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• Trapped Ions
Consider quantum control of a scalable quantum-computing

paradigm — a crystal of trapped ions. The two-level atom
(qubit) coupled to a harmonic oscillator is an example of a
quantum system with an infinitely large number of accessible
eigenstates.

This work was motivated by the need to develop fast control
schemes to produce entangled states of qubits. Such entan-
gled states could then lead to interesting quantum states of the
coupled spin-motion system.
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A trapped-ion qubit is most readily formed of two hyperfine
states of a laser-coolable ion, separated by a frequency ω0/2π in
the several GHz range. Qubits are coupled via the vibrational
modes of the ions’ motion, which can be treated as quantum
harmonic oscillators. The quantized vibrational energy levels
separated by a frequency ωm/2π in the MHz range create side-
bands in the spectrum of the ion. The hyperfine ‘qubit’ states
are addressed by a pair of optical beams.



Some infinite-dimensional systems can be made to be effec-
tively finite-dimensional by either bandwidth limits imposed
by the control fields (Rangan), or by turning off specific tran-
sitions in order to truncate the Hilbert space (Rangan, Bloch,
Bucksbaum, Monroe), and the controllability of such systems
can be analyzed using finite-dimensional methods.

We are interested in the quantum systems that are modelled
as finite-dimensional for quantum computing purposes, when
in fact they are infinite-dimensional. Much recent work...



•Infinite-Dimensional Controllability
Controllability results for infinite-dimensional systems are sel-

dom just straightforward extensions of the finite-dimensional
ones, and in particular this is true for bilinear systems. Re-
cently, there has been significant interest in the class of bi-
linear systems because of their relevance to quantum control.
In the following we illustrate the limitations of applying the
tools of finite-dimensional systems analysis to certain classes of
infinite-dimensional systems.



•Limitations of Lie Algebraic analysis
Lie algebraic structure often gives us insights into controllabil-

ity of a quantum system, but for infinite-dimensional systems,
insight is limited.

In the well-known example of a resonantly-driven quantum
harmonic oscillator ( the evolution is given by

∂ψ

∂t
=

(
ω
i

2

(
∂2

∂x2
− x2

)
− iu(t)x

)
ψ. (0.1)

Here, the bilinear control term u(t)x arises because of the
dipole interaction between the field and harmonic oscillator.

The two operators of interest, A = i
2

(
∂2ψ
∂x2 − x2

)
and B = −ix

generate a Lie algebra of skew-hermitian operators that is just
four-dimensional.

Thus, we expect that the control of this system will be limited.
For example, it is well-known that it is not possible to transfer
the number state x(0) = |0〉 to x(T ) = |n〉 for n > 0,



Even when we encounter infinite-dimensional systems for which
the Lie algebra also is infinite-dimensional the statements one
can make about the controllability are also limited. More work
required to say with precision exactly what the reachable states
are.
•Finite Controllability
Describe an elementary but useful theorem about control-

lability on finite-dimensional subspaces of a complex Hilbert
space.

Definition 0.1 We will say that a finite-dimensional system
evolving in the space of complex n-vectors x,

ẋ =
∑
i

uiGix

with skew-Hermitian operators Gi, is unit vector controllable
if any unit length vector x0 can be steered to any second unit
length vector xf in finite time.



Theorem 0.2 (Finitely Controllable Infinite Dimensional Systems)
Consider a complex Hilbert space X together with a nested set
of finite-dimensional subpaces H = {H1 ⊂ H2 ⊂ H3...}. Con-
sider

ẋ = (

m∑
i=1

uiGi)x.

Assume that H1 is an invariant subspace for a subset G1 of the
set {Gi} and that the system is unit vector controllable on H1

using only this subset of the Gi. If for each Hα α 6= 1 there is a
subset Gα of {Gi} that leaves Hα invariant and if for any unit
vector in Hα the orbit generated by exp (Gα) contains a point
in one of the lower dimensional subspaces Hβ then any unit
vector in any of the Hi can be steered to any other unit vector
in any other Hj using a finite number of piecewise constant
controls.



• Remark:
Given a system and a nested set of finite dimensional sub-

spaces it will be said to be finitely controllable if it can be
transfered from any point in one of the subpaces to any other
point in that subspace with a trajectory lying entirely within
the subspace.



•Discussion:
Let l2 denote the Hilbert space of infinite vectors whose en-

tries are square summable which corresponds to the entire state
space of our quantum system. Let l0 denote the subspace con-
sisting of those elements with only a finite number of nonzero
entries, which corresponds in our setting to a finite superposi-
tion of states.



Suppose A and B are given by

A =


B0 022 022 022 ...
022 B0 022 022 ...
022 022 B0 022 ...
022 022 022 B0 ...
... ... ... ... ...

 ; (0.2)

B =


011 012 012 012 ...
021 B0 022 022 ...
021 022 B0 022 ...
021 022 022 B0 ...
... ... ... ... ...

 , (0.3)

with 0ij denoting an i by j matrix of zeros and

B0 =

[
0 1
−1 0

]
. (0.4)

The operators A and B leave l0 invariant but the exponential
of their sum does not.



One can provide a direct argument not involving Lie theoretic
techniques that shows that any unit vector can be transferred
to e1. The idea, motivated by the analysis of Law and Eberly,
is to alternate the use of A and B and reason that if we start
with a vector with xn 6= 0 and xm>n = 0 we can use a control
with v = 0 (or u = 0 depending on whether n is even or odd) to
reduce the vector to one for which xn is zero, then use a control
with u = 0 to reduce the vector to one with xn−1 = 0 without
changing xn, etc.
• Physical Systems
Apply the Finite Controllability Theorem to determine the

reachable set of states of some infinite-dimensional quantum
systems.



• System 1: Quantum harmonic oscillator Discuss this well-
known system first. The controllability algebra is finite-dimensional
and, in particular, the system does not satisfy the conditions
needed for the application of the Finite Rank Controllability
Theorem. Useful for setting up the formalism used in subse-
quent examples that are finitely controllable.



If the control is a sinusoidal resonant driving field (of fre-
quency equal to the harmonic oscillator frequency ωm) as shown
in the transfer graph Fig. 0.1, then the evolution is via

∂ψ

∂t
=

(
ωm

i

2

(
∂2

∂x2
− x2

)
− iu(t)x

)
ψ. (0.5)

Here, the control term u(t)x arises because of the dipole in-
teraction between the field and harmonic oscillator. The op-

erators of interest are A = i
2

(
∂2

∂x2 − x2
)

and B = −ix. A and B

generate a Lie algebra of skew-hermitian operators that is just
four-dimensional (C = [A,B] = ∂

∂x, D = [B,C] = iI, where I is the
identity operator). This in itself tells us that the resonantly
driven harmonic oscillator is not controllable.



n=2 n=4n=3n=1n=0
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Figure 0.1: Graphical representation of the quantum harmonic oscillator driven by a sinusoidal resonant field. Note that while the strengths of
the transition couplings increase as the square root of the quantum number n as shown by the boldness of the connections between energy levels,
the transition frequency between each level is the same.

As is well-known, the spectrum of A is discrete.
If we describe the evolution in terms of an eigenfunction

expansion, with the basis being |n〉’s, the eigenfunctions of
∂2/∂x2 − x2, then the evolution is via

ẋn = −iωm(n +
1

2
)xn (0.6)

−u(t)
i√
2
(
√
n− 1xn−1 −

√
nxn+1).



Although the eigenstates of the harmonic oscillator can be
written as an infinite set of nested finite subspaces, it is seen
that the operator B connects space Hi to both Hi−1 and Hi+1.
Thus finite superpositions of eigenstates may not be reached by
resonantly driving the harmonic oscillator, consistent with the
fact that the requirements of the Finite Controllability Theo-
rem are not met. Physically, this is due to the degeneracy of
spacings between the eigenstates and the fact that the control
vector field simultaneously illuminates all states.



• System 2: Spin-half particle in a quadratic potential
In contrast to the harmonic oscillator, the model of a spin-half

particle coupled to a harmonic oscillator with suitable controls
turns out to be finitely controllable. This model is a good rep-
resentation of an ion with two essential internal states trapped
in a quadratic potential.

Show below that this system satisfies the conditions of the
Finite Controllability Theorem.

Moreover, one can also provide an algorithm for explicit con-
trol.



The spin-1
2 model represents a two-level atomic ion with an

energy splitting ~ω0, where the frequency ω0/2π is in the several
GHz range. The atomic levels are coupled to the motion of the
ion in a harmonic trap. These quantized vibrational energy
levels are separated by a frequency ωm/2π in the MHz range.

Law and Eberly showed by coupling the harmonic oscillator
with a two-level system it is possible to arrive at a system which
is much more controllable than the harmonic oscillator. At an
intuitive level, this can be seen simply as a consequence of the
fact that the addition of a spin degree of freedom breaks the
infinite degeneracy associated with the harmonic oscillator and
allows the system to resonate with more than one frequency.
This allows the transfer of population from any eigenstate to
any other eigenstate by sequentially applying the two frequen-
cies.



An eigenstate of the spin-half system coupled to a quantum
harmonic oscillator is denoted by |S, n〉, where the first index
refers to the “spin” state of the system, and the second index
is the number state of the harmonic oscillator. An applied field
causes transitions between the eigenstates of the coupled spin-
oscillator system. A monochromatic field of angular frequency
ω = ω0 causes resonant transitions between states | ↓, n〉 and
| ↑, n〉 (carrier or spin-flip transitions). A monochromatic field
of angular frequency ω = ω0 − ωm causes resonant transitions
between states | ↓, n〉 and | ↑, n− 1〉, i.e., produces so called red
sideband (that is with angular frequency ω = ω0 − ωm) transi-
tions.



These transitions are graphically depicted in Fig. 0.2 with the
thickness of the edges qualitatively representing the strength
of the coupling between the states. When both fields (carrier
and red sideband) are applied simultaneously, the eigenstates of
the system are sequentially connected. Therefore, we look at
the trapped-ion model controlled only by these two fields.

n=0

n=3
n=4

n=1

n=2
S=
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ω

ω
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Figure 0.2: Graphical representation of the coupled spin-half quantum harmonic oscillator system driven by sinusoidal resonant fields of angular
frequency ωc and ωr as shown. When η � 1, the strengths of the ωc transition couplings are independent of the harmonic oscillator quantum
number n, whereas the strengths of the ωr transition couplings increase as the square root of n as shown by the boldness of the coupling lines.
Note that there is no direct coupling between two consecutive oscillator states with fixed spin.



Now we write the evolution equation of the spin-half coupled
to harmonic oscillator driven by two fields that drive the carrier
and red sideband transitions. The amplitudes corresponding to
the fields that cause the carrier and red transitions are dubbed
Ec and Er respectively. In the interaction picture and in the
energy eigenbasis, the evolution equation is written as

Ẏ = (u(t)Bc + v(t)Br)Y. (0.7)

The controls u(t) and v(t) are related to the applied fields via
the equations

u(t) = c1Ec(t) = 0.25µ exp(−η2/2)Ec(t), (0.8)

v(t) = c2Er(t) = 0.25ηµ exp(−η2/2)Er(t). (0.9)



Here η, the so-called Lamb-Dicke parameter, is the product
of k, wave vector of the light, and x0, the amplitude of the
zero-point motion of the particle in the harmonic potential (or
the spatial extent of the ground state harmonic oscillator wave
function). By ordering the eigenstates as | ↑, 0〉, | ↑, 1〉, . . . , | ↓
, 0〉, | ↓, 1〉, . . ., the control matrices are written as

Bc =

(
0 iL0

iLT0 0

)
. (0.10)

Br =

(
0 L1

−LT1 0

)
. (0.11)



The upper-triangular matrices L0 and L1 are defined as

L0 =


L0(η

2) 0 0 . . .
0 L1(η

2) 0 . . .
0 0 L2(η

2) . . .
... ... ... . . .

 . (0.12)

L1 =


0 L

(1)
0 (η2) 0 . . .

0 0 L
(1)
1 (η2) . . .

0 0 0 . . .
... ... ... . . .

 . (0.13)



•Controllability: Lie Algebra
The control of the trapped-ion system is often studied in two

different limiting cases - one in which the extent of zero-point
motion of the spin-half particle in the harmonic potential x0

is much smaller than the wavelength of the applied light 2π/k,
i.e., η � 1 (the Lamb-Dicke limit), and the other in which η ' 1
(beyond the Lamb-Dicke limit). The case in which η ' 1 is more
general than the case of the Lamb-Dicke limit, but requires a
more sophisticated analysis. We study initially the Lamb-Dicke
limit in which the Lamb-Dicke parameter η � 1.



The terms in equations (0.12) and (0.13) are expanded to first
order in η. The control Hamiltonians can then be expressed in
operator form as

Bc =

[
0 i
i 0

]
, and (0.14)

Br = η

[
0 a
−a† 0

]
, (0.15)

In order to compute the Lie algebra, let us consider T , an
operator acting on a complex Hilbert space. We associate with
T a skew-hermitian operator acting on H⊕H defined by

J(T ) =

[
0 T
−T † 0

]
. (0.16)

For convenience, let K(T ) be another operator defined in a sim-
ilar way as

K(T ) =

[
T 0
0 −T

]
. (0.17)



The control operators we are interested in for the purposes
of determining the structure of the Lie algebra are given by
Bc = J(iI) and Br = ηJ(a). We have

Lemma 0.3 The Lie algebra generated by J(iI) and J(T ) in-
cludes the operators

J(W 2p); p = 1, 2, 3, · · · ; K(W 2p+1); p = 0, 1, 2, · · · , (0.18)

where, W = i(T + T †).

Proof:
A calculation shows that [J(T ), J(iI)] = K(W ) and further,

[J(iI), K(W )] = −2iJ(W ). We can then check that

adpJ(W )(K(W )) = (−2)p
{
J(W p+1), if p is odd
K(W p+1), if p is even

}
. (0.19)



These calculations make it clear that if the powers of W
are independent then J(iI) and J(T ) do not generate a finite-
dimensional algebra. Thus if T is nonzero only on the diagonal
immediately above the main diagonal (which is true for the op-
erator a), and if every term on this upper-diagonal is nonzero,
then the successive powers of W are independent and the alge-
bra is infinite-dimensional.

This is the case for the coupled spin-half harmonic oscillator
system.

Of course, this calculation only shows that this system, unlike
the harmonic oscillator, does not generate a finite-dimensional
controllability Lie algebra. More work is required to say with
precision exactly what the reachable states are.

Note: In the case where the Lamb-Dicke limit does not apply,
the Lie algebra will still be infinite-dimensional but the terms
are more complicated.



•Finite controllability
Now discuss how finite controllability works in this infinite-

dimensional setting.
From Fig. 0.2, it is seen that the sequentially connected eigen-

states can be looked at as an infinite set of finite-dimensional
subspaces with the ground state | ↓, 0〉 being equal to H1. Fur-
ther, when operators Bc and Br are applied sequentially, each
subspace Hi can be transferred to Hi−1. Thus the criteria for
finite controllability are met. By sequential application of the
two operators, any finite superposition of eigenstates can be
transferred to the ground state in finite time.



The application of these statements to the spin-half in quadratic
potential example is best understood by writing the control ma-
trices Bc and Br in a re-ordered basis as follows: The eigenstates
can be ordered as | ↑, 0〉, | ↑, 1〉, . . . , | ↓, 0〉, | ↓, 1〉, . . ..

In the interaction picture, the Schrödinger equation is written
as

Ẏ = (u(t)Bc + v(t)Br)Y, (0.20)

where u(t) and v(t) are defined as before. Then,

Bc = i



0 L0 0 0 0 0 . . .
L0 0 0 0 0 0 . . .
0 0 0 L1 0 0 . . .
0 0 L1 0 0 0 . . .
0 0 0 0 0 L2 . . .
0 0 0 0 L2 0 . . .
... ... ... ... ... ... . . .


.



Br =



0 0 0 0 0 0 . . .

0 0 L
(1)
0 0 0 0 . . .

0 −L(1)
0 0 0 0 0 . . .

0 0 0 0 L
(1)
1 0 . . .

0 0 0 −L(1)
1 0 0 . . .

0 0 0 0 0 0 . . .
... ... ... ... ... ... . . .


.

Li’s and L
(1)
i ’s are Laguerre polynomials of the zeroth and first

order, all with argument η2.



•Explicit finite controllability scheme
The property that both control vector fields are never used

simultaneously is exploited by Law and Eberly and Kneer and
Law in order to devise a explicit scheme for the production
of a finite superposition of eigenstates from another finite su-
perposition in the control of a spin-half particle coupled to a
harmonic oscillator (in the Lamb-Dicke limit). It shows that if
x can be transferred to y by a series of such “single nonzero ui”
moves then the transfer from y to x is also possible.



Specifically the Law-Eberly scheme to transfer any eigenstate
|i〉 to any other eigenstate |j〉 involves the alternate use of transi-
tions generated by spin reversal (π-pulses of Ec) and transitions
generated by π-pulses of Er which convert from a state in which
the oscillator has energy Ei and spin down to a state in which
the energy of the oscillator in altered by one unit and the spin
is flipped as well .

For example suppose we wish to drive a state from the | ↓, n〉
to | ↑, n − 2〉. This can be done using Br to drive the system
from | ↓, n〉 to | ↑, n − 1〉, Bc to drive the system from | ↑, n − 1〉
to | ↓, n− 1〉 and finally Br to go from | ↓, n− 1〉 to | ↑, n− 2〉.



We note that this scheme works both in the Lamb-Dicke limit
and beyond the Lamb-Dicke limit. In the Law-Eberly scheme,
the π-pulses of Ec are all of the same time duration because
in the Lamb-Dicke limit, all the carrier transitions are equally
strong. However, the coupling strengths of the red-sideband
transitions are proportional to

√
n, and therefore the π-pulses

of Er are shorter in duration as eigenstates of higher n are
addressed. In order to generate an arbitrary superposition of
a finite number of eigenstates, starting from another arbitrary
superposition, an additional trick is to go through the ground
state of the system which acts as a “pass state”.



It is possible to provide an explicit algorithm which will drive
the system from any finite superposition to any other finite
superposition.

To prepare an arbitrary finite superposition, the simplest path
is to take the system through the ground state. One assumes
that the desired state is the initial state and then designs a
sequence of alternating pulses of the Ec and Er fields that would
take this state to the ground state | ↓, 0〉. The actual sequence
that produces the superposition is the time-reversed sequence
that was designed.



For example, if the desired superposition is (| ↑, 3〉+ | ↓, 2〉)/
√

2,
the sequence of pulses that will transfer this state to the ground

state is E
(1)
c (π) E

(2)
r (φ2) E

(3)
c (φ3) E

(4)
r (φ4) E

(5)
c (φ5) E

(6)
r (φ6) E

(7)
c (φ7). The

action of each pulse is the following: E
(1)
c is a π pulse of the car-

rier field that moves the state | ↑, 3〉 to | ↓, 3〉. (Simultaneously,

the population in | ↓, 2〉 is transferred to | ↑, 2〉). E(2)
r is a pulse of

the red-sideband field that moves between the states | ↓, 3〉 and
| ↑, 2〉. Since there is already a superposition of the two states,
the duration of the red-sideband field is shorter than that of a
π-pulse. Simultaneously, a superposition of | ↓, 2〉 and | ↑, 1〉 is

created. The next transition E
(3)
c (φ3) transfers population be-

tween | ↑, 2〉 and | ↓, 2〉, and again is shorter than a π pulse. This
sequence progresses till all the population is in | ↓, 0〉. The ac-
tual sequence is the time-reversed sequence of the one that is
described above — this creates the desired superposition from
the initial ground state.



If one were to transfer an arbitrary initial superposition to
an arbitrary final superposition of eigenstates, one employs the
above algorithm twice. The sequences A and B that take the
system from the initial and final superpositions respectively to
the ground state are first calculated. Then the sequence A is
first applied taking all the population to the ground state. The
time time-reversed sequence of B is then applied which takes
the population to the desired final superposition. Clearly, this
scheme works in finite time only if the initial and final states
are both superpositions of a finite number of states.

Note that finite superpositions are dense in the Hilbert space
of all possible states. Hence from our Lie algebra analysis and
the use of the Law-Eberly algorithm we have



Proposition 0.4 The span of the Lie algebra generated by the
operators Bc and Br for the quantum control system in Eq. (0.7)
is infinite-dimensional and the reachable set, which is dense
in the Hilbert space of all states, includes all finite superpo-
sitions.

Note also that the proof of controllability that Law and Eberly
give of what they term “arbitrary control” might be more ac-
curately described as demonstrating that any state in l0 can be
mapped to any other state in l0, staying within l0


