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Results

➢ The Sheet Hall conductivity (SHC) in both Weyl phases depicts staircase

profile whereas 3D quantum Hall conductivity (QHC) does not show any

quantized profile.

➢ σyz (B || x): In WSM phase-I, the quantization of SHC changes by ±2

whereas the SHC in WSM phase-II shows jump by ±1.

➢ σxy (B || z): : In both WSM phase-I and II, the quantization of SHC

changes by ±2.

➢ The qualitative difference of quantization in SHC can track the phase

transition between two different Weyl phases.

➢ A linear-chemical potential behavior appears in QHC within the bulk gap

of WSM phases due to chiral LLs.

Motivation 

▪ Relevance of electronic correlations has been found in recent Weyl semimetal Materials (Co3Sn2S2, Pr2Ir2O7 ).

▪ Interplay between the topology and electronic correlations provides unique opportunity for the emergence of new states of the matter, which can be driven by 

the external control parameters such as high magnetic field.        

Method of Solving

Weyl-Hubbard Hamiltonian

Self-Consistency Condition:
α=16(1/2-d)d

half-filling case

Gutzwiller Framework

Tuning U

d=double occupancy;      α=Renormalization factor

t,t’ tnor = α t ,     t’nor = α t’ 

m/2tnor <1 m/2tnor >1

Insulator, U=16.2tWSM-II (U=16t)WSM-I (U=0)

4 WNs 2 WNs 

Landau Level Spectrum

2D SHC 3D QHC

With increasing U, following phase transition occurs: 

Weyl phase-I              Weyl phase-II             Trivial insulator

Weyl Fermions and Topology

❖Weyl Fermion: Introduced in High Energy Physics in 1929.

❖Massless spin-1/2 particles (Massless solution to the Dirac equation :

(γμpµ-mc)ψ(p)=0

❖Appear as a low-energy quasiparticles near the linearly touching of a pair of

bands.

❖Low-energy Hamiltonian:

❖Weyl node act as the source and sink of the Abelian Berry curvature.

❖Topological invariant: Monopole Charge:

❖Weyl nodes come in pairs in WSM with opposite chiralities.

❖Example: TaAs, WTe2, NbAs (uncorrelated), Co3Sn2S2, Pr2Ir2O7 (correlated)

Model 

Hamiltonian

Kubo Response

Gutzwiller Method

2D SHC+ 3D QHE

Orbital B + Hubbard U

Landau Level 

Dispersion

+

t, t’ = hopping parameter ; m=site-dependent potential energy ;

U=Onsite Hubbard interaction

Magnetic Field B=(Bx,0,Bz)

Landau Gauge A=(-yBz,0,yBx)

❖Landau levels are doubly degenerate and nondegenerate in Weyl phase-I

and Weyl phase-II respectively.

❖Chiral Landau Levels change sign from WSM-I to WSM-II.

B=Bx, A=(0,0,yBx)
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