
Conclusions
• Coupled (quantum) van der Pol oscillators may reflect the features of an underlying topological lattice 

even though the system is highly nonlinear and far away from equilibrium
• The topological character manifests as synchronized boundary modes, which are robust against random 

initial conditions and (symmetry-preserving) local perturbations.

Motivation
Topological insulators exhibit a remarkable robustness against certain imperfections in closed systems [1]. However, it is far from being completely understood whether this feature carries over to nonlinear systems and 
under nonequilibrium conditions. Here, we explore in the classical and quantum regime whether topological protection can be exploited to enhance the robustness of synchronization, a hallmark of collective behavior, 
where interactions lead to the adjustment of rhythms [2].

[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010), [2] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization (Cambridge, 2001).

Topological lattice of quantum van der Pol oscillators
Tight binding Hamiltonian

We study a lattice of  sites, each consisting of a harmonic oscillator 
with identical frequencies . The tight-binding Hamiltonian is given by

where ( ) denote bosonic creation (annihilation) operators. This general form 
of the system Hamiltonian allows us to realize different topological lattices via .
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Nonlinear open quantum system
A quantum harmonic oscillator subject to one-phonon gain with rate  and two-phonon loss with rate  
represents the quantum analogue of the classical van der Pol oscillator. In an open quantum system 
approach, the dynamics of the system density matrix  is then given by the master equation [3] 

where we use the notation .

          [3] Tony E. Lee and H. R. Sadeghpour, Phys. Rev. Lett. 111, 234101 (2013).
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Synchronization of classical and quantum systems
Classical frequency synchronization

Synchronization of classical oscillatory systems can take many 
different forms. Here, we  refer to two oscillatory systems being 
synchronized if they oscillate with the same frequency at a fixed 
phase difference:

d
dt

Δφjj′ 
= d

dt (φj − φj′ ) = 0.

Quantum synchronization
Generalizing the classical notion of synchronization to the quantum regime is challenging as phase space 
trajectories become ill defined concepts. Here, we use a measure to quantify synchronization of two 
quantum systems based on their dimensionless quadratures [4]

where  and , which extends the classical concept of 'error' 
into the quantum domain, i.e., the smaller the variance of the quadrature differences is, the larger is the 
synchronization measure, indicating how equivalent the dynamics of two quantum systems are.
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          [4] Mari et al., Phys. Rev. Lett. 111, 103605 (2013).

Classical mean field model
Classical equations of motion can be obtained for the expectation values  by performing a mean 
field approximation. The governing equation of the complex-valued mean field amplitudes 

 is then given by 

where  denotes the Hadamard product defined as 
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• Random initial conditions allow to reconstruct the eigenspectrum
• In particular, also the edge modes in the topological phase (which are synchronized)

• Eigenstate of  as initial state translates directly to dynamics of the oscillators
• Additional synchronized boundary modes appear in the topological phase 

HSSH

Classical synchronization in the SSH chain

Topological boundary mode synchronization

The SSH model is a one-dimensional dimerized lattice with staggered nearest-neighbor hopping and time 
reversal, particle-hole and chiral symmetry. The Hamiltonian is given by 

where  if  is odd and  otherwise.
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Topological robustness to local perturbations

Topological insulators exhibit extremely robust surface states since no 
local perturbation can change their global topology. To test whether this 
extraordinary feature still persists, we apply random disorder 

 with . While the frequencies within the 
upper and lower band spread, the edge mode persists even for large 
disorder strengths
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Effective quantum model
To solve the full open quantum system is a non-trivial task due to the large number of interacting 
oscillators and the involved nonlinearities in the dissipators. We therefore
define the density matrix in the displaced frame as  [5]. By neglecting terms 
of order , we obtain an effective master equation of Lindblad form, 

with effective time-dependent (squeezing) Hamiltonian 

The time-dependent mean field amplitudes  appear in the effective Hamiltonian and the time-dependent 
dissipation rates.
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As the Hamiltonian is quadratic, the dynamics of the effective quantum model is fully described by the 
covariance matrix of the quadratures  with equation of motion

where  and  are determined through the master equation. The synchronization measure is easily 
accessible through the entries of this covariance matrix.

Cmn(t) = Tr[ϱα(t){Xm, Xn}/2]
·C(t) = B(t) C(t) + C(t) B⊺(t) + D(t),

B(t) D(t)

Covariance matrix

          [5] Lörch et al., Phys. Rev. X 4, 011015 (2014).

• Even in the quantum regime clear signatures of boundary mode synchronization is observed 

Quantum synchronization in the SSH chain
Topological boundary mode synchronization

Topological robustness to local perturbations

The topologically protected synchronization of edge modes observed for 
the classical mean field amplitudes also persists for the quantum model 
over a long range of (symmetry-preserving) random disorder  
with . This shows that the effect goes beyond a simple 
classical mean field description.
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