

fractionalization

Dynamics of field-driven phases of the Kitaev model Shi Feng Department of Physics, The Ohio State University, Columbus, Ohio 43202, USA

At the anisotropic limit, e.g. $K_z \gg K_x, K_y$, majoranas are highly gapped. The model becomes the Z_2 Toric code (TC) at the low energy sector, with $A_s = \prod_{i \in s} \tau_i^x$ and $B_p = \prod_{i \in p} \tau_i^z$.

OBJECTIVES

Phases and characteristic dynamics induced by external field along different directions and varying energy scales of anisotropic exchange interactions, i.e. as a function of (\vec{h}, K_z) :

 $\mathcal{H} = K \sum_{i,\alpha \in \{x,y\}} \sigma_i^{\alpha} \sigma_{i_{\alpha}}^{\alpha} + K_z \sum_i \sigma_i^z \sigma_{i_z}^z - \vec{h} \cdot \sum_i \vec{\sigma_i}$ Focus on directions: $\vec{h} \text{ in } [111] \parallel \hat{e_3}$ $\vec{h} \text{ in } [001] \parallel \hat{z}$

The bond-dependent exchange in the Kitaev model leads to frustrated interaction. Each spin fractionalizes into four partons, giving rise to a

with varying antiferromagnetic exchange $K_z, K > 0.$

In RuCl₃, [001] points from Ru to its Cl ligand.

ISING CRITICALITY BY $\vec{h} \parallel [001]$

Under [001] field, the intermediate gapless phase becomes much larger, the effective dimension is reduced, and the phase boundary at h_{c2} features decoupled Ising critical chains.

KITAEV MODEL UNDER $\vec{h} \parallel [111]$

PHASES	EXCITATIONS OF KITAEV MODEL UNDER [111] FIELD
KQSL	Gapless majoranas
	Gapped Z_2 fluxes
CSL	Majoranas at $\sim h^3/K$
	Gapped non-Abelian anyons
Abelian QSL	Abelian anyons $[1,e,m,\epsilon]$
	Only ϵ disperses (in 1D)
VBS	Gapped $(\uparrow\downarrow\rangle - \downarrow\uparrow\rangle)$ at $\sim h^2/K_z$
	Gapped $(\uparrow\uparrow\rangle, \downarrow\downarrow\rangle)$ at $\sim K_z/K$
Gapless QSL	Neutral Fermi surface of fermions
Polarized	Spin waves at $\sim h/K$
PF^*	Damped ϵ fermions
	Gapped hybridized fermions

Dynamics of ϵ **anyon**

At $K_z/K \gg 2$, the second order perturbation in [111] field gives the effective Hamiltonian:

$$\mathcal{H} \simeq -J_{\mathrm{TC}} \left[\sum_{s} A_s + \sum_{p} B_p \right] - \frac{h^2}{K_z} \sum_{i} \tau_i^y$$

Only ϵ anyon disperses in *fixed* directions [1]:

Sharp signature of fractionalization and gauge-

(m)

SPINON FERMI SURFACE

The gapless QSL induced by an intermediate field has emergent spinon Fermi surface [2].

$$S^{e_1}(r)\rangle \sim \langle n_1(r)\rangle \sim \frac{\kappa_F}{\pi} \left[1 - \frac{\operatorname{SIM}(2\kappa_F r)}{2k_F r}\right] + C$$

and bond fermion
$$\chi_z$$
, z-bond exchange reads
 $K_z \left(b_{i,A}^z b_{i,A+\hat{z}}^z c_{i,A} c_{i,A+\hat{z}} \right) \simeq K_z (2n_i^f - 1)(1 - 2n_i^z)$
 $\lim_{h \to h_{c2}^-} n_i^z = \frac{1}{2} \Rightarrow$ decoupled compass chains
 $\int_{\substack{w \to h_{c2}^- \\ w \to h_{c2$

REFERENCES

[1] Shi Feng, Adhip Agarwala, Subhro Bhattacharjee, and Nandini Trivedi. Anyon dynamics in fielddriven phases of the anisotropic kitaev model. *arXiv:2206.12990*, 2022.

[2] Niravkumar D. Patel and Nandini Trivedi. Magnetic field-induced intermediate quantum spin liquid with a spinon fermi surface. *Proceedings of the National Academy of Sciences*, 116(25):12199– 12203, 2019.