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Fractional Chern Insulators in Moire’ Materials

Stormer 

Wiki

Serlin et. al. (Science 2020)

Fractional Chern Insulator (FCI) 
From partially filling a Chern 

band

Scales set by Microscopic Structure!

Where to look?

Chern Insulator

Integer Charge Fractional Charge

B B

Magic angle graphene (+ aligned hBN) Sheng et al, `11. Neupert et al, `11.  Tang et al, '11. Regnault & Bernevig `11. X. Qi `11.
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FCIs- Symmetry Enriched Topological Order 
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Translation symmetry enriched Topological Order

Laughlin Quasiparticle  
attached to each lattice site
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Chern Band Geometry and FCIs
Chern insulators - band topology dictates the state, But

Historical Approach: mimic Landau levels by requiring:

Roy (`14), Parameswaran, Roy, Sondhi (`13),

*Coulomb or short ranged 
interactions

Realizing FCIs by partially filling Chern band. Wavefunctions important! 

Find theoretically well motivated starting points + extend with numerics

N =4 Landau Level 
(Stripe/Bubble Phase*)

•   Zero Dispersion

•   Uniform Berry 
Curvature

Lowest Landau Level 
(FQHE)

•   Zero Dispersion

•   Uniform Berry 
Curvature

Crucial Ingredient?



Chern Band Geometry and FCIs
|Tr[g(k)] | = |Ω(k) |

Roy (`14), Parameswaran, Roy, Sondhi (`13), Claassen et al (`15), Jackson et al. (`15), Varjas et al. (`21). Mera & Ozawa (`21).Ledwith, 
Tarnopolsky, Khalaf, AV `20.

Quantum Metric Berry Curvature

Historically: Uniform Berry curvature + Trace condition 

=> g=gLLL AND   

Mimics the LLL -> GMP Algebra.

BUT hard to achieve

Ω = ΩLLL

Here: Isolate Trace condition.

Easier to realize. 


FCIs + physics beyond LLL 


Physical meaning of Trace condition? 

Vortexable Bands 

Trace Condition (LLL)



Chern Band Geometry and FCIs

What does it imply? Why is it important? 
  

Can we find bands that naturally satisfy it? 

Experimental consequence? 

Extend to `beyond’ Landau level physics ?

Ledwith, Tarnopolsky, Khalaf, AV `20. Jie Wang, Cano, Millis, Liu, Yang `21. Ledwith, AV, Parker (arXiv:2209.15023) 

Here: Isolate Trace condition.

Easier to realize. 


FCIs + physics beyond LLL 


Physical meaning of Trace condition? 

Vortexable Bands 



Vortexable Bands

Ledwith, AV, Parker (arXiv:2209.15023)

ψ ∈ Vortexable Chern Band
⟹ z ψ ∈ Vortexable Chern Band

where  z = x + iy

ψ(x, y) = ∑ akψk(x, y)

z |ψ⟩ = ̂P z |ψ⟩ for all  |ψ⟩ = P |ψ⟩

“Vortexable band” since  attaches 

a vortex without leaving the band.  

z |ψ⟩

Q

P

Q

 

Qẑ 

P ẑ 

0 =

Equivalently, define the band projector:

̂P = ∑
k

|ψk⟩⟨ψk | and Q̂ = 1 − ̂P

or Qz |ψ⟩ = 0



Vortexability & FCIs

Qzψ(x, y) = 0 ⟹ Qzn ψ(x, y) = 0 ⟹ Qf(z) ψ(x, y) = 0

Q f(z1, z2…zn) ψ(z1, z2, …zn) = 0Many Body Wave-function:

Write FCI Laughlin wave function entirely 
within  vortexable band.


 


 

|ΨFCI
ν= 1

2s + 1
⟩ = ∏

i<j

(zi − zj)2s |Filled ν=1⟩

Consequences of Vortexability:

Exact ground state for sufficiently short 
ranged repulsive interactions: 

Eg: 

Interaction: 


ν = 1/3;

V(r1 − r2) = V1l2 ∇2δ(r1 − r2)

Cf. Trugman-Kivelson argument for Laughlin State in LLL.



Momentum Space Consequences of Vortexability

• Holomorphic in `k’:  


• Trace Condition: 

|ψk⟩ = eik⋅r |uk⟩

Vortexability 

 zψ = Pzψ

Trace Condition 

 Tr g(k) = Ω(k)

K-space Holomorphicity 

 |uk⟩ = |ukx+iky
⟩

∂
∂k̄

|ukx+iky
⟩ = 0 ⟹ Q zψk = 0

From homomorphic uk, inequality is obviously saturated:|Tr[g] | = |Ω |

tr g(k) − Ω(k) = | |Q(k) |
∂uk

∂ k̄
⟩ | |2 ≥ 0

uk=kx+iky
(x, y) = exp(−

i
2

kz̄)
σ(z + il2k)

σ(z)
ψΓ(r)

Eg. Chiral MATBG Wfns.



What does it imply? Why is it important? 
  

Can we find bands that naturally satisfy it? 

Experimental consequence? 

Extend to `beyond’ Landau level physics ?

Vortexability 



Realizations of Vortexable Bands
PRINCIPLE:  
Flat band from zero mode: DAψk = 0 Where:   DA = i

∂
∂z̄

⊗ 1 − ̂A

Examples: Lowest Landau level: H = (p − eA) ⋅ σ

• Magic angle twisted bilayer 
graphene in the chiral limit. 


̂A = ( 0 w1U1(r)
w1U1(−r) 0 )

• Chirally stacked multilayer 
graphene (magic angle + 
chiral limit). Gives C>1!

Automatically Vortexable: DAψ = 0 ⟹ DAzψ = 0



What does it imply? Why is it important? 
  

Can we find bands that naturally satisfy it? 

Experimental consequence? 

Extend to `beyond’ Landau level physics ?

Vortexability 



FCI in Experiment

Spanton et al, Science (2018)

Magnetic field is responsible for the 
formation of the Hofstadter Chern bands, 
precluding the realization of FCI in the 
zero-field limit.

1. In Hofstadter Bands  
High Field FCI (~25 Tesla)  

where B-field creates Chern 
bands

Spanton..A. Young. Science (2018)
2. Magic angle graphene + 
aligned hBN substrate:

Intrinsic zero-field Chern bands 
{D. Goldhaber-Gordon; A. Young}
[ ]

Compressibility measurements 
show for 

ν = 3; C = 1

B ≳ 5 T

Xie,… Jarillo-Herrero, Yacoby Nature (Nature, 2021)

Theory/Numerics: Ledwith, Tarnopolsky, Khalaf, AV `20. . Repellin, Senthil `20 Abouelkomsan, Liu, Bergholtz `20 Wilhelm, Lang, Läuchli 
`20

Fractional Chern Insulators!



FCI in Magic Angle Graphene

3Tesla

Theory
• Small magnetic fields 
improves band 
geometry and 
dramatically reduces 
bandwidth.

• Zero field FCI?  

• DMRG Numerics 
points to slightly 
higher angles. 

Parker,Ledwith, Khalaf, Soejima, Hauschild, Xie, Pierce, Zaletel, Yacoby, AV



What does it imply? Why is it important? 
  

Can we find bands that naturally satisfy it? 

Experimental consequence? 

Extend to `beyond’ Landau level physics ?

Vortexability 



Higher Chern numbers in Chiral Multilayers

Flat & vortexable Chern bands
Same magic angle as chiral TBG
Any Chern number!

Ledwith, AV, Khalaf (PRL 2022)
Wang, Liu 2109:10325
Y. Zhang..Senthil (2018)

Examples:

Mono-Bi graphene:

n=2; m=1

|C| = 2; 1


2

FIG. 1. Correlated states at half-integer filling of the moiré unit cell. a, Schematic of a tMBG device in which
rotationally misaligned monolayer graphene (top) and Bernal-stacked bilayer graphene (bottom) are sandwiched between two
graphite gates (hexagonal boron nitride (hBN) insulating spacer layers are not shown), enabling independent control of both the
electric displacement field D and the total carrier density n. b, c Longitudinal resistance Rxx and Hall resistance Ryx measured
for a range of fillings spanning the conduction band at T=20 mK in device D2, with ✓ = 1.29�. Ryx is field-symmetrized at
B=±2 T, while Rxx is measured at zero magnetic field. In addition to well-developed states at ⌫ =1,2 and 3, there are additional
states at fillings ⌫ = 3/2 and 7/2, marked by sharp peaks in Rxx and Rxy. d, e Hall resistance Ryx measured at magnetic
fields of 2, 1, and 0.15 T near ⌫ =3/2 (d) and 7/2 (e) respectively. The displacement fields are D=0.534 and 0.468 V/nm
respectively. f, Magnetic field dependence of Ryx and R⇤

xx measured at ⌫=7/2 and D= 0.456 V/nm, showing anomalous Hall
e↵ect with a hysteresis loop height of �Ryx ⇡ 0.4 h/e2. Right inset shows the measurement geometry.

states represent ground states incorporating correlations
that reorder the filling of the single-particle states within
a single Chern band.

While topological states with integer quantized s and
C have been observed at B=0, to date fractional s or
C states have been observed only in the high B limit.
This failure is related to the di�culty of engineering
bands that are simultaneously topologically nontrivial
and have small bandwidth, so that the ground state
will spontaneously break time reversal symmetry and in
addition form either a charge density wave or topolog-
ically ordered state. Narrow bands engineered by in-
troducing a moiré superlattice in graphene heterostruc-
tures provide an ideal venue to search for topological
states with fractional quantum numbers. At the sin-
gle particle level, these structures host valley-projected
minibands with finite Chern number and small band-
width. Crucially, experiments have demonstrated that
Coulomb interactions naturally favor spontaneous break-
ing of time reversal symmetry, manifesting as ferromag-
netism [23, 24] and the observation of quantum anoma-
lous Hall e↵ects [4, 5, 7] at integer band filling ⌫ = n/n0,

where n is areal carrier density, and 1/n0 is the area of
a moiré unit cell (see Methods). These states–with inte-
ger C and s—arise from interaction-driven polarization
of the electron system into an odd number of topolog-
ically nontrivial valley projected bands. Moreover, evi-
dence of correlation physics beyond this variety of spin-
and valley ferromagnetism has recently emerged in the
observation of incompressible states at fractional filling
of moiré heterostructures composed of transition metal
dichalcogenides, however the observed fractional s states
have C = 0 [25–28].

RESULTS

Here, we report the observation of symmetry broken
Chern insulator states at half-filling of a Chern 2 band
in twisted monolayer-bilayer graphene (tMBG) at zero
magnetic field. We study devices in which top and bot-
tom graphite gates enable us to independently control
both the total carrier density n and the displacement
field D in the tMBG layer while simultaneously ensuring
low charge disorder (see Fig.1a and Methods). Previous

Experiment:
Polshyn, et al. (Nat. Phys. 2022)



Higher Chern Vortexable Bands

Dong, Ledwith, Khalaf, Lee, AV (2210.13477)
Wilhelm, Lang, Scheurer, Lauchli (2204.05317) 
Wu, Regnault, Bernevig ’13; Kumar, Roy, Sondhi `14

Theory: Chern C=2 at Half filling:


Generalized Ferromagnet (CDW) with C=1

(111)
Ferromagnet

Contact interaction

Analytic ground states: ferromagnets are zero modes
• SU(2) symmetric ground state manifold

Translations flip pseudospin: ferromagnets are CDWs
• Experimentally observed: SBCI at half filling

Half Filling: Topological CDW
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FIG. 3. Evidence for non-trivial topology and ferromagnetism at ⌫ = 7/2. a, Low-field evolution of Hall resistance,
measured at D = 0.466 V/nm for a range of n spanning states at ⌫ =3 and 7/2 in device D2. Lines originating from ⌫ =3
and 7/2 are guides for the eye that have slopes expected for Chern insulating states with C = 2 and 1 respectively. The inset
shows Ryx plotted along the lines in the main panel, which saturate to approximately 0.5h/e2 and h/e2. At zero magnetic
field both traces exhibit finite jumps. b, Doping dependence of the magnetic hysteresis �Ryx, as defined in Fig. 1f, in the
vicinity of ⌫=7/2 measured at D = 0.456 V/nm. c, Temperature dependence of the Hall resistance measured at B = 0.25 T
and D = 0.451 V/nm. The Ryx peak at ⌫=7/2 disappears near 2.5 K.

quantum Hall e↵ect; however, in the likely realizations
of this scenario the Chern number would also be frac-
tional. More conservatively, electron interactions may
lead the ground state to spontaneously break the orig-
inal moiré superlattice symmetries, so that an integer
number of electrons are bound to a doubled unit cell; the
absence of charge fractionalization however mandates an
integer quantized Hall conductivity [16]. We attribute
the ⌫ = 3/2 state to just such a symmetry broken Chern
insulator. This SBCI state splits the spin- and valley-
polarized Chern 2 band into two Chern 1 bands, and ex-
ists only in the region of the (n,D) plane near the ⌫ = 1
state, where both spin- and valley- degeneracies are fully
broken (see Fig. 1c, E4, E2).

The state observed at ⌫ = 7/2 shares many features
with that at 3/2. It is a symmetry-broken Chern insu-
lating state with C =1 and s=7/2 as follows from both
the Hall conductivity and the n-B dependence (Fig. 3a).
However, in contrast to ⌫ = 3/2, the 7/2 state persists
all the way down to zero magnetic field and exhibits a
large anomalous Hall e↵ect with magnetic hysteresis of
�Ryx ⇡ 0.4h/e2 and coercive fields of ⇡100 mT (Fig. 3b
and Fig. E5). While the Hall conductivity is not per-
fectly quantized, multiterminal transport measurements
strongly suggest that transport is dominated by chiral
edge states at B = 0, with imperfection of the quanti-
zation arising from structural inhomogeneity within the
device [36, 37] (see Fig. E6). Taking the temperature
at which the anomalous Hall resistance at ⌫=7/2 disap-
pears as an estimate of the Curie temperature we obtain
⇡ 2.5 K (Fig. 3c). This is only about a factor of two
smaller than the Curie temperature of QAH states at
⌫=1 and 3 [7].

Calculations of the tMBG band structure illuminate
the essential features of the moiré minibands that en-

able SBCI states at fractional filling. In addition to the
bandwidth W < 10 meV, which is significantly smaller
than the scale of the Coulomb interaction EC ⇡ 30 meV,
band structure calculations show a relatively homoge-
neous distribution of the Berry curvature for the conduc-
tion band [29, 31], with similar contributions arising from
the neighborhoods of both the � and K points within the
moiré Brillouin zone. Interaction driven doubling of the
unit cell at half filling of the C = 2 band is thus likely
to equally partition the evenly distributed Berry curva-
ture, yielding a C = 1 gap. Such symmetry breaking
states constitute a lattice generalisation of quantum Hall
ferromagnetism [16].

A Hartree-Fock calculation (see Fig. 4), generalized to
include translation symmetry breaking that doubles the
unit cell, obtains a SBCI ground state for a range of
displacement fields around 0.4 V/nm at filling ⌫ = 7/2.
The unfilled translation-breaking band is spin and valley
polarized and has C = 1; its density and Berry curva-
ture are shown in Fig. 4b,e. The Berry curvature does
not have a visible peak at the K point, unlike the non-
interacting Berry curvature, likely due to interaction-
induced mixing with the C = �1 band below. Finally,
the calculated density confirms the stripe order that is in-
ferred from the experimentally-observed half-integer fill-
ing, which, in the absence of fractionally quantized Hall
resistance, strongly implies unit cell doubling.

The Hartree-Fock state we obtain is very similar to the
strong coupling idealized model of sublattice polarization
discussed in [16]. In particular, the translation breaking
order parameter for a fully sublattice polarized state on a
square lattice is O(k) = hc†kck+Qi = 1/2. The analogous
order parameter for monolayer-bilayer graphene is plot-
ted in Fig. 4c; it is close to 1/2 everywhere in the Brillouin
zone. This is in sharp contrast to weak coupling trans-

Polshyn, et al. (Nat. Phys. 2022)

Expt: Mono-Bilayer @ n=3 
spin+valley polarized and C=2;

@ n= 3+1/2 Generalized Ferromagnet 
(eg. CDW) with C=1

(111)
Ferromagnet

Contact interaction

Analytic ground states: ferromagnets are zero modes
• SU(2) symmetric ground state manifold

Translations flip pseudospin: ferromagnets are CDWs
• Experimentally observed: SBCI at half filling

Half Filling: Topological CDW

6



Higher Chern Vortexable Bands
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FIG. 3. Evidence for non-trivial topology and ferromagnetism at ⌫ = 7/2. a, Low-field evolution of Hall resistance,
measured at D = 0.466 V/nm for a range of n spanning states at ⌫ =3 and 7/2 in device D2. Lines originating from ⌫ =3
and 7/2 are guides for the eye that have slopes expected for Chern insulating states with C = 2 and 1 respectively. The inset
shows Ryx plotted along the lines in the main panel, which saturate to approximately 0.5h/e2 and h/e2. At zero magnetic
field both traces exhibit finite jumps. b, Doping dependence of the magnetic hysteresis �Ryx, as defined in Fig. 1f, in the
vicinity of ⌫=7/2 measured at D = 0.456 V/nm. c, Temperature dependence of the Hall resistance measured at B = 0.25 T
and D = 0.451 V/nm. The Ryx peak at ⌫=7/2 disappears near 2.5 K.

quantum Hall e↵ect; however, in the likely realizations
of this scenario the Chern number would also be frac-
tional. More conservatively, electron interactions may
lead the ground state to spontaneously break the orig-
inal moiré superlattice symmetries, so that an integer
number of electrons are bound to a doubled unit cell; the
absence of charge fractionalization however mandates an
integer quantized Hall conductivity [16]. We attribute
the ⌫ = 3/2 state to just such a symmetry broken Chern
insulator. This SBCI state splits the spin- and valley-
polarized Chern 2 band into two Chern 1 bands, and ex-
ists only in the region of the (n,D) plane near the ⌫ = 1
state, where both spin- and valley- degeneracies are fully
broken (see Fig. 1c, E4, E2).

The state observed at ⌫ = 7/2 shares many features
with that at 3/2. It is a symmetry-broken Chern insu-
lating state with C =1 and s=7/2 as follows from both
the Hall conductivity and the n-B dependence (Fig. 3a).
However, in contrast to ⌫ = 3/2, the 7/2 state persists
all the way down to zero magnetic field and exhibits a
large anomalous Hall e↵ect with magnetic hysteresis of
�Ryx ⇡ 0.4h/e2 and coercive fields of ⇡100 mT (Fig. 3b
and Fig. E5). While the Hall conductivity is not per-
fectly quantized, multiterminal transport measurements
strongly suggest that transport is dominated by chiral
edge states at B = 0, with imperfection of the quanti-
zation arising from structural inhomogeneity within the
device [36, 37] (see Fig. E6). Taking the temperature
at which the anomalous Hall resistance at ⌫=7/2 disap-
pears as an estimate of the Curie temperature we obtain
⇡ 2.5 K (Fig. 3c). This is only about a factor of two
smaller than the Curie temperature of QAH states at
⌫=1 and 3 [7].

Calculations of the tMBG band structure illuminate
the essential features of the moiré minibands that en-

able SBCI states at fractional filling. In addition to the
bandwidth W < 10 meV, which is significantly smaller
than the scale of the Coulomb interaction EC ⇡ 30 meV,
band structure calculations show a relatively homoge-
neous distribution of the Berry curvature for the conduc-
tion band [29, 31], with similar contributions arising from
the neighborhoods of both the � and K points within the
moiré Brillouin zone. Interaction driven doubling of the
unit cell at half filling of the C = 2 band is thus likely
to equally partition the evenly distributed Berry curva-
ture, yielding a C = 1 gap. Such symmetry breaking
states constitute a lattice generalisation of quantum Hall
ferromagnetism [16].

A Hartree-Fock calculation (see Fig. 4), generalized to
include translation symmetry breaking that doubles the
unit cell, obtains a SBCI ground state for a range of
displacement fields around 0.4 V/nm at filling ⌫ = 7/2.
The unfilled translation-breaking band is spin and valley
polarized and has C = 1; its density and Berry curva-
ture are shown in Fig. 4b,e. The Berry curvature does
not have a visible peak at the K point, unlike the non-
interacting Berry curvature, likely due to interaction-
induced mixing with the C = �1 band below. Finally,
the calculated density confirms the stripe order that is in-
ferred from the experimentally-observed half-integer fill-
ing, which, in the absence of fractionally quantized Hall
resistance, strongly implies unit cell doubling.

The Hartree-Fock state we obtain is very similar to the
strong coupling idealized model of sublattice polarization
discussed in [16]. In particular, the translation breaking
order parameter for a fully sublattice polarized state on a
square lattice is O(k) = hc†kck+Qi = 1/2. The analogous
order parameter for monolayer-bilayer graphene is plot-
ted in Fig. 4c; it is close to 1/2 everywhere in the Brillouin
zone. This is in sharp contrast to weak coupling trans-

Skyrmion of topological CDWs

FCIs from Vortex Attachment

Dong, Ledwith, Khalaf, Lee, AV(2210.13477)

Mono-Bilayer at 
n=3 (C=2); n= 3+1/2 (C=1)

Stripe

ν = 1/5; (332)

Polshyn, et al. (Nat. Phys. 2022)

ν = 1/6; Ferro-Laughlin



Conclusions
• Vortexability - starting point for identifying promising FCI 

candidates. Many physical details + strain + substrate need to 
be understood


• Can be generalized, different vortex functions:  
  : where   


• Higher Chern - can we find states supporting `genon’ non 
Abelian defects? 


• “Nearly Vortexable” bands -periodically strained graphene (Gao-

Khalaf et al, Sun et al.) & TMDs (Crepel-Fu, Reppelin, Wang, Cano et al.)


• Towards ideal bands and zero field FCI by relaxation 
engineering - eg. in alt-twist penta-layer. (Ledwith, Khalaf et al.)

ũk = e−ik⋅ϕ(r)ψk ϕ(r + a) = ϕ(r) + a



…non-Abelions in synthetic 
quantum systems

Ruben  
Verresen

Theory+ Numerics+Experiment Collaboration

Ryan ThorngrenRuben Verresen Nat Tantivasadakarn

Collaborators

@Harvard @Caltech @KITP

  

Topological order from
finite-depth unitaries, measurement

and feedforward: Part I

Ruben Verresen
Harvard University

(Funding: Harvard Quantum Initiative and UQM Simons collaboration)

March 9th, APS March Meeting 2023



Preparation of topological phases 

Verresen, Lukin, Vishwanath ’20
Semeghini et. al. ‘21

Tune adiabatically through phase 
transition. Time  System size∝

Linear depth circuits required 
Bravyi, Hastings, Verstraete ’06 ; Chen, Gu Wen ’10

Satzinger et.al. ‘21

It seems that all such preparations are slow (not scalable)?



Efficient Preparation of Non-Abelian states
With MEASUREMENT

cannot be paired up in finite time 
(Shi ’17)

Solution: sequentially gauge abelian symmetries: pair up abelian anyons in each step

Non-Abelian anyons allow for universal quantum computation (Kitaev ’01, Mochon ’03)

Were believed to be inaccessible via measurement!

Raussendorf-Bravyi



Feede e2

s
s

Forward

Feed
Forward

Z3 KW duality

Z3 TC

Measure Z3 TC

anyons {1, e, e2}

Measure charge

conj. anyons {1, s}

U

Z3 TC

S3 KW

duality

qubit |+⌦N i
qutrit |+⌦N i

qubit |+⌦N i

C C
C

C

S3 TO

Z2 KW duality

Preparing  topological orderS3

ℤ3 ⋊ ℤ2

𝒞 = (
1 0 0
0 0 1
0 1 0)

 acts as “charge 
conjugation”  on qutrit  

ℤ2
𝒞 ℤ3

|0⟩

|1⟩ |2⟩

|0⟩

|1⟩ |2⟩



Gos and No Gos
Can prepare the (twisted) quantum double any solvable group

NT, Vishwanath, Verresen (see Bravyi, Kim, Kliesch, Koenig for a related protocol)

ℤ1 ◃ N1 ◃ N2 ◃ ⋯ ◃ NlG−1 ◃ NlG = G

Commutator subgroup

ℤ1 ◃ N1 ◃ N2 ◃ ⋯ ◃ NlG−1 ◃ NlG = G

Gauge N1 Gauge N2/N1 Gauge G/NlG−1

Non-solvable polynomials

Theorem (Abel-Ruffini): 
A polynomial of degree  has 
no solution in terms of radicals

≥ 5

Évariste Galois

❌

Non-solvable groups

Conjecture (with physicist’s “proof”): Quantum 
doubles for the symmetric group  for  

cannot be prepared with a finite depth of circuits 
and measurements 

Sn n ≥ 5

Commutator subgroup


