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1. Many-Body Real Space Invariants

• Topological indices are global in momentum space → local in real space, act as “Noether charges”

• RSIs as quantum numbers: define symmetry operators on OBC’s s.t. spectrum independent of  OBC’s

• Space group operators give local angular momentum and local charge as RSIs (n even, spin-less):

• Proof  makes use of  a ”Many-body atomic limit” of  arbitrarily strong interactions, but onsite-local:

2. Many-Body Fragile Topology

• Definition: Many-body Fragile Topology iff adiabatically disconnected from many-body atomic state at fixed particle number, but connected at higher particle number.

• Interplay between U(1) charge and space group G. Topological indices are obstructions in the form of  inequalities.

• RSIs form an abelian group. In a fragile phase, there exists    such that                                   defined by coupling trivial states.

• Intuition: nonzero RSIs (implying local angular momentum or charge) require local operators to carry them. Formally, 

3. Weak Coupling Limit, Reduction of  Single-Particle Topology, and Model Examples

• Understand RSIs at weak-coupling by acting on product states

• Interpretation from single-particle RSI                               . 

• Momentum space computation at weak-coupling and reduction of
single-particle affine-monoid structure. 

• Some single-particle fragile phases are many-body fragile. Some are not.  Example:

4. Many-Body Stable Topology and Interaction-Enabled Topological Phases

• Proof  of  many-body RSIs in atomic and fragile states relied on a gap for open boundary conditions. No such gap in stable topological phases!

• Proposal: define global many-body RSIs as the quantum numbers of  the RSI operators on PBCs (gapped groundstate). 

• We prove (1) all global RSIs (defined above) vanish in atomic and fragile states, and (2) Chern insulators have non-zero global RSIs

• Classification suggests strongly correlated topological states that do not exist at weak coupling. Ex: Chern insulator with nonzero momentum.

4. Topological Response Theory: RSIs as Wen-Zee Coefficients
• Topological insulators are gapped states with no low-energy electronic excitations. Their response to external probes is described by TQFTs.

• Recent work identified Wen-Zee terms that describe the response to geometric/curvature perturbations        (defects in spatial symmetries).

• Lagrangian is                                                                          . We propose                                     . Local response = local invariant. 
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