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Abstract

We generalize the recent work of Shibata and Katsura [1],
who considered an S=1/2 chain with alternating XX and YY
couplings in the presence of dephasing, the dynamics of
which are described by the GKLS master equation. Their
model is equivalent to a non-Hermitian system which is
described by the Kitaev formulation [2] in terms of a single
Majorana species hopping in the presence of a Z, gauge
field. Our generalization involves Dirac gamma matrix spin
operators on a square lattice, and maps onto a non-
Hermitian square lattice bilayer. In both cases, the infinite
temperature state is a nonequilibrium steady state, but the
various decay channels occur for nontrivial density matrices.
We study the Liouvillian spectrum. We observe a phase
transition in the first decay modes (similar to that in ref. [1]) in
the 2d model.

We then present another dissipative model that can be
solved using Gamma matrices in which we again see a
phase transition in the first decay modes.
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(Here, F refers to a flux and Wilson loop
configuration. [1] [3])
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We see a phase transition in the flux
configurations corresponding to the first
decay modes (for Nx=Ny=2). [1] [3]
(Periodic boundary conditions were
used.) For larger system sizes, we
3 3 p 3 ¢ propose a Monte Carlo approach
Y involving the gauge fields to arrive at
the gap. (Work is underway.)
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First decay modes. Ref. [1]
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Summary

+ We simplified the above two models based on -matrices
using fluxes and Wilson loops. [3]

* We observed a phase ftransition (in the first decay
modes) at the cusps in the g vs y plots. [1]
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