation
- Summary

Field Free Unidi

tional Rotation

(-L_y)= 0 $L_x=0$

Controlling the sense of rotation

Volume 82, Number 17

PHYSICAL REVIEW LETTERS

26 April 1999

Optical Centrifuge for Molecules

Joanna Karczmarek,¹ James Wright,² Paul Corkum,¹ and Misha Ivanov¹ ¹SIMS NRC, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6 ²Ottawa-Carleton Chemistry Institute, Carleton University, Ottawa, Ontario, Canada K1S 5B6

Controlling the

 \neq

Field free unidirectional rotation

Finite temperature simulations by:

- Spectral decomposition
- Direct FDTD
- Classical ensemble dynamics

Anisotropic time averaged angular distribution

Control of: Collisional cross section Diffusion processes Surface scattering Deflection by external inhomogeneous fields

Yet to be demonstrated experimentally !

- Molecular alignment by femtosecond pulses
- Rotational revivals
- Experimental setup (as seen by a theorist)
- Addressing close molecular species in a mixture
 - Selection of Isotopes
 - Selection of nuclear spin Isomers
- Unidirectional rotation
- Molecular alignment at liquid-air interfaces
- Summary

Selective addressing of close molecular species:

- Molecular isotopes
- Spin Isomers
 - Not based on specific molecular resonances.
 - Conducted at room temperature.
 - Can be applied to all symmetric linear molecules.

Double pulse scheme - selective ionization (dissociation).

Unidirectional rotation – anisotropic diffusion. directional surface scattering. interesting optical features.

Should be implemented to molecules larger than diatomics
May be useful for detection and identification in mixtures

The End

