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Fractons: what are they?
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Example: X-cube fracton model

. . . . X Vijay, Haah & Fu
* Place qubits on the links of a d=3 simple cubic lattice "

* Hamiltonian defined in terms of X and Z Pauli operators:
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* Sum of commuting terms (like toric code model)
e X-cube model has fracton, lineon and planon excitations
* Haah’s cubic code 1s a similar model with only fracton excitations

* By now there is a vast landscape of examples (which we do not
understand well!)



Why are fracton systems interesting?

Quantum information properties/applications
(e.g. progress toward self-correcting quantum memory)

Interesting constrained quantum dynamics

New class of quantum phases of matter

Related to exotic quantum field theories (“UV/IR mixing™)




Fracton phases are challenging theoretically

®* Rough early timeline of fracton theory
¢ First identification of fractons (Chamon 2004)
e Toward self-correcting quantum memories (Haah 2011)

* Simpler models and condensed matter viewpoint
(Vijay, Haah & Fu 2015-16; Pretko 2016; followed by
many others)

* After ~7 years, a general theoretical framework for fracton
phases still seems far off



Why are fracton phases challenging/interesting/important?

Fracton phases don’t obey usual relationships among phases,
renormalization group (RG), and effective quantum field theories

(QFTs)

Conventional situation

Phase & its H
RG

Continuum
effective QFT

® Universal properties of the phase are invariant under RG:
long-wavelength, low-energy properties

® These properties encoded in effective QFT

e Believed to hold for all gapped phases with only fully
mobile excitations, opens up powerful tools, e.g.
topological quantum field theory (TQFT)



Phases of quantum matter

“standard phases” = equivalence classes of quantum
systems, generated by two operations
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1. Deformation

2. Stacking with @ @
trivial systems @ @
(product states) & B
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Stacking physically motivated from lattice
models as 1dealizations of continuum systems



Renormalization group

® Renormalization group (RG): focus on physics at longer
distances (times), eliminate short-distance degrees of freedom

® RG provides a link between a lattice model and an effective
continuum quantum field theory (QFT) description



Entanglement RG

* Some gapped models are RG fixed points Aguado & Vidal
e Example: 2d toric code
Decoupled
Coarse-grained qubits in
system product state
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Apply local unitary
(finite-depth
quantum circuit)

“Integrate out”
decoupled qubits



Why are fracton phases challenging/interesting/important?

Developing picture for (some) fracton phases

Phase & its Continuum
—

“Exotic” RG

How to define
phases?

e Exotic RG is needed to make fracton models into RG fixed points



Exotic RG for X-cube model

Shirley, Slagle, Wang & Chen

2d toric code layers

ly) = |yp(L)) ly) = |yp(L/2)) ® (2d toric code layers)

Local unitary . .
“Foliated RG”: integrate out the 2d layers
e Foliated RG makes the X-cube model into a fixed point

® [eads to notion of foliated fracton phases:
Treat 2d layers as trivial, i.e. A ~ A Q (2d layers)



Exotic RG for Haah’s cubic code

Haah

Cubic code(L) =~ Cubic-code(L/2) ® Model-B(L/2)

Model-B(L) =~ Model-B(L/2) ® Model-B(L/2)

e Exotic RG for Haah’s code: integrate out model-B
(Dua, Sarkar, Williamson & Cheng)

e But model-B is a fracton model with similar properties to
Haah’s code ... does it make any sense to integrate it out? Is
Haah’s code an example of a phase with no useful continuum
limit?



Summary of current state of the art

Foliated fracton models (X-cube + many cousins)

Foliated fracton R Continuum
phase effective QFT?
Foliated RG
(integrate out 2d
layers)

Coarser equivalence
than standard phases!

® Belief: standard fracton phases not associated with RG fixed
points

®* Some recent improvements/generalizations to foliated RG
(Zongyuan Wang, Xiuqi Ma, David T. Stephen, MH & Xie Chen)

e Not clear whether corresponding picture for Haah’s code (and
other “type II”” fracton models) makes sense



Rest of this talk: revise this picture

Foliated fracton Continuum

phase

)

Foliated R
(integrdte out 2d
Coarser equiy, dyers)

ard phases!  Exotic RG (includes
foliated RG)

effective QFT?

® With a minor twist on standard definition of phases, universal
properties of fracton phases are RG-invariant (under exotic RG)

® Association between foliated fracton phases and foliated RG 1is
actually not clear (but foliated phases still important as a higher
level of structure)

® Revised picture applies to a large class of fracton phases,
including Haah’s code



Coarse translation symmetry
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e Key property: mobility of excitations @ @
®* Assume and use translation symmetry as a tool yT /:— Yy
to describe mobility (Haah; Pai & MH)
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¢ Disadvantage: unwanted extra information having nothing to do
with mobility (c.f. symmetry enriched topological phases)

® “Coarse translation:” compromise by allowing limited breaking of
translation symmetry
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Coarse translation invariant (CTI) phases

e Equivalence relation on infinite, translation-invariant gapped
quantum systems generated by certain operations

® Operations (glossing over many details):
1. Continuous deformation (keeping gap open)
2. Stacking with trivial product states
3. “Forgetting” limited amount of translation symmetry

4. “Rescaling”: two systems differing only by a choice of
T lattice constant are considered equivalent

This operation is crucial and differs from some earlier work. Can
be justified by lattice homotopy of Po, Watanabe, Jian & Zaletel.

®* More technically: put degrees of freedom on sites of simple cubic
lattice with its full translation symmetry, combine #3 and #4 into a
single operation (group d.o.f. together within enlarged unit cell)



Apply to X-cube model

unit cell size
e Take the X-cube model and double the unit cell, then J

X-cube(a) ~ X-cube(a) ® 2d toric code layers(a)

(means the systems on the left and right are in the same CTI phase)
e Under foliated RG... apply local unitary
X-cube(a) g‘(be(za) ® 2d toric code layers(2a)
— X-cube(2a) — X-cube(a)

integrate out rescale

® These systems are all in the same CTI phase, so all universal
properties of the CTI X-cube phase are also RG-invariant



More general application to bifurcating models

Suppose that upon enlarging the unit cell, a system A satisfies
A~AQXB

RG procedure: integrate out B. A 1s a fixed point, and universal
properties of its CTI phase are RG-invariant

Applies to Haah’s code, where B is model-B!

Surprising — I didn’t expect this RG do have anything to do with
the universal properties of Haah’s code.

Question: can B be non-unique? Would imply distinct RG

procedures. Universal properties of A invariant under all possible
such RG’s.



Properties of CTI phases

®* What properties of CTI phases are universal? Can use translation
symmetry, but must be robust to enlarging unit cell.

e Example: an excitation f has restricted mobility along some
translation vector ¢ if all the translates ¢"f are distinct excitations (not
related by any local process)
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® Precise definition of a fracton phase: at least one restricted mobility
excitation

e (Other examples include finer information about the mobility of
excitations, and also their statistics (as studied by Pai & MH)

* Note: fractons can have self-exchange statistics (preprint to appear
tonight with Hao Song, Nat Tantivasadakarn, Wilbur Shirley & MH)



Application to X-cube and semionic X-cube models

This application actually dates to 2019! Seed of idea to use coarse

translation invariance to characterize fracton phases comes from
earlier work of Shriya Pai & MH.

X-cube model can be constructed from coupled toric code layers
(Ma, Lake, Chen, MH; Vijay)

There 1s a variant “semionic X-cube model” constructed from
doubled semion layers (Ma, Lake, Chen, MH)

The X-cube and semionic X-cube models are in the same foliated
fracton phase (Shirley, Slagle, Chen)

However, they are in distinct CTI phases, distinguished by lineon-
lineon exchange statistics (Shriya Pai, MH)



Lineon-lineon exchange process

(1) (2)
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Summary / outlook

e In fracton systems, universal properties of (essentially)
standard phases are associated with fixed points of exotic
renormalization groups

e [ am optimistic that these universal properties can be
captured nicely by continuum theories (coarse translations ~
continuum translations?)

e Lots of work to do to understand coarse translation invariant
universal properties and characterize fracton phases in terms
of these

e Better understanding model-B seems to be crucial to
understand universal properties of Haah’s code



