Dynamic melting and condensation of topological dislocation modes

Sanjib Kumar Das1 and Bitan Roy1

1Department of Physics, Lehigh University, Bethlehem, PA, USA

Objectives

1. Does the signature of topological dislocation modes survive in translationally inert insulators, reached from a translationally active topological insulator (TATI) via a real time ramp?
2. Can topological dislocation modes be dynamically generated via a ramp, taking the system into a TATI phase from translationally inert insulators?

Introduction

- **Bulk dislocation lattice defects**: To identify translationally active topological insulators (TATIs), featuring band inversion at a finite momentum (K_{inv}).
- Characterization and $K \cdot b$ rule: Burgers vector (b), $\Phi_{dis} = K_{inv} \cdot b$
- $\Phi_{dis} = 0$ in the Γ phase, as $K_{inv} = 0$.
- **M-phase**: b and K_{inv} are such that $\Phi_{dis} = \pi$ (modulo 2π).

M-phase dislocation mode and ramping scheme

$$H = \hbar \sum_{\alpha, \tau} \sin(k_\alpha c_\alpha) c_\alpha + \hbar \sum_{\alpha, \tau} \cos(k_\alpha a_\alpha) - m_z c_\tau.$$

τ: orbital degrees of freedom

Results: Limit (II) \rightarrow Ramping into TATI

- In quantum materials, midgap dislocation modes can only be occupied upon filling all the negative energy bulk states.
- **Particle-hole symmetry**: a half-filled system displays a uniform average electronic density equal to one always.
- **Mixed density matrix**:
 $$\rho(0) = \frac{1}{N+1} \sum_{i=1}^{N+1} |\Psi_i\rangle \langle \Psi_i|.$$

Results: Limit (II) density matrix with pure state Ψ

Results: Limit (II) \rightarrow Figure

Mathematical toolbox: von Neumann equation

- Time evolution of density matrix:
 $$\frac{d\rho(t)}{dt} = -i\frac{\hbar}{\tau}[H(t), \rho(t)].$$

- **Time ramp profile**:
 $$m(t) = m_0 + (m_f - m_0) \left[1 - \exp(-\alpha t)\right].$$

- ramp speed is given by α. Time is measured in units of α^{-1}.
- **Probability of finding the dislocation mode**:
 $$P(t) = \langle \Psi| \rho(t) |\Psi\rangle.$$

- **Site resolved LDOS**:
 $$D_i(t) = \sum_{\alpha, \tau} \langle i, \alpha, \tau | \rho(t) | i, \alpha \rangle.$$

- i (α) is the site (orbital) index, and $| i, \alpha \rangle$ is the single particle state vector at site i with orbital α.

Results: Limit (I) \rightarrow Ramping out of TATI

- Melting: Ramping out of the TATI phase: dislocation modes survive for sometime and show periodic revive irrespective of the nature of the final phase.
- Site resolved LDOS displays periodic peaks and deeps at the dislocation core.
- **Condensation**: Dynamic condensation of dislocation modes is most prominent when the initial state is a normal insulator, residing close to the M phase, with the noninverted band minima near the M point.
- Slower ramp speed \rightarrow better probability of dynamic generation of dislocation modes \rightarrow **Adiabatic principle**.

Conclusions

References

One-dimensional topologically protected modes in topological insulators with lattice dislocations.

Topological defects and gapless modes in insulators and superconductors.

Acknowledgements

This work was supported by a Startup grant of B.R. from Lehigh University.