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Motivation for controlling
molecular rotation, alignment/orientation

Pulse shaping
Pulse compression

Molecular imaging

Quantum computation

Control of chemical kinetics

HHG control

etc …



Control of Laser induced Ionization/Dissociation

LOW probability

HIGH probability

Selective Ionization / Dissociation of a single species in a mixture.

Purification of a sample by “blasting away” other components.  



Outline
• Molecular alignment by femtosecond pulses
• Rotational revivals
• Experimental setup (as seen by a theorist)
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• Unidirectional rotation
• Summary
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The laser field couples to the molecular 
rotation via the anisotropic polarizability   
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Laser induced alignment
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Periodic signal
T= 8.3 ps

N2 gas – 200torr
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Revivals of rotational wave packets
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Alignment evolution through time
For N2 , 100 fs pulse

Time in Trev units

Cigar

Disk



Outline
• Molecular alignment by femtosecond pulses
• Rotational revivals
• Experimental setup (as seen by a theorist)
• Addressing close molecular species in a mixture

– Selection of Isotopes
– Selection of nuclear spin Isomers

• Unidirectional rotation
• Molecular alignment at liquid-air interfaces
• Summary



Experimental: time delayed degenerate four wave mixing

~ 70 femtosecond pulses    ~ 0.1 mJ per pulse

EaEb Ec

Time delay

( )s a b ck k k k= − +
r r r rPhase matching



Molecular gas

Time0

D

Trev

Experimental: Transient Grating   - TG



14N2 gas at room temperature

Trev = 8.3 ps
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Alignment of Chlorine isotopologues 

Trev (Cl2) ~ 70 ps

Cl35 - 75%

Cl37   - 25%

Cl35 – Cl35    9/16

Cl37 – Cl37      1/16

Cl35 – Cl37      6/16



2nd pulse
At ½ Trev

2nd pulse
At full Trev

Applying another pulse just on time !

Controlling rotations with two pulses
– classical picture



Rotational control in 14N2

Fleischer, IA, Prior, Phys.Rev. A 74, 041403(R) (2006)



Selective alignment in isotopologues mixture
14N2  ~ 8.3ps 15N2  ~ 8.9ps

7½ Trev 7 Trev

15N2 only
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15N2 - homonuclear molecule with atomic nuclear spin – I = ½

e lec v ib ro t sp inΨ ΨΨ = Ψ Ψ

15N atoms are Fermions

Anti-symmetric upon exchange

Symmetric spinΨ

Anti-Symmetric rotΨ
Odd J states

Ortho
(Triplet)

Anti-Symmetric spinΨ

Symmetric rotΨ

Even J states

Para
(Singlet)



Calculated alignment factor for N2 , 300 K

Decrease

Decrease

Enhance

Enhance



Delay between pulses (Trev units)
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Spin isomer-selective alignment by two pulses

Pure Ortho Isomer

Pure Para Isomer

Fleischer, IA, Prior, Phys.Rev.Lett., 99, 093002 (2007)



Frequency analysis
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Single pulse vs. double pulse

Odd Sum

Even Sum

Odd J + Even J

Odd J + Odd J  ,  Even J + Even J



Laser Alighment of Ortho/Para Water Molecules
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J J J
I I I

Η = + +

Rotational Hamiltonian
(ridid rotor model)

(a,b,c) are the molecule principal axes

C2v symmetry,  irreducible 
representations:  
A1,A2,B1,B2.

Asymmetric top

E. Gershnabel, IA,  Phys. Rev. A 78, 063416 (2008)



Calculated time dependent alignment factor after an excitation by a short 
linearly polarized 20 fs laser pulse of maximal intensity, at 20K.   13 210 /W cm

Spin-Dependent Alignment

Simultaneous alignment and antialignment of two 
different spin isomers can be achieved

Alignment

Antialignment



Spin-Selective Alignment by Two Pulses

As a result, only the Para molecules experience transient alignment!

After application of an 
additional pulse (of the 
same intensity 
and duration) at t=1.9 ps
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Field Free Unidirectional Rotation

X

Y
Z

LY (-LY)+ = 0
LZ=0  ,  LX=0



Controlling the sense of rotation



Controlling the sense of rotation

0YL ≠
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Field free unidirectional rotation

Finite temperature simulations by:
• Spectral decomposition
• Direct FDTD
• Classical ensemble dynamics

NJP, submitted (2009)



Anisotropic time averaged
angular distribution

Control of:
Collisional cross section
Diffusion processes
Surface scattering
Deflection by external 
inhomogeneous fields

Yet to be demonstrated experimentally !
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Double pulse scheme - selective ionization (dissociation).

• Not based on specific molecular resonances.
• Conducted at room temperature.
• Can be applied to all symmetric linear molecules.

Summary

Unidirectional rotation – anisotropic diffusion.
directional surface scattering.
interesting optical features.

Selective addressing of close molecular species:
- Molecular isotopes
- Spin Isomers

•Should be implemented to molecules larger than diatomics
•May be useful for detection and identification in mixtures



The End

Thank you
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