Optimal Control in Solid-State NMR

Control

Quantum System

Kavli Institute for Theoretical Physics, UCSB, Santa Barbara, May 21, 2009

AARHUS UNIVERSITET

Center for Insoluble Protein Structures

Outline:

- Brief introduction to the solid-state NMR spectroscopy
- Optimal control in solid-state NMR
- New solid-state NMR experiments, low-field NMR, DNP, and MRI

AARHUS UNIVERSITET

Center for Insoluble Protein Structures

NMR spectroscopy: Uses magnetic fields and rf irradiation to manipulate nuclear spins

Chemical Shift – the resonance frequency depends on the electronic surrounding

Scalar couplings and dipolar cross-relaxation allows for communication between spins: 2D NMR

Controls in liquid-state NMR spectroscopy

Structure of proteins in immobile environments

Center for Insoluble Protein Structures

For solids, anisotropic interactions destroy the resolution and the sensitivity is low

dipolar coupling between protons:

Origin to broadening: Chemical shielding anisotropy

Origin to broadening: Dipole-dipole couplings

= 0 in isotropic liquids≠0 in solids or oriented media

To mimic molecular motion we have to spin fast

4.0 mm	\rightarrow	15 kHz	(1,400,000 x g)
3.2 mm	÷	25 kHz	(2,700,000 x g)
2.5 mm	÷	35 kHz	(3,500,000 x g)

a 3.2 mm rotor spinning at 24 kHz...

... and needs only 46 hours to roll around the earth...

(50,000 x g)...

From van Rossum

Effect of MAS and strong rf irradiation

Detailed structure information - do we regain control with too much power

Tayloring of the Hamiltonian: Recoupling of dipolar coupling interactions

Center for Insoluble Protein Structures

Accurate distance in MAS solid-state NMR: Recoupling without dipolar truncation – NMR robotics

Niels Chr. Nielsen

Optimal control design of NMR experiments

- improved sensitivity
- band selective operation
- less rf power consumption

Kehlet et al, JACS, 2004 Maximov et al, J. Chem. Phys., 2008 Tosner et al, J. Magn. Reson. 2009

Optimal control => Design of \overline{U}

$$J_i = \phi_i - \lambda \int_0^T \sum_k u_k^2(t) \mathrm{d}t$$

 $\overline{\rho_{f}} = U \rho_{i} U^{+}$

Final cost Run

t Runningcost

Final cost
$$\phi_1 = \operatorname{Tr} \left\{ C^\dagger
ho (2) \right\}$$

AARHUS UNIVERSITET

Center for Insoluble Protein Structures

A specific case – many exists

Traditional recoupling vs. optimal control

3D NCOCX: U-¹³C,¹⁵N-ubiquitin

¹⁵N→¹³C in NCO and NCA at highfield– sequence&robustness

Traditional recoupling vs. optimal control

Gai Niels Chi. Nielsen

CompositeDipolarRecoupling A marriagebetweenAnalytics and Optimal ControlNumerics

Niels Chr. Nielsen

inS

Optimal Control version withReduced Dimensionality

Hansen, Kehlet, Vosegaard, Glaser, Khaneja, Nielsen, Chem. Phys. Lett. 447, 154 (2007)

Optimization of *Effective* **Hamiltonians Sensitivity-enhanced 2D solid-state NMR**

Symmetry-based optimal control experiments for assignment

^{OC}C7 band-selective mixing for 2D CACB, CACX & 3D NCACB

inSPIN Center for Insoluble Protein Structures

AARHUS UNIVERSITET

Center for Insoluble Protein Structures

Low-field NMR using Optimal Control for Resolution Enhancement

Optimal controlandDNP

Optimal control in MRI:Excitation of a HALF BRAIN

Talkingabouthalfbrains- OC can do amazingthings ..

www.bionmr.chem.au.dk

NavinKhaneja, Harvard Steffen Glaser, München ZdenekTosner, Praque

Thanks to

Aarhus:

CindieKehlet Mads Sloth Vinding ZdenekTosner **MortenBjerring** Astrid ColdingSivertsen Ivan Maximov **Thomas Vosegaard** Jonas Ørbæk Hansen Anders Bodholt Nielsen Lasse Arnt **Troels Skrydstrup** Daniel Otzen Jan Enghild Torsten Kristensen Sigrid Svane Jan Mondrup Petersen Ronnie Pedersen Kim Hein Martin Jeppesen

inSPIN Center for Insoluble Protein Structures

... and YOU for your attention