Fermi Surface Anomaly and Symmetric Mass Generation **Da-Chuan Lu (UC San Diego)** [arXiv:2210.16304, arXiv:2302.12731]

Outline

The gauge connection $A = A_0 dt + A_x dx + A_k dk$ has a uniform background curvature through the (x, k) plane to ensure the commutator,

 $F = dA = dx \wedge dk$ And we can reproduce the Luttinger theorem, $\nu = \frac{\delta S}{\delta A_0} = \int_{-k_F}^{k_F} \frac{F_{xk}}{2\pi} = \frac{\operatorname{vol}\Omega}{2\pi}$

For codimension-1 Fermi surfaces

Fermi surface d	Fermi sea d	Phase spacetime	Bulk CS theory
0	1	1+1+1=3	$A \wedge dA$
1	2	2+2+1=5	$A \wedge dA \wedge dA$
2	3	3+3+1=7	$A \wedge dA \wedge dA \wedge dA$

[Else, Thorngren, Senthil (2021); Wang, Hickey, Ying, Burkov (2021)]

Bulk of Fermi surface \simeq Phase space Chern insulator

Given the phase space Chern insulator,

$$H = \int dx \, dk \, \psi^{\dagger} (i\partial_x \sigma^x + i\partial_k \sigma^y + m(x,k)\sigma^z) \psi$$

And the mass profile is $\sigma^x = +1$ $\sigma^x = -1$

There are localized modes when mass changes sign. $H_L = \int dx \,\psi^{\dagger}(+i\partial_x)\psi, \qquad H_R = \int dx \,\psi^{\dagger}(-i\partial_x)\psi$

Higher dimemsnional phase space Chern insulator

In higher dimension,

$$H_{blk} = \int d^d \mathbf{x} \, d^d \mathbf{k} \, \psi^{\dagger} \big(i \partial_{\mathbf{x}} \cdot \mathbf{\Gamma}^{\mathbf{x}} + i \partial_{\mathbf{k}} \mathbf{\Gamma}^{k} + m(\mathbf{k}) \Gamma^0 \big) \psi$$

with background flux through every (x_i, k_i) -plane.

Classification – 0+1d SPT

Classification of (d + d + 1)D phase space Chern insulator = classification of (0 + 1)D topological insulator.

• Start with the bulk phase space Chern insulator,

$$H_{blk} = \int d^d \mathbf{x} \, d^d \mathbf{k} \, \psi^{\dagger} \big(i \partial_{\mathbf{x}} \cdot \mathbf{\Gamma}^{\mathbf{x}} + i \partial_{\mathbf{k}} \mathbf{\Gamma}^{\mathbf{k}} + m \, \Gamma^0 \big) \psi$$

• Using the operator relation, $i\partial_k = x$,

$$H_{blk} = \int d^d \mathbf{x} \, \psi^{\dagger} \big(i \partial_{\mathbf{x}} \cdot \mathbf{\Gamma}^{\mathbf{x}} + \mathbf{x} \cdot \mathbf{\Gamma}^{k} + m \, \Gamma^0 \big) \psi$$

- After projecting out every pair of x_i , k_i , $H_{blk} = m \psi^{\dagger} \psi$.
- The bulk state is trivial if the gapless fermion modes at m = 0can be symmetrically gapped by interaction.
- For \mathbb{Z}_4 -symmetric fermions, trivialization can be achieved by $g(\psi_1\psi_2\psi_3\psi_4 + h.c.)$ at multiplicity $4 \Rightarrow \mathbb{Z}_4$ classified!

Conclusion

 Γ s are from complex Clifford algebra $C\ell_{2d+1}$. The mass profile is

 $m(\mathbf{k}) = \begin{cases} \leq 0, \mathbf{k} \in \Omega \\ > 0, \mathbf{k} \notin \Omega \end{cases}$

 $\Omega \quad | m < 0$ $\partial \Omega$ m > 0

To restore the commutator [x, k] = i, we use,

$$k = i\partial_k \quad \Leftrightarrow \quad k = -i\partial_x$$

The boundary theory is

$$I_{bdy} = \int_{\partial\Omega} d\mathbf{k}_F \int d(\mathbf{n} \cdot \mathbf{x}) \,\psi_{\mathbf{k}_F}^{\dagger} i(\mathbf{n} \cdot \partial_{\mathbf{x}}) \psi_{\mathbf{k}_F}$$

Bulk U(1) symmetry \rightarrow boundary emergent loop group symmetry $L_{\partial\Omega}U(1):\psi_{k_F} \to e^{i\phi(k_F)}\psi_{k_F},$ $\forall \boldsymbol{k}_{F} \in \partial \Omega$

Response theory

Like the ordinary Chern insulator, the theory can minimally couple to the background gauge field, tracking the global symmetry,

$$H = \int dx \, dk \, \psi^{\dagger} (iD_x \sigma^x + iD_k \sigma^y + m(k)\sigma^z) \psi$$

where $D_i = i\partial_i - A$. After integrating out the fermion, $S = \frac{1}{k} \int \frac{1 - \operatorname{sgn} m(k)}{2} A \wedge dA$

Classification of Fermi surface anomaly

Codimension-*p* Fermi surface anomaly of symmetry group *G* is classified by G symmetric interacting fermionic SPT states in pdimensional spacetime.

Fermi surface symmetric mass generation can happen when the Fermi surface anomaly vanishes.

$$\nu = \sum_{\alpha} k_{\alpha} \frac{\operatorname{vol} \Omega_{\alpha}}{(2\pi)^d} = 0 \mod 1$$

Potential applications to the pseudo-gap physics

- Spectral signatures: Green's function zeros on the Fermi surface
- Functional renormalization group of FS SMG models
- Matching Fermi surface anomaly with topological order

Collaborators and References

Juven Wang (Harvard)

DCL, Meng Zeng, Juven Wang, and Yi-Zhuang You. "Fermi Surface Symmetric Mass Generation." arXiv:2210.16304.

The Chern-Simons term exists only in the Chern insulator.

DCL, Juven Wang, and Yi-Zhuang You. "Definition and Classification of Fermi Surface

Anomalies." arXiv:2302.12731.

Acknowledgement: UCSD, NSF, Harvard CMSA

